Dimension: px
Commencer à balayer dès la page:

Download ""

Transcription

1 Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999

2 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1

3 Historique des problemes discrets Probleme Annee Travelling Salesman [5,15,19,31,33] 1991 Quadratic Assignement [23,26,34] 1994 Job Shop Scheduling [7] 1994 Vehicle Routing [3,4] 1996 Network Routing [10,11,27,28] 1997 Bus Driver Scheduling [18] 1997 Sequential Ordering [22] 1997 Graph Coloring [9] 1997 Frequency Assignement [25] 1998 Flow Shop Scheduling [32]

4 Inspiration Biologique (1/4) Le fourragement! Recherche de nourriture autour du nid.! Utilisation de pheromones pour marquer le chemin empreinte.! Utilisation des traces de pheromones pour retrouver le chemin. 3

5 Inspiration Biologique (2/4) Consequences! L'information est partagee.! Decouverte du plus court chemin entre la source de nourriture et le nid.! Resolution collective d'un probleme d'optimisation. 4

6 Inspiration Biologique (3/4) Illustration U U N A B S A B N S V V Figure 1: t = 0 U A... B N S V Figure 2: t = 2 U A B N S V Figure 3: t = 4 Figure 4: t = 5 5

7 Inspiration Biologique (4/4) Remarques Evaporation des pheromones! adaptation a un environnement dynamique. La decouverte du plus court chemin est un comportement emergent. La communication se fait de maniere indirecte : stigmergie. 6

8 Ant Colony Optimization (1/3) Meta-heuristique ACO : fourmis articielles = agents simples points commun avec les fourmis reelles : { Communication indirecte par leur environnement. { Perception limitee de cet environnement. { Decisions aleatoires (recherche stochastique). { Deplacement dans un espace a la recherche du plus court chemin. 7

9 Ant Colony Optimization (2/3) Resolution de problemes combinatoires : Les fourmis articielles possedent certaines capacites supplementaires, elles disposent d'une memoire pour la construction d'une solution, elles se deplacent dans un espace discret. 8

10 Ant Colony Optimization (3/3) Algorithme Tantque (la condition d'arr^et n'est pas atteinte) Tantque (L'etat nal n'est pas atteint) Pour (chaque fourmi) Choisir l'etat suivant en fonction de la memoire et de l'environnement local Mettre a jour les pheromones sur l'arc choisi. FinPour FinTantQue Pour (chaque fourmi) Evaluer la solution obtenue FinPour Mise a jour globlale des pheromones FinTantque Acher la meilleure solution trouvee 9

11 Application : TSP (1/8) Le probleme : n villes T = ( 1 ::: n ) min 8 < : X n;1 d( i i+1 ) + d( n 1 ) i=1 9 = (1) ACO! AS, MMAS, AS rank, Ant-Q, ACS 10

12 Application : TSP (2/8) AS, MMAS, AS rank, Ant-Q, ACS A chaque arc (i j), on associe une quantite de pheromones ij En i, la fourmi k choisit la ville j avec la probabilite suivante : N k i p k ij (t) = a ij(t) P l2n k i a il (t) (2) est l'ensemble des villes qui n'ont pas encore ete visitees par la fourmis k. est obtenu par a ij (t) = a ij (t) [ ij(t)] [ ij ] Pl2N i [ il (t)] [ il ] 8j 2 N i (3) il = 1=d il represente la visibilite de la fourmi. 11

13 Application : TSP (3/8) AS, MMAS, AS rank, Ant-Q, ACS Chaque fourmi depose une quantite k ij sur les arcs qu'elle a empreintes : ( k 1=L ij = k si (i j) 2 T k 0 sinon (4) T k est le tour eectue par la fourmi k et L k en est la longueur. La quantite de pheromone est alors mise a jour : ij (1 ; ) ij + mx k=1 k ij (5) 12

14 Application : TSP (4/8) AS, MMAS, AS rank, Ant-Q, ACS Mise a jour globale des pheromones. Les pheromones sont bornees :[ min max ]. Elles sont initialisees a max. 13

15 Application : TSP (5/8) AS, MMAS, AS rank, Ant-Q, ACS Les fourmis sont rangees par ordre decroissant des L k. La mise a jour des pheromones tient compte du rang : ij (1 ; ) ij + ;1 X L + + =1 ij (6) ( (;) ij = si (i j) 2 T L 0 sinon (7) 14

16 Application : TSP (6/8) AS, MMAS, AS rank, Ant-Q, ACS AS Q ; Learning )! Ant ; Q (8) Mise a jour locale des pheromones : ij (1 ; ') ij + ' max l2n k j jl (9) 15

17 Application : TSP (7/8) AS, MMAS, AS rank, Ant-Q, ACS Renforcement global des pheromones : ij (1 ; ) ij + 1 L + (10) Parametre q 0 xant le rapport Exploration/Exploitation Renforcement local des pheromones : ij (1 ; ') ij + ' 0 (11) 16

18 Application : TSP (8/8) AS, MMAS, AS rank, Ant-Q, ACS Choix de la ville suivante dans une liste candidate. Utilisation d'heuristiques de recherche locale (2-opt, 3-opt). Performances (TSP, ATSP) AS < AS rank, Ant-Q < ACS, MMAS 17

19 Application : QAP (1/.) Le probleme : Soit deux matrices n n, A = [a ij ] et B = [b ij ] min 2S(n) nx nx i=1 j=1 b ij a i j (12) ACO! AS-QAP, ANTS-QAP, MM-QAP, FANT-QAP, HAS-QAP 18

20 Application : Flow Shop (1/3) Le probleme : n travaux, m machines min 2S(n) ( max 1in C im ) (13) ACO! MMAS-FSH ij represente l'attrait du travail i pour la j-ieme position de la sequence. la sequence est construite iterativement. 19

21 Application : Flow Shop (2/3) MMAS-FSH Exploration : choisir le travail i pour la j- ieme position suivant la probabilite : p ij = 8 < : ij Pk2L j kj si i 2 L j 0 sinon (14) L j est la liste des travaux non aectes lors du choix de la j-ieme position. Exploitation : choisir le travail i tel que : ij = max k2l j kj (15) 20

22 Application : Flow Shop (3/3) MMAS-FSH Les pheromones ne sont mises a jour qu'en fonction de la meilleur fourmi : ij (1 ; ) ij + ij (16) ij vaut 1=C best si le travail i est aecte a la j-ieme position pour la meilleure fourmi et 0 sinon. En plus : recherche locale (echanges, insertion,...) 21

23 Problemes dynamiques Routage dans les reseau commutes/non commutes. Les fourmis accompagnent les paquets jusqu'a leur destination Elles reviennent en mettant a jour les tables de routage en fonction de la rapidite de leur voyage aller. 22

24 Conclusion 23

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet pierre.chauvet@uco.fr Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective

Plus en détail

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce : apprentissage coopératif pour le problème du voyageur de commerce Alexandre Bargeton Benjamin Devèze Université Pierre et Marie Curie Présentation du projet ANIMAT 1 Comportements collectifs des insectes

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Optimisation par colonies de fourmis. COSTANZO Andrea LUONG Thé Van MARILL Guillaume

Optimisation par colonies de fourmis. COSTANZO Andrea LUONG Thé Van MARILL Guillaume Optimisation par colonies de fourmis COSTANZO Andrea LUONG Thé Van MARILL Guillaume 19 mai 2006 Table des matières 1 Introduction 4 1.1 Pourquoi les fourmis?.................................. 4 1.2 Relation

Plus en détail

Deux stratégies parallèles de l'optimisation par colonie de fourmis

Deux stratégies parallèles de l'optimisation par colonie de fourmis 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA Deux stratégies parallèles de l'optimisation par colonie de fourmis HERNANE

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Inès Alaya To cite this version: Inès Alaya. Optimisation multi-objectif par colonies de fourmis : cas des problèmes

Plus en détail

Complexité et auto-organisation chez les insectes sociaux. Complexité et auto-organisation chez les insectes sociaux

Complexité et auto-organisation chez les insectes sociaux. Complexité et auto-organisation chez les insectes sociaux Complexité et auto-organisation chez les insectes sociaux Guy Theraulaz Centre de Recherches sur la Cognition Animale CNRS, UMR 5169, Toulouse, France Marathon des Sciences XXIII ème Festival d Astronomie,

Plus en détail

Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages

Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages Sommaire Introduction I. Notions de routage a) Technologies actuelles b) Avantages et désavantages II. Routage et fourmis a) Principe et avantages b) Structure du simulateur III.Implémentation a) Présentation

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

THESE. Application des algorithmes de colonies de fourmis pour l optimisation et la classification des images

THESE. Application des algorithmes de colonies de fourmis pour l optimisation et la classification des images République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement Supérieur et de la Recherche Scientifique UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE d

Plus en détail

Systèmes Multi-Agents : Modélisation et simulation informatique de comportements collectifs. Chapitre III

Systèmes Multi-Agents : Modélisation et simulation informatique de comportements collectifs. Chapitre III Systèmes Multi-gents : Modélisation et simulation informatique de comportements collectifs Chapitre III Différentes approches de Conception et applications Introduction Les différents concepts Cheminement

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie. par. Walid TFAILI. pour obtenir le grade de

THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie. par. Walid TFAILI. pour obtenir le grade de THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie par Walid TFAILI pour obtenir le grade de DOCTEUR EN SCIENCES Spécialité : SCIENCES DE L INGÉNIEUR Option : Optimisation

Plus en détail

DES FOURMIS POUR LIVRER DU MAZOUT

DES FOURMIS POUR LIVRER DU MAZOUT DES FOURMIS POUR LIVRER DU MAZOUT É. D. Taillard (1), G. Agazzi (2), L.-M. Gambardella (3) Résumé La livraison de certains biens peut engendrer des coûts non négligeables par rapport à la valeur de la

Plus en détail

Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes

Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes Actes JFPC 2009 Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes Madjid Khichane 1,2, Patrick Albert 1 et Christine Solnon 2 1 ILOG An IBM Company

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image IN52-IN54 A2008 Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image Etudiants : Nicolas MONNERET Alexandre HAFFNER Sébastien DE MELO Responsable : Franck GECHTER Sommaire

Plus en détail

Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai.

Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. Projet L1, S2, 2015: Simulation de fourmis, Soutenance la semaine du 4 mai. 1 Introduction On considère une grille de 20 lignes 20 colonnes. Une case de la grille peut être vide, ou contenir une et une

Plus en détail

Optimisation par Colonies de Fourmis Artificielles

Optimisation par Colonies de Fourmis Artificielles Optimisation par Colonies de Fourmis Artificielles Tour d horizon Nicolas Monmarché Laboratoire d Informatique Université François Rabelais - Tours Yravals 07, Deuxième école d été sur L Évolution Artificielle

Plus en détail

Résolution des problèmes difficiles par optimisation distribuée

Résolution des problèmes difficiles par optimisation distribuée REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE MOHAMED KHIDER BISKRA Faculté des sciences et des sciences de l ingénieur

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs

La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs Éric D. Taillard 1 Luca M. Gambardella 1 Michel Gendreau 2 Jean-Yves Potvin 2 1 IDSIA, Corso Elvezia 36, CH-6900 Lugano. E-mail

Plus en détail

Intelligence des essaims (Swarm Intelligence)

Intelligence des essaims (Swarm Intelligence) Intelligence des essaims (Swarm Intelligence) Présentation Ghislain O Mahony 27 novembre 2006 Réunion Emergence 1 Les auteurs / caractéristiques ouvrage Les auteurs Eric Bonabeau Chef scientifique Icosystem

Plus en détail

Une algorithmique pour le Network Calculus

Une algorithmique pour le Network Calculus Une algorithmique pour le Network Calculus Anne Bouillard ENS Cachan (Bretagne) / IRISA 27 janvier 2009 - journées AFSEC Anne Bouillard (ENS Cachan / IRISA) Une algorithmique pour le Network Calculus 1

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Vers une Optimisation de l Algorithme AntTreeStoch

Vers une Optimisation de l Algorithme AntTreeStoch Revue des Sciences et de la Technologie - RST- Volume 3 N 1 / janvier 2012 Vers une Optimisation de l Algorithme AntTreeStoch O. KADRI, H. MOUSS, A. ABDELHADI, R. MAHDAOUI Laboratoire d Automatique et

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Master de mathématiques Analyse numérique matricielle

Master de mathématiques Analyse numérique matricielle Master de mathématiques Analyse numérique matricielle 2009 2010 CHAPITRE 1 Méthodes itératives de résolution de systèmes linéaires On veut résoudre un système linéaire Ax = b, où A est une matrice inversible

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE

UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE OFFERTE EN VERTU D'UN PROTOCOLE D'ENTENTE AVEC L'UNIVERSITÉ DU QUÉBEC

Plus en détail

Des fourmis réelles aux fourmis artificielles

Des fourmis réelles aux fourmis artificielles Des fourmis réelles aux fourmis artificielles Deux exemples d approches biomimétiques de la résolution de problèmes en informatique. Nicolas Monmarché & Alain Lenoir Laboratoire d Informatique - Institut

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Reconnaissance automatique de la parole à l aide de colonies de fourmis

Reconnaissance automatique de la parole à l aide de colonies de fourmis Reconnaissance automatique de la parole à l aide de colonies de fourmis Benjamin Lecouteux Didier Schwab Groupe d Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole Laboratoire

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Problème à résoudre. min f(s) s.c. s S

Problème à résoudre. min f(s) s.c. s S Métaheuristiques Le mot métaheuristique est dérivé de la composition de deux mots grecs: - heuristique qui vient du verbe heuriskein (ευρισκειν) et qui signifie trouver - meta qui est un suffixe signifiant

Plus en détail

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Le e-learning adaptatif

Le e-learning adaptatif 1 Université de Nice Sophia-Antipolis Master recherche PMLT Rapport de stage présenté en juin 2005 par Sterenn AUBERT Le e-learning adaptatif Nom des responsables de stage :Pierre Crescenzo (laboratoire

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

alg - Arbres binaires de recherche [br] Algorithmique

alg - Arbres binaires de recherche [br] Algorithmique alg - Arbres binaires de recherche [br] Algorithmique Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 25 avril 2015 Table des matières 1 Définition, Parcours, Représentation

Plus en détail

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations LABORATOIRE D INFORMATIQUE DE L UNIVERSITE DE FRANCHE-COMTE EA 4269 Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations Mais HAJ-RACHID, Christelle BLOCH, Wahiba

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

Principes d implémentation des métaheuristiques

Principes d implémentation des métaheuristiques Chapitre 2 Principes d implémentation des métaheuristiques Éric D. Taillard 1 2.1 Introduction Les métaheuristiques ont changé radicalement l élaboration d heuristiques : alors que l on commençait par

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Minimisation de la somme des retards dans un jobshop flexible

Minimisation de la somme des retards dans un jobshop flexible Minimisation de la somme des retards dans un jobshop flexible Nozha ZRIBI, Imed KACEM, Abdelkader EL KAMEL, Pierre BORNE LAGIS Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Ascq Cedex, France ISTIT

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072

UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072 UNIVERSITE D'EVRY VAL D'ESSONNE Référence GALAXIE : 4072 Numéro dans le SI local : Référence GESUP : Corps : Professeur des universités Article : 46-1 Chaire : Non Section 1 : 27-Informatique Section 2

Plus en détail

Diverses techniques d'optimisation inspirées de la théorie de l'auto-organisation dans les systèmes biologiques

Diverses techniques d'optimisation inspirées de la théorie de l'auto-organisation dans les systèmes biologiques Diverses techniques d'optimisation inspirées de la théorie de l'auto-organisation dans les systèmes biologiques Johann Dréo, Patrick Siarry Université de Paris XII Val-de-Marne Laboratoire d'etude et de

Plus en détail

Thèse de doctorat de l'université de Technologie de Troyes LE PROBLÈME DE LOCALISATION-ROUTAGE

Thèse de doctorat de l'université de Technologie de Troyes LE PROBLÈME DE LOCALISATION-ROUTAGE UNIVERSITÉ DE TECHNOLOGIE DE TROYES École Doctorale SCIENCES DES SYSTÈMES TECHNOLOGIQUES ET ORGANISATIONNELS Année: 2006 Thèse de doctorat de l'université de Technologie de Troyes Spécialité: Optimisation

Plus en détail

L intelligence collective des fourmis

L intelligence collective des fourmis L intelligence collective des fourmis Guy Théraulaz* Les comportements collectifs des fourmis ont toujours fasciné et émerveillé les naturalistes. Tout semble se passer comme si chaque colonie se comportait

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

THÈSE. présentée à l Université d Avignon et des Pays de Vaucluse pour obtenir le diplôme de DOCTORAT

THÈSE. présentée à l Université d Avignon et des Pays de Vaucluse pour obtenir le diplôme de DOCTORAT ACADÉMIE D AIX-MARSEILLE UNIVERSITÉ D AVIGNON ET DES PAYS DE VAUCLUSE THÈSE présentée à l Université d Avignon et des Pays de Vaucluse pour obtenir le diplôme de DOCTORAT SPÉCIALITÉ : Informatique École

Plus en détail

Organigramme / Algorigramme Dossier élève 1 SI

Organigramme / Algorigramme Dossier élève 1 SI Organigramme / Algorigramme Dossier élève 1 SI CI 10, I11 ; CI 11, I10 C24 Algorithmique 8 février 2009 (13:47) 1. Introduction Un organigramme (ou algorigramme, lorsqu il est plus particulièrement appliqué

Plus en détail

Algorithmes d'allocation de ressources pour réseaux virtuels

Algorithmes d'allocation de ressources pour réseaux virtuels MINISTÈRE DE L'ÉDUCATION NATIONALE, DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE ****** Institut National des Sciences Appliquées TOULOUSE Département de Génie Électrique et Informatique Projet de fin

Plus en détail

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance Ensimag 2A Rapport de TER Application de la Recherche Opérationnelle à la Finance Elève : Yuefei HUANG Tuteur : Zoltán SZIGETI Mai, 2010 2 Sommaire 1. Introduction... 3 2. Le marché des changes et arbitrage...

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2

Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2 Implantation d atelier 1 ère partie Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2 Plan de la présentation Processus général d implantation Estimation des surfaces nécessaires Pareto des

Plus en détail

Conception d'un réseau de transport d'électricité

Conception d'un réseau de transport d'électricité La Fédération Française des Jeux Mathématiques et la Société de Calcul Mathématique SA avec l'appui de Réseau de Transport d'electricité Conception d'un réseau de transport d'électricité Auteurs : Florian

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

Routage dans l Internet Partie 2 (OSPF)

Routage dans l Internet Partie 2 (OSPF) Algorithme de Routage État de liaisons Link State Routing Routage dans l Internet Partie 2 () Isabelle CHRISMENT ichris@loria.fr Stratégie: envoyer à tous les nœuds (pas seulement les voisins) information

Plus en détail

Résolution du Problème du Voyageur de Commerce Métaheuristique

Résolution du Problème du Voyageur de Commerce Métaheuristique Résolution du Problème du Voyageur de Commerce Métaheuristique ANDRÉ BIANCHERI TCHILINGUIRIAN Table des matières I Introduction 1 II Résolution par colonies de fourmis 3 1 Les fourmis.................................................

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

Etude de modèles de programmation par contraintes pour le problème du voyageur de. avec fenêtres de temps.

Etude de modèles de programmation par contraintes pour le problème du voyageur de. avec fenêtres de temps. Actes JFPC 2015 Etude de modèles de programmation par contraintes pour le problème du voyageur de commerce avec fenêtres de temps Sylvain Ducomman 1 2 Hadrien Cambazard 1 Bernard Penz 1 1 Univ. Grenoble

Plus en détail

Système immunitaire artificiel

Système immunitaire artificiel République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Information aux parents. Les séquences en mathématique

Information aux parents. Les séquences en mathématique Information aux parents Les séquences en mathématique Un changement important La possibilité de choisir une séquence pour 4 e et 5 e secondaire n est plus un classement mais un véritable choix. Extrait

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

De la fourmi réelle à la fourmi artificielle

De la fourmi réelle à la fourmi artificielle 222222 De la fourmi réelle à la fourmi artificielle D. BELFADEL ET M. DIAF Faculté du Génie Electrique et de l informatique Université Mouloud MAMMERI de Tizi-Ouzou. 1. Introduction ous assistons, ces

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Stratégie de recherche adaptative en programmation par contrainte

Stratégie de recherche adaptative en programmation par contrainte Université Paul Sabatier École Nationale de l Aviation Civile Master 2 Recherche Informatique et Télécommunication parcours Intelligence Artificielle Simon Marchal Stratégie de recherche adaptative en

Plus en détail

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.

La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France. La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of

Plus en détail

4 Exemples de problèmes MapReduce incrémentaux

4 Exemples de problèmes MapReduce incrémentaux 4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail