Dimension: px
Commencer à balayer dès la page:

Download ""

Transcription

1 Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999

2 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1

3 Historique des problemes discrets Probleme Annee Travelling Salesman [5,15,19,31,33] 1991 Quadratic Assignement [23,26,34] 1994 Job Shop Scheduling [7] 1994 Vehicle Routing [3,4] 1996 Network Routing [10,11,27,28] 1997 Bus Driver Scheduling [18] 1997 Sequential Ordering [22] 1997 Graph Coloring [9] 1997 Frequency Assignement [25] 1998 Flow Shop Scheduling [32]

4 Inspiration Biologique (1/4) Le fourragement! Recherche de nourriture autour du nid.! Utilisation de pheromones pour marquer le chemin empreinte.! Utilisation des traces de pheromones pour retrouver le chemin. 3

5 Inspiration Biologique (2/4) Consequences! L'information est partagee.! Decouverte du plus court chemin entre la source de nourriture et le nid.! Resolution collective d'un probleme d'optimisation. 4

6 Inspiration Biologique (3/4) Illustration U U N A B S A B N S V V Figure 1: t = 0 U A... B N S V Figure 2: t = 2 U A B N S V Figure 3: t = 4 Figure 4: t = 5 5

7 Inspiration Biologique (4/4) Remarques Evaporation des pheromones! adaptation a un environnement dynamique. La decouverte du plus court chemin est un comportement emergent. La communication se fait de maniere indirecte : stigmergie. 6

8 Ant Colony Optimization (1/3) Meta-heuristique ACO : fourmis articielles = agents simples points commun avec les fourmis reelles : { Communication indirecte par leur environnement. { Perception limitee de cet environnement. { Decisions aleatoires (recherche stochastique). { Deplacement dans un espace a la recherche du plus court chemin. 7

9 Ant Colony Optimization (2/3) Resolution de problemes combinatoires : Les fourmis articielles possedent certaines capacites supplementaires, elles disposent d'une memoire pour la construction d'une solution, elles se deplacent dans un espace discret. 8

10 Ant Colony Optimization (3/3) Algorithme Tantque (la condition d'arr^et n'est pas atteinte) Tantque (L'etat nal n'est pas atteint) Pour (chaque fourmi) Choisir l'etat suivant en fonction de la memoire et de l'environnement local Mettre a jour les pheromones sur l'arc choisi. FinPour FinTantQue Pour (chaque fourmi) Evaluer la solution obtenue FinPour Mise a jour globlale des pheromones FinTantque Acher la meilleure solution trouvee 9

11 Application : TSP (1/8) Le probleme : n villes T = ( 1 ::: n ) min 8 < : X n;1 d( i i+1 ) + d( n 1 ) i=1 9 = (1) ACO! AS, MMAS, AS rank, Ant-Q, ACS 10

12 Application : TSP (2/8) AS, MMAS, AS rank, Ant-Q, ACS A chaque arc (i j), on associe une quantite de pheromones ij En i, la fourmi k choisit la ville j avec la probabilite suivante : N k i p k ij (t) = a ij(t) P l2n k i a il (t) (2) est l'ensemble des villes qui n'ont pas encore ete visitees par la fourmis k. est obtenu par a ij (t) = a ij (t) [ ij(t)] [ ij ] Pl2N i [ il (t)] [ il ] 8j 2 N i (3) il = 1=d il represente la visibilite de la fourmi. 11

13 Application : TSP (3/8) AS, MMAS, AS rank, Ant-Q, ACS Chaque fourmi depose une quantite k ij sur les arcs qu'elle a empreintes : ( k 1=L ij = k si (i j) 2 T k 0 sinon (4) T k est le tour eectue par la fourmi k et L k en est la longueur. La quantite de pheromone est alors mise a jour : ij (1 ; ) ij + mx k=1 k ij (5) 12

14 Application : TSP (4/8) AS, MMAS, AS rank, Ant-Q, ACS Mise a jour globale des pheromones. Les pheromones sont bornees :[ min max ]. Elles sont initialisees a max. 13

15 Application : TSP (5/8) AS, MMAS, AS rank, Ant-Q, ACS Les fourmis sont rangees par ordre decroissant des L k. La mise a jour des pheromones tient compte du rang : ij (1 ; ) ij + ;1 X L + + =1 ij (6) ( (;) ij = si (i j) 2 T L 0 sinon (7) 14

16 Application : TSP (6/8) AS, MMAS, AS rank, Ant-Q, ACS AS Q ; Learning )! Ant ; Q (8) Mise a jour locale des pheromones : ij (1 ; ') ij + ' max l2n k j jl (9) 15

17 Application : TSP (7/8) AS, MMAS, AS rank, Ant-Q, ACS Renforcement global des pheromones : ij (1 ; ) ij + 1 L + (10) Parametre q 0 xant le rapport Exploration/Exploitation Renforcement local des pheromones : ij (1 ; ') ij + ' 0 (11) 16

18 Application : TSP (8/8) AS, MMAS, AS rank, Ant-Q, ACS Choix de la ville suivante dans une liste candidate. Utilisation d'heuristiques de recherche locale (2-opt, 3-opt). Performances (TSP, ATSP) AS < AS rank, Ant-Q < ACS, MMAS 17

19 Application : QAP (1/.) Le probleme : Soit deux matrices n n, A = [a ij ] et B = [b ij ] min 2S(n) nx nx i=1 j=1 b ij a i j (12) ACO! AS-QAP, ANTS-QAP, MM-QAP, FANT-QAP, HAS-QAP 18

20 Application : Flow Shop (1/3) Le probleme : n travaux, m machines min 2S(n) ( max 1in C im ) (13) ACO! MMAS-FSH ij represente l'attrait du travail i pour la j-ieme position de la sequence. la sequence est construite iterativement. 19

21 Application : Flow Shop (2/3) MMAS-FSH Exploration : choisir le travail i pour la j- ieme position suivant la probabilite : p ij = 8 < : ij Pk2L j kj si i 2 L j 0 sinon (14) L j est la liste des travaux non aectes lors du choix de la j-ieme position. Exploitation : choisir le travail i tel que : ij = max k2l j kj (15) 20

22 Application : Flow Shop (3/3) MMAS-FSH Les pheromones ne sont mises a jour qu'en fonction de la meilleur fourmi : ij (1 ; ) ij + ij (16) ij vaut 1=C best si le travail i est aecte a la j-ieme position pour la meilleure fourmi et 0 sinon. En plus : recherche locale (echanges, insertion,...) 21

23 Problemes dynamiques Routage dans les reseau commutes/non commutes. Les fourmis accompagnent les paquets jusqu'a leur destination Elles reviennent en mettant a jour les tables de routage en fonction de la rapidite de leur voyage aller. 22

24 Conclusion 23

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet pierre.chauvet@uco.fr Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective

Plus en détail

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN Mourad Hadjila Hervé Guyennet RGE Université Franche-Comté femto-st, DISC, Besançon

Plus en détail

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce

Les colonies de fourmis : apprentissage coopératif pour le problème du voyageur de commerce : apprentissage coopératif pour le problème du voyageur de commerce Alexandre Bargeton Benjamin Devèze Université Pierre et Marie Curie Présentation du projet ANIMAT 1 Comportements collectifs des insectes

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

Variable Neighborhood Search

Variable Neighborhood Search Variable Neighborhood Search () Universite de Montreal 6 avril 2010 Plan Motivations 1 Motivations 2 3 skewed variable neighborhood search variable neighborhood decomposition search 4 Le probleme d optimisation.

Plus en détail

Optimisation par colonies de fourmis. COSTANZO Andrea LUONG Thé Van MARILL Guillaume

Optimisation par colonies de fourmis. COSTANZO Andrea LUONG Thé Van MARILL Guillaume Optimisation par colonies de fourmis COSTANZO Andrea LUONG Thé Van MARILL Guillaume 19 mai 2006 Table des matières 1 Introduction 4 1.1 Pourquoi les fourmis?.................................. 4 1.2 Relation

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Algorithme d optimisation par colonie de fourmis pour le problème de jobshop

Algorithme d optimisation par colonie de fourmis pour le problème de jobshop Algorithme d optimisation par colonie de fourmis pour le problème de jobshop Plan Optimisation par colonie de fourmi 1 Optimisation par colonie de fourmi Principes généraux Mise en œuvre Procédure 2 Construction

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Ant Colony Optimisation.

Ant Colony Optimisation. Ant Colony Optimisation 1/77 Plan Fourragement fourmis Algorithmes fourmis Ant Colony Optimisation appliqué au TSP Généralisation ACO Analyse de l'algorithme 2/77 Fourragement ches les fourmis Mecanisme

Plus en détail

Algorithme fourmi avec différentes stratégies phéromonales pour le sac à dos multidimensionnel

Algorithme fourmi avec différentes stratégies phéromonales pour le sac à dos multidimensionnel Algorithme fourmi avec différentes stratégies phéromonales pour le sac à dos multidimensionnel Inès Alaya * Christine Solnon ** Khaled Ghédira * * SOIE, Institut Supérieur de Gestion de Tunis 41 Rue de

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Programmation dynamique

Programmation dynamique A. Principe général B. Application Triangle de Pascal Série mondiale Multiplication chaînée de matrices Les plus courts chemins Principe général Souvent, pour résoudre un problème de taille n, on s'aperçoit

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

Deux stratégies parallèles de l'optimisation par colonie de fourmis

Deux stratégies parallèles de l'optimisation par colonie de fourmis 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA Deux stratégies parallèles de l'optimisation par colonie de fourmis HERNANE

Plus en détail

Optimisation Par Colonie de Fourmies

Optimisation Par Colonie de Fourmies République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran Faculté des Sciences Département

Plus en détail

Johann Dréo. To cite this version: HAL Id: tel-00093143 https://tel.archives-ouvertes.fr/tel-00093143

Johann Dréo. To cite this version: HAL Id: tel-00093143 https://tel.archives-ouvertes.fr/tel-00093143 Adaptation de la métaheuristique des colonies de fourmis pour l optimisation difficile en variables continues. Application en génie biologique et médical. Johann Dréo To cite this version: Johann Dréo.

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

Optimisation Par Colonies de Fourmis

Optimisation Par Colonies de Fourmis Optimisation Par Colonies de Fourmis Présenté Par Valentin Cristinel Preda Djenet Tali-Maamar V.C.Preda & Dj.Tali-Maamar 1 Plan Introduction et historique Préambule de la méthode L algorithme de colonies

Plus en détail

G. Lesauvage. Laboratoire d Informatique et du Traitement de l Information et des Systèmes

G. Lesauvage. Laboratoire d Informatique et du Traitement de l Information et des Systèmes Gestion dynamique des activités des chariots cavaliers sur un terminal portuaire à conteneurs en environnement incertain - approche par intelligence collective - G. Lesauvage Unité de Formation et de Recherche

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Les algorithmes fourmis. Laurane Margot Mars 2006

Les algorithmes fourmis. Laurane Margot Mars 2006 Laurane Margot Lorane.Margot@etu.univ-savoie.fr Mars 2006 1 Plan Qu est ce qu un système multi - agents? Comportements modélisés : Le forage (algorithmes ACO) Le rangement Le transport collaboratif La

Plus en détail

L intelligence artificielle en essaim

L intelligence artificielle en essaim L intelligence artificielle en essaim Joël Quinqueton Université Paul Valéry Cerics et Lirmm, Montpellier L intelligence de l essaim Swarm intelligence Quand l intelligence vient du collectif Les coactones

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

LES MÉTAHEURISTIQUES: OUTILS DE CONCEPTION OPTIMALE DES CIRCUITS INTÈGRES ANALOGIQUES

LES MÉTAHEURISTIQUES: OUTILS DE CONCEPTION OPTIMALE DES CIRCUITS INTÈGRES ANALOGIQUES INERNATIONAL WORKSHOP IN OPTIMIZATION AND APPLICATIONS (WOA 2015) LES MÉTAHEURISTIQUES: OUTILS DE CONCEPTION OPTIMALE DES CIRCUITS INTÈGRES ANALOGIQUES FS -Meknès CONTEXTE L optimisation est un souci quotidien

Plus en détail

OPTIMISATION D ÉCOULEMENT DES PUISSANCES PAR ALGORITHMES INTELLIGENTS

OPTIMISATION D ÉCOULEMENT DES PUISSANCES PAR ALGORITHMES INTELLIGENTS Électrotechnique et électroénergétique OPTIMISATION D ÉCOULEMENT DES PUISSANCES PAR ALGORITHMES INTELLIGENTS MIMOUN YOUNES 1, MOSTEFA RAHLI 2, MOHAMED ABID 1, MALIKA KANDOUCI 1. Mots-clé : Algorithmes

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Des fourmis pour le problème d ordonnancement de voitures

Des fourmis pour le problème d ordonnancement de voitures Actes JFPC 2006 Des fourmis pour le problème d ordonnancement de voitures Christine Solnon LIRIS CNRS UMR 5205, Université Lyon I Nautibus, 43 Bd du 11 novembre, 69622 Villeurbanne cedex, France christine.solnon@liris.cnrs.fr

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Tournées de véhicules

Tournées de véhicules Tournées de véhicules De la théorie aux outils d aide à la décision Olivier Péton, Ecole des Mines de Nantes, novembre 2008 Les principaux problèmes de tournées Deux problèmes de base : Problème du voyageur

Plus en détail

Voyageur de commerce et solution exacte

Voyageur de commerce et solution exacte Voyageur de commerce et solution exacte uteurs :. Védrine,. Monsuez e projet consiste à réaliser un outil capable de trouver le plus court trajet pour un commercial qui doit visiter n villes, les n villes

Plus en détail

- Exposé Optimisation Avancée -

- Exposé Optimisation Avancée - République Algérienne démocratique et populaire Ministère de l enseignement supérieur et de la recherche scientifique Université des Sciences et de la Technologie d Oran Faculté des Sciences Département

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Inès Alaya To cite this version: Inès Alaya. Optimisation multi-objectif par colonies de fourmis : cas des problèmes

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

PROGRAMMATION DYNAMIQUE

PROGRAMMATION DYNAMIQUE PROGRAMMATION DYNAMIQUE 1 Le principe d optimalité de Bellman La programmation dynamique est fondée sur le principe d optimalité de Bellman : Soit f une fonction réelle de x et y = (y 1, y 2,..., y n ).

Plus en détail

Feuille 1 : Autour du problème SAT

Feuille 1 : Autour du problème SAT Master-2 d Informatique 2014 2015 Complexit Algorithmique Applique. Feuille 1 : Autour du problème SAT 1 Rappels sur SAT Énoncé du problème. Le problème SAT (ou le problème de Satisfaisabilité) est le

Plus en détail

Une algorithmique pour le Network Calculus

Une algorithmique pour le Network Calculus Une algorithmique pour le Network Calculus Anne Bouillard ENS Cachan (Bretagne) / IRISA 27 janvier 2009 - journées AFSEC Anne Bouillard (ENS Cachan / IRISA) Une algorithmique pour le Network Calculus 1

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

Complexité et auto-organisation chez les insectes sociaux. Complexité et auto-organisation chez les insectes sociaux

Complexité et auto-organisation chez les insectes sociaux. Complexité et auto-organisation chez les insectes sociaux Complexité et auto-organisation chez les insectes sociaux Guy Theraulaz Centre de Recherches sur la Cognition Animale CNRS, UMR 5169, Toulouse, France Marathon des Sciences XXIII ème Festival d Astronomie,

Plus en détail

Résolution du problème de la patrouille multi-agent en utilisant des colonies compétitives de fourmis

Résolution du problème de la patrouille multi-agent en utilisant des colonies compétitives de fourmis Résolution du problème de la patrouille multi-agent en utilisant des colonies compétitives de fourmis Fabrice Lauri François Charpillet LORIA-INRIA Lorraine - Equipe MAIA Campus Scientifique B.P. 239 F-54506

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Le voyageur de commerce

Le voyageur de commerce Université de Strasbourg UFR Maths-Informatique Licence 3 - Semestre 6 Le voyageur de commerce Jonathan HAEHNEL & Marc PAPILLON Strasbourg, le 3 mai 2012 Table des matières 1 Etat des lieux 4 1.1 Fonctionnalités..............................

Plus en détail

Stéphane GOBRON HES SO HE Arc

Stéphane GOBRON HES SO HE Arc Stéphane GOBRON HES SO HE Arc 2015 Algorithmes Numériques 7 chapitres Codage des nombres Résolution d équations Systèmes linéaires Dérivation Intégration Equation différentielles Mots clés du cours : introduction

Plus en détail

Projet Java 2A (ESIAL 2A)

Projet Java 2A (ESIAL 2A) Projet Java 2A (ESIAL 2A) 2004-2005 Simulation du phénomène de fourragement dans des colonies de fourmis Vincent THOMAS Thématique: Intelligence Collective Auto-organisation Comprendre comment un ensemble

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Introduction à l optimisation combinatoire

Introduction à l optimisation combinatoire Introduction à l optimisation combinatoire S. Ben Ismail Majeure Informatique INF413 C5 2 e semestre 2012 Objectifs pédagogiques À l'issue de ce cours, vous devriez être capables de : connaitre la diérence

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes

Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes Actes JFPC 2009 Un modèle réactif pour l optimisation par colonies de fourmis : application à la satisfaction de contraintes Madjid Khichane 1,2, Patrick Albert 1 et Christine Solnon 2 1 ILOG An IBM Company

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

Métaheuristiques : Recherches locales et Algorithmes evolutionnaires

Métaheuristiques : Recherches locales et Algorithmes evolutionnaires : Recherches locales et Algorithmes evolutionnaires Master 1 informatique RIF IFI - Systèmes Articiels Complexes verel@i3s.unice.fr www.i3s.unice.fr/ verel Université Nice Sophia Antipolis Laboratoire

Plus en détail

DES FOURMIS POUR LIVRER DU MAZOUT

DES FOURMIS POUR LIVRER DU MAZOUT DES FOURMIS POUR LIVRER DU MAZOUT É. D. Taillard (1), G. Agazzi (2), L.-M. Gambardella (3) Résumé La livraison de certains biens peut engendrer des coûts non négligeables par rapport à la valeur de la

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

PROJET : LE TOUR DU MONDE LE MOINS CHER

PROJET : LE TOUR DU MONDE LE MOINS CHER TD de programmation structurée : 1 ère année 2016-2017 PROJET : LE TOUR DU MONDE LE MOINS CHER Ce projet sera réalisé en binôme, sur les 4 dernières séances d informatique ET en dehors des séances d informatique.

Plus en détail

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases)

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Algorithmes à Population Idée principale 'Amélioration' d'un ensemble de solutions Recombiner des solutions Orienté

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

METAHEURISTIQUES POUR LA MANIPULATION DE ROUTAGES ALTERNATIFS EN TEMPS REEL DANS UN FMS

METAHEURISTIQUES POUR LA MANIPULATION DE ROUTAGES ALTERNATIFS EN TEMPS REEL DANS UN FMS METAHEURISTIQUES POUR LA MANIPULATION DE ROUTAGES ALTERNATIFS EN TEMPS REEL DANS UN FMS M. Souier, A. Hassam, Z. Sari Laboratoire d automatique de tlemcen Faculté des sciences de l ingénieur, Université

Plus en détail

MAP-SIM2 : Planification de trajectoire

MAP-SIM2 : Planification de trajectoire MP-SIM : Planification de trajectoire sujet proposé par Nicolas Kielbasiewicz : nicolas.kielbasiewicz@ensta-paristech.fr 0 janvier 06 La planification de trajectoire consiste à déterminer une trajectoire,

Plus en détail

OPTIMISATION MULTICRITERE STOCHASTIQUE

OPTIMISATION MULTICRITERE STOCHASTIQUE OPTIMISATION MULTICRITERE STOCHASTIQUE Michel DUMAS, Gilles ARNAUD, Fabrice GAUDIER CEA/DEN/DMS/SFME/LETR michel.dumas@cea.r gilles.arnaud@cea.r abrice.gaudier @cea.r Introduction L optimisation multicritère

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

1 Récupération des données

1 Récupération des données Lycée Buffon MP*/PSI 014-15 Épreuve d informatique du concours blanc, jeudi 5 mars 015 (3h00) Les documents, téléphones portables, ordinateurs et calculatrices sont interdits. Le sujet de cette épreuve

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

Info0101 Intro. à l'algorithmique et à la programmation. Cours 2. Structures itératives

Info0101 Intro. à l'algorithmique et à la programmation. Cours 2. Structures itératives Info0101 Intro. à l'algorithmique et à la programmation Cours 2 Structures itératives Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques

Plus en détail

Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages

Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages Sommaire Introduction I. Notions de routage a) Technologies actuelles b) Avantages et désavantages II. Routage et fourmis a) Principe et avantages b) Structure du simulateur III.Implémentation a) Présentation

Plus en détail

THESE. Application des algorithmes de colonies de fourmis pour l optimisation et la classification des images

THESE. Application des algorithmes de colonies de fourmis pour l optimisation et la classification des images République Algérienne Démocratique et Populaire وزارة التعليم العالي و البحث العلمي Ministère de l'enseignement Supérieur et de la Recherche Scientifique UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE d

Plus en détail

La Recherche Tabou. Par Joseph Ayas Marc André Viau. 16 novembre, 2004 Recherche Tabou J. Ayas & M.A. Viau

La Recherche Tabou. Par Joseph Ayas Marc André Viau. 16 novembre, 2004 Recherche Tabou J. Ayas & M.A. Viau La Recherche Tabou Par Joseph Ayas Marc André Viau 1 Plan de la présentation Introduction Explication détaillée de la Recherche Tabou (RT) Exemples Domaines d application Ressources disponibles Conclusion

Plus en détail

INF-130 Travail Pratique #2

INF-130 Travail Pratique #2 École de technologie supérieure INF-30 Travail Pratique #2 Travail individuel Tracé d un métro Francis Bourdeau, Frédérick Henri et Patrick Salois Remise à la 0 e semaine. Objectifs - Amener l étudiant

Plus en détail

Diverses techniques d'optimisation inspirées de l'auto-organisation dans les systèmes biologiques

Diverses techniques d'optimisation inspirées de l'auto-organisation dans les systèmes biologiques Diverses techniques d'optimisation inspirées de l'auto-organisation dans les systèmes biologiques Johann Dréo & Patrick Siarry Université Paris 12 (LERISS) Séminaire Optimisation par Essaim Particulaire

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

République Algérienne Démocratique Et Populaire Université d Oran Faculté des Sciences Département D Informatique

République Algérienne Démocratique Et Populaire Université d Oran Faculté des Sciences Département D Informatique République Algérienne Démocratique Et Populaire Université d Oran Faculté des Sciences Département D Informatique Implémentation de méthodes de recherches locales sur les architectures multi et many-cœurs.

Plus en détail

Méthodes de Résolution de problèmes En Intelligence Artificielle

Méthodes de Résolution de problèmes En Intelligence Artificielle Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Conception et simulation des systèmes de production. Chapitre 7 Planification et gestion de projet

Conception et simulation des systèmes de production. Chapitre 7 Planification et gestion de projet Conception et simulation des systèmes de production Chapitre 7 Planification et gestion de projet Planification et gestion de projet Les 6 phases d un projet industriel : 1. L enthousiasme délirant sous-estimation

Plus en détail

LE PROBLEME DU FLOT MAXIMAL

LE PROBLEME DU FLOT MAXIMAL LE PROBLEME DU FLOT MAXIMAL I Exemple d introduction Deux châteaux d'eau alimentent 3 villes à travers un réseau de canalisations au sein duquel se trouvent également des stations de pompage. Les châteaux

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

DES ALGORITHMES BASEES SUR LES PRINCIPES DES METAHEURISTIQUES POUR LE RE-ORDONNANCEMENT TEMPS REEL DANS UN FMS AVEC FLEXIBILITE DE ROUTAGE

DES ALGORITHMES BASEES SUR LES PRINCIPES DES METAHEURISTIQUES POUR LE RE-ORDONNANCEMENT TEMPS REEL DANS UN FMS AVEC FLEXIBILITE DE ROUTAGE 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Evaluation et optimisation des systèmes innovants de production de biens et de services» DES

Plus en détail

Résolution des problèmes difficiles par optimisation distribuée

Résolution des problèmes difficiles par optimisation distribuée REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE MOHAMED KHIDER BISKRA Faculté des sciences et des sciences de l ingénieur

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail