Sommaire. Introduction Définition Historique Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Dimension: px
Commencer à balayer dès la page:

Download "Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application."

Transcription

1 Sommaire Introduction.2 1. Définition Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6 Bibliographie.7 1

2 La notion de l optimisation est un mécanisme par lequel on trouve la valeur Maximale ou minimale d une fonction objectif. Cette optimisation permet de résoudre différents problèmes on utilise une méthode de résolution. Dans ce rapport on a étudié une méthode évolutif qui dépend des méthodes Approché (Méta heuristique) c est la méthode des Abeilles. 1.Définition : La méthode des Abeilles est une méthode Approché (Les méta heuristique) qui nous permet de résoudre des problèmes d optimisation combinatoire. Ind : Les méta heuristique se sont des heuristiques peuvent aller d un simple algorithme de recherche local à une classe générale d heuristique appelée méta-heuristique. Des heuristiques consistent à trouver une solution de l optimum en un temps raisonnable. 2. Historique : Parmi, les algorithmes de recherche on a l algorithme des abeilles qui a était développé en 2005.Il fait exécuté un genre de recherche de voisinage combiné avec la recherche aléatoire et on peut l appliquer dans les deux optimisations combinatoire et fonctionnelle. 3. Domaine d application : L'algorithme d'abeilles, qui est inspiré par le comportement de forager de nourriture des abeilles à miel.il existe plusieurs applications dans divers domaines : Réseaux neurologiques s'exerçants pour l'identification de modèle. Formation des cellules de production. Les travaux de Scheduling pour une machine de production. 2

3 Conclusion des solutions faisables multiples aux problèmes préliminaires d'une conception. Grouper de données. Linéarisation de la conception des composants mécaniques. Optimisation Multi-Objective. Accord d'un contrôleur de logique floue pour un gymnaste de robot. Conception Mécanique. Job scheduling :l ordonnancement des taches informatique. 4. Les Travaux réalisés sur les domaines d application :[1] Optimisation des poids de perceptrons multicouche en utilisant l'algorithme d'abeilles Réaliser par : D. T. Pham, E. Koç, A. Ghanbarzadeh, et S. Otri aux 5ème colloque international de Proc sur les systèmes de fabrication intelligents, Turquie, Formation de cellule de production en utilisant l'algorithme d'abeilles. Réaliser par : Duc Truong Pham, Ashraf Afify, Ebubekir Koc aux Conférence virtuelle innovatrice de machines et de systèmes de production d'iproms 2007, Cardiff, R-U. utilisation l'algorithme d'abeilles pour programmer les travaux pour une machine Réaliser par : D. T. Pham, E. Koç, J. Y. Lee, et J. Phrueksanant aux la conférence internationale de Proc huitième sur la métrologie de laser, CMM et l'exécution de machine-outil, LAMDAMAP, Euspen, R- U, Cardiff, P , conception préliminaire en utilisant l'algorithme d'abeilles. Réaliser par : D. T. Pham, M. Castellani, et A. Ghanbarzadeh aux la conférence internationale de Proc huitième sur la métrologie de laser, le CMM et l'exécution de machine-outil, LAMDAMAP, Euspen, R-U, Cardiff, P , données groupant en utilisant l'algorithme d'abeilles. 3

4 Réaliser par : D. T. Pham, S. Otri, A. A. Afify, M. Mahmuddin, et H. Al- Jabbouli aux Proc quarantième CIRP interne. Conférence de systèmes de fabrication, Liverpool, Optimisation Multi-Objective en utilisant l'algorithme d'abeilles Réaliser par : Pham D.T., Ghanbarzadeh A aux Démarches de Conférence d'iproms Algorithme : Initialisation de la population (Abeille scout) (n) Evaluer la fitness de la population.. Sélectionner l emplacement pour la recherche du voisinage (m). Déterminer la taille des voisinage (e). Recherche de voisinage Nombre d Abeille recruté pour les emplacements meilleurs.. Attribuer les abeilles restantes (n-m) pour la recherche. Nouvel population des abeilles scoutes. 4

5 Initialisez la population avec les solutions aléatoires. Évaluez la forme physique de la population. Tandis que (arrêtant le critère non rencontré) nouvelle population Emplacements choisis pour la recherche de voisinage. Recrutez les abeilles pour les emplacements choisis (plus d'abeilles pour les meilleurs emplacements d'e) et évaluez les fitnesses. Choisissez l'abeille la plus convenable à partir de chaque pièce rapportée. Assignez les abeilles restantes à la recherche aléatoirement et évaluez leurs fitnesses. 6.Exemple d application : Modèle de colonies d'abeilles pour des problèmes d'ordonnancement job shop. Ind : d'ordonnancement job shop a comme objectif de trouver une séquence de taches sur les Machines (Abeille) qui minimise le temps totale de la production. Une solution réalisable dans un problème d'ordonnancement job shop est un programme complet d'opérations spécifiées dans le problème. Chaque solution peut être considéré comme un chemin de la ruche à la source de nourriture. Le makespan (fitness) de la solution est analogue à la rentabilité de la source alimentaire en termes de distance et de la douceur du nectar. Ainsi, plus le makespan (fitness), plus la rentabilité du chemin solution. Nous pouvons ainsi maintenir une colonie d'abeilles, où chaque abeille va traverser un chemin solution potentielle. Une fois une solution réalisable est trouvée, chaque abeille sera de retour à la ruche pour effectuer une danse frétillante. La danse frétillante sera représenté par une liste de «solutions d'élite», à partir de laquelle les autres abeilles peuvent choisir de suivre le chemin une autre abeille. 5

6 Les abeilles avec une meilleure makespan (fitness) aura une probabilité plus élevée de l'ajout de son chemin à la liste des «élites solutions». [2] 2éme exemple : La résolution du problème de transformation des coordonnées Polaires c- à-dire la distance et l angle par rapport au soleil. 7. Avantage et inconvénient : [3] Résolution des problèmes combinatoire complexe. Faciliter d implémentation. Le nombre de visite maximal avant que de la source de nourriture soit épuisé. Utilisation de plusieurs paramètres. La sensibilité a des outils extrêmement puissants. La complexité de L algorithme 6

7 Bibliographie : [1] : e_note-17. [2] ng. [3] 7

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

Complexité et auto-organisation chez les insectes sociaux. Complexité et auto-organisation chez les insectes sociaux

Complexité et auto-organisation chez les insectes sociaux. Complexité et auto-organisation chez les insectes sociaux Complexité et auto-organisation chez les insectes sociaux Guy Theraulaz Centre de Recherches sur la Cognition Animale CNRS, UMR 5169, Toulouse, France Marathon des Sciences XXIII ème Festival d Astronomie,

Plus en détail

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations

Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations LABORATOIRE D INFORMATIQUE DE L UNIVERSITE DE FRANCHE-COMTE EA 4269 Différentes opérateurs évolutionnaires de permutation: sélections, croisements et mutations Mais HAJ-RACHID, Christelle BLOCH, Wahiba

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

Minimisation de la somme des retards dans un jobshop flexible

Minimisation de la somme des retards dans un jobshop flexible Minimisation de la somme des retards dans un jobshop flexible Nozha ZRIBI, Imed KACEM, Abdelkader EL KAMEL, Pierre BORNE LAGIS Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Ascq Cedex, France ISTIT

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage

LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C

Plus en détail

Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique

Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamique Approche d'évaluation pour les problèmes d'ordonnancement multicritères : Méthode d'agrégation avec direction de recherche dynamiue D. BERKOUNE 2, K. MESGHOUNI, B. RABENASOLO 2 LAGIS UMR CNRS 846, Ecole

Plus en détail

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases)

Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Optimisation Combinatoire (Méthodes approchées) II. Recherche Locale simple (Les bases) Heuristique Constructive Itérativement, ajoute de nouvelles composantes à une solution partielle candidate Espace

Plus en détail

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique Département de génie de la production automatisée Programme de baccalauréat Professeur Pontien Mbaraga, Ph.D. Session/année Automne 2004 Groupe(s) 01 PLAN DE COURS GPA750 Ordonnancement des systèmes de

Plus en détail

Système immunitaire artificiel

Système immunitaire artificiel République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique

Plus en détail

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101 Sur l ordonnancement d ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires Hela Boukef To cite this version: Hela Boukef.

Plus en détail

Deux stratégies parallèles de l'optimisation par colonie de fourmis

Deux stratégies parallèles de l'optimisation par colonie de fourmis 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA Deux stratégies parallèles de l'optimisation par colonie de fourmis HERNANE

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Ministère de l Enseignement Supérieur et de la Recherche Scientifique. Mémoire de fin d études. Thème

Ministère de l Enseignement Supérieur et de la Recherche Scientifique. Mémoire de fin d études. Thème Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de formation en Informatique (I.N.I.) Oued-Smar Alger Mémoire de fin d études Pour l obtention du diplôme d ingénieur

Plus en détail

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image

Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image IN52-IN54 A2008 Algorithme des fourmis appliqué à la détection et au suivi de contours dans une image Etudiants : Nicolas MONNERET Alexandre HAFFNER Sébastien DE MELO Responsable : Franck GECHTER Sommaire

Plus en détail

Une application des algorithmes génétiques à l ordonnancement d atelier

Une application des algorithmes génétiques à l ordonnancement d atelier Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe

Plus en détail

Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH)

Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH) République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran -Mohamed Boudiaf USTO-MB Faculté

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

Application 1- VBA : Test de comportements d'investissements

Application 1- VBA : Test de comportements d'investissements Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps

Plus en détail

THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie. par. Walid TFAILI. pour obtenir le grade de

THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie. par. Walid TFAILI. pour obtenir le grade de THÈSE DE DOCTORAT DE L UNIVERSITÉ PARIS 12-VAL DE MARNE UFR de Sciences et Technologie par Walid TFAILI pour obtenir le grade de DOCTEUR EN SCIENCES Spécialité : SCIENCES DE L INGÉNIEUR Option : Optimisation

Plus en détail

Intelligence Artificielle Planification

Intelligence Artificielle Planification Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes.

Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes. Gestion réactive des opérations de maintien et d actualisation réglementaire et technologique des systèmes complexes. LE QUERE Yann, SEVAUX Marc, TRENTESAUX Damien, TAHON Christian Equipe Systèmes de Production

Plus en détail

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES PAR Tamas KIS Informaticien mathématicien diplômé de l'université

Plus en détail

Un propagateur basé sur les positions pour le problème d Open-Shop.

Un propagateur basé sur les positions pour le problème d Open-Shop. Actes JFPC 2007 Un propagateur basé sur les positions pour le problème d Open-Shop. Jean-Noël Monette Yves Deville Pierre Dupont Département d Ingénierie Informatique Université catholique de Louvain {jmonette,yde,pdupont}@info.ucl.ac.be

Plus en détail

Resolution limit in community detection

Resolution limit in community detection Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.

Plus en détail

En vue de l'obtention du. Présentée et soutenue par Abir BEN HMIDA SAKLY Le 12/12/2009

En vue de l'obtention du. Présentée et soutenue par Abir BEN HMIDA SAKLY Le 12/12/2009 THÈSE En vue de l'obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré par l'institut National des Sciences Appliquées de Toulouse Discipline ou spécialité : Systèmes Informatiques Présentée et soutenue

Plus en détail

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE ÉCOLE DE TECHNOLOGIE SUPÉRIEURE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'ÉCOLE DE TECHNOLOGIE SUPÉRIEURE COMME EXIGENCE PARTIELLE À L'OBTENTION DE LA MAÎTRISE EN GÉNIE MÉCANIQUE M.Ing. PAR CHERIF MAKREM

Plus en détail

Optimisation for Cloud Computing and Big Data

Optimisation for Cloud Computing and Big Data 1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes

Plus en détail

Partie 7 : Gestion de la mémoire

Partie 7 : Gestion de la mémoire INF3600+INF2610 Automne 2006 Partie 7 : Gestion de la mémoire Exercice 1 : Considérez un système disposant de 16 MO de mémoire physique réservée aux processus utilisateur. La mémoire est composée de cases

Plus en détail

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Narendra Jussien et Christelle Guéret École des Mines de Nantes 4 rue Alfred Kastler BP 20722 F-44300 Nantes

Plus en détail

Technologie SDS (Software-Defined Storage) de DataCore

Technologie SDS (Software-Defined Storage) de DataCore Technologie SDS (Software-Defined Storage) de DataCore SANsymphony -V est notre solution phare de virtualisation du stockage, dans sa 10e génération. Déployée sur plus de 10000 sites clients, elle optimise

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Introduction... 3. 8.1. Définition...3

Introduction... 3. 8.1. Définition...3 Mise en situation... 2 Introduction... 3 8.1. Définition...3 8.2. Services de la GMAO...3 8.2.1. Les formes de GMAO... 3 8.2.2. Augmentation du service rendu... 4 8.2.3. La conception des logiciels de

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport

Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport Un couplage métaheuristique / simulation appliqué au problème du job shop avec transport LAURENT DEROUSSI 1, ICHEL GOURGAND 2 LIOS CNRS UR 6158 1 IUT de ontluçon, Avenue Aristide Briand B.P. 2235, 03101

Plus en détail

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE

PREMIER RETOUR D EXPERIENCE SUR LE FLOW-SHOP BIOBJECTIF ET HYBRIDE A DEUX ETAGES AVEC UNE CONTRAINTE DE BLOCAGE PARTICULIERE 6 e Conférence Francophone de MOdélisation et SIMulation - MOSIM 06 - du 3 au 5 avril 2006 - Rabat - Maroc Modélisation, Optimisation et Simulation des Systèmes : Défis et Opportunités PREMIER RETOUR D

Plus en détail

UNIVERSITÉ DU QUÉBEC THESE PRESENTEE A L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGÉNIERIE

UNIVERSITÉ DU QUÉBEC THESE PRESENTEE A L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGÉNIERIE UNIVERSITÉ DU QUÉBEC THESE PRESENTEE A L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DU DOCTORAT EN INGÉNIERIE PAR Aymen Sioud APPROCHES HYBRIDES POUR LA RESOLUTION D'UN PROBLÈME D'ORDONNANCEMENT

Plus en détail

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière

Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Apprentissage incrémental par sélection de données dans un flux pour une application de sécurité routière Nicolas Saunier INRETS Télécom Paris Sophie Midenet INRETS Alain Grumbach Télécom Paris Conférence

Plus en détail

LE DIPLOME DE MAGISTER

LE DIPLOME DE MAGISTER Département d Informatique MEMOIRE Présenté par DEDDOUCHE Yamina Pour obtenir LE DIPLOME DE MAGISTER Spécialité : Informatique Option : Informatique et Automatique Intitulé : Contribution à l Ordonnancement

Plus en détail

Manuel de System Monitor

Manuel de System Monitor Chris Schlaeger John Tapsell Chris Schlaeger Tobias Koenig Traduction française : Yves Dessertine Traduction française : Philippe Guilbert Traduction française : Robin Guitton Relecture de la documentation

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE

UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE UNIVERSITÉ DU QUÉBEC MÉMOIRE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À CHICOUTIMI COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN INFORMATIQUE OFFERTE EN VERTU D'UN PROTOCOLE D'ENTENTE AVEC L'UNIVERSITÉ DU QUÉBEC

Plus en détail

Une méthode heuristique pour l ordonnancement de projets avec contraintes de ressources et chevauchement d activités

Une méthode heuristique pour l ordonnancement de projets avec contraintes de ressources et chevauchement d activités Une méthode heuristique pour l ordonnancement de projets avec contraintes de ressources et chevauchement d activités Lucas Grèze Robert Pellerin Patrice Leclaire Nathalie Perrier Mai 2012 CIRRELT-2012-18

Plus en détail

Système à enseigner : Robot M.I.M.I. MultipodeIntelligent à Mobilité Interactive. Version 1.0

Système à enseigner : Robot M.I.M.I. MultipodeIntelligent à Mobilité Interactive. Version 1.0 Système à enseigner : Robot M.I.M.I. MultipodeIntelligent à Mobilité Interactive Sommaire - Le Robot M.I.M.I. (Multipode Intelligent à Mobilité Interactive) - Présentation du Système à Enseigner. - Composition

Plus en détail

Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau

Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau Actes JFPC 2009 Aeon : Synthèse d Algorithmes d Ordonnancement à partir de Modèles de Haut Niveau Jean-Noël Monette 1, Yves Deville 1 et Pascal Van Hentenryck 2 1 INGI, UCLouvain, 1348 Louvain-la-Neuve,

Plus en détail

intelligence artificielle et cognitique"

intelligence artificielle et cognitique Dialogue on Education, 11h-11h10 Course overview on "Automatisation avancée, intelligence artificielle et cognitique" Prof. Dr. Jean-Daniel Dessimoz, MBA, HES-SO / HEIG-VD 11:00-11:10, 18 November 2014

Plus en détail

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO)

DOCUMENT DE TRAVAIL 1998-021. Centre de recherche sur l aide à l évaluation et à la décision dans les organisations (CRAEDO) Publié par : Published by : Publicación de la : Édition électronique : Electronic publishing : Edición electrónica : Disponible sur Internet : Available on Internet Disponible por Internet : Faculté des

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

Laboratoire d Automatique et Productique Université de Batna, Algérie

Laboratoire d Automatique et Productique Université de Batna, Algérie Anale. Seria Informatică. Vol. IX fasc. 2 Annals. Computer Science Series. 9 th Tome st Fasc. 2 La sélection de paramètres d un système industriel par les colonies de fourmis Ouahab Kadri, L. Hayet Mouss,

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes

Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes Méthaheuristiques pour l optimisation combinatoire et l affectation sous contraintes Jin-Kao Hao *, Philippe Galinier **, Michel Habib *** * LERIA, U.F.R. Sciences, Université d Angers, 2 bd Lavoisier,

Plus en détail

Installation Client (licence réseau) de IBM SPSS Modeler 14.2

Installation Client (licence réseau) de IBM SPSS Modeler 14.2 Installation Client (licence réseau) de IBM SPSS Modeler 14.2 Les instructions suivantes permettent d installer IBM SPSS Modeler Client version 14.2 en utilisant un licence réseau. Ce présent document

Plus en détail

Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages

Sommaire. Introduction. I. Notions de routage a) Technologies actuelles b) Avantages et désavantages Sommaire Introduction I. Notions de routage a) Technologies actuelles b) Avantages et désavantages II. Routage et fourmis a) Principe et avantages b) Structure du simulateur III.Implémentation a) Présentation

Plus en détail

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides

Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Proposition d un modèle pour Ordonnancement d un Système Automatisé de Production Applications des algorithmes génétiques hybrides Djamila Bouhalouan 1, Nassima Aissani 1, Bouziane Beldjilali 2 1 Département

Plus en détail

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Évaluation et optimisation des systèmes innovants de production de biens et de services» Recherche

Plus en détail

Principes d implémentation des métaheuristiques

Principes d implémentation des métaheuristiques Chapitre 2 Principes d implémentation des métaheuristiques Éric D. Taillard 1 2.1 Introduction Les métaheuristiques ont changé radicalement l élaboration d heuristiques : alors que l on commençait par

Plus en détail

Présentation. Pour. Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris

Présentation. Pour. Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris Présentation Pour Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris Email: galais@barloworldscs.com Tel : + 33 1 73 03 04 10 / + 33 6 08 01 52

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

UE 8 Systèmes d information de gestion Le programme

UE 8 Systèmes d information de gestion Le programme UE 8 Systèmes d information de gestion Le programme Légende : Modifications de l arrêté du 8 mars 2010 Suppressions de l arrêté du 8 mars 2010 Partie inchangée par rapport au programme antérieur Indications

Plus en détail

Fig.1. Structure d un AGQ

Fig.1. Structure d un AGQ Evolution d Automate Cellulaire par Algorithme Génétique Quantique Zakaria Laboudi 1 - Salim Chikhi 2 Equipe SCAL, Laboratoire MISC Université Mentouri de Constantine. E - Mail : 1 laboudizak@yahoo.fr;

Plus en détail

Guide de développement de «WorkFLows» avec SharePoint Designer 2013

Guide de développement de «WorkFLows» avec SharePoint Designer 2013 Guide de développement de «WorkFLows» avec SharePoint Designer 2013 Ce document décrit les étapes nécessaires à la création de flux de travail appelé «WorkFlow». (Référence DSI-DT-Guide-Développement-Workflows-V2

Plus en détail

Ordonnancement temps réel

Ordonnancement temps réel Ordonnancement temps réel Laurent.Pautet@enst.fr Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches

Plus en détail

Ressources humaines. Joëlle Imbert. Les tableaux de bord RH. Construire, mettre en œuvre et évaluer le système de pilotage

Ressources humaines. Joëlle Imbert. Les tableaux de bord RH. Construire, mettre en œuvre et évaluer le système de pilotage Ressources humaines Joëlle Imbert Les tableaux de bord RH Construire, mettre en œuvre et évaluer le système de pilotage Sommaire Introduction... 1 I Les défis humains de l entreprise : génération de profit,

Plus en détail

Améliorer la Performance des Fournisseurs

Améliorer la Performance des Fournisseurs Les Solutions SQA de Solumina L Assurance Qualité Fournisseur Figure 1 Influence sur les affaires de nos clients actuels. Réduire des Stocks lors des Inspections Le Système de Contrôle Qualité Fournisseurs

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

FONCTION ORDONNANCEMENT AU SEIN

FONCTION ORDONNANCEMENT AU SEIN Lebanese Science Journal, Vol. 10, No. 1, 2009 107 FONCTION ORDONNANCEMENT AU SEIN D UN SYSTEME DE GESTION DE PRODUCTION «ETUDE D UN CAS» Mohsen Akrout et Faouzi Masmoudi Ecole Nationale d Ingénieurs de

Plus en détail

Restauration des sauvegardes Windows Server sur 2008 R2 2014. Sommaire

Restauration des sauvegardes Windows Server sur 2008 R2 2014. Sommaire Sommaire Introduction... 2 Restauration avec l assistant... 2 Restauration avec WBADMIN... 7 Restauration du système sous l environnement WinRE... 8 Conclusion... 10 Formateur en Informatique Page 1 Introduction

Plus en détail

LA NOUVELLE MARQUE DES FUTURS DECISION MAKERS

LA NOUVELLE MARQUE DES FUTURS DECISION MAKERS LA NOUVELLE MARQUE DES FUTURS DECISION MAKERS 1 UNE NOUVELLE GENERATION 77% 34% LES TOP MANAGERS LES CADRES EN ENTREPRISE LA MARQUE DES DECISION MAKERS SE DOIT DE DEVENIR AUSSI LA MARQUE DES FUTURS DECISION

Plus en détail

Programmation temps-réel Cours 1 et 2 Introduction et ordonnancement

Programmation temps-réel Cours 1 et 2 Introduction et ordonnancement Master 2 pro Programmation temps-réel Cours 1 et 2 Introduction et ordonnancement Isabelle PUAUT / Rémi COZOT Université de Rennes I 1 Applications temps-réel embarquées Systèmes en interaction avec l

Plus en détail

Gestion de mémoire secondaire F. Boyer, Laboratoire Sardes Fabienne.Boyer@imag.fr

Gestion de mémoire secondaire F. Boyer, Laboratoire Sardes Fabienne.Boyer@imag.fr Gestion de mémoire secondaire F. Boyer, Laboratoire Sardes Fabienne.Boyer@imag.fr 1- Structure d un disque 2- Ordonnancement des requêtes 3- Gestion du disque - formatage - bloc d amorçage - récupération

Plus en détail

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1

Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1 CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste

Plus en détail

Démêler la complexité

Démêler la complexité Démêler la complexité La plate-forme d émulation virtuelle ABB simplifie le test du contrôle-commande de procédé MARIO HOERNICKE, RIKARD HANSSON La simulation logicielle intervient souvent en phase finale

Plus en détail

Gestion de Production

Gestion de Production Gestion de Production Pierre Lopez LAAS-CNRS Laboratoire d'analyse et d'architecture des Systèmes Centre National de la Recherche Scientifique Toulouse P. Lopez LAAS-CNRS Gestion de Production 1 Plan du

Plus en détail

Sécurité des Systèmes d Information Une politique simple pour parler à la Direction Générale De la théorie à la pratique

Sécurité des Systèmes d Information Une politique simple pour parler à la Direction Générale De la théorie à la pratique Sécurité des Systèmes d Information Une politique simple pour parler à la Direction Générale De la théorie à la pratique Sommaire Fondements d une politique de sécurité Les 9 axes parallèles d une politique

Plus en détail

PFE Télécommunications. Pré-rapport à l'issue des 6 premières semaines de stage. Page 1 sur 5 1 %

PFE Télécommunications. Pré-rapport à l'issue des 6 premières semaines de stage. Page 1 sur 5 1 % PFE Télécommunications Pré-rapport à l'issue des 6 premières semaines de stage!"!"#$%&' ()*()!")+")# (#),()-,)*)"-./0 1 ()*()!")+-)# % 23 &0 )14) 56 7$8797%77:7' '72 Page 1 sur 5 Contexte Les centres de

Plus en détail

Séparation et Evaluation pour le problème d ordonnancement avec blocage.

Séparation et Evaluation pour le problème d ordonnancement avec blocage. Séparation et Evaluation pour le problème d ordonnancement avec blocage. Abdelhakim Ait Zai 1, Abdelkader Bentahar 1, Hamza Bennoui 1, Mourad Boudhar 2 et Yazid Mati 3 1 Faculté d Electronique et d Informatique,

Plus en détail

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos

Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Optimisation multi-objectif par colonies de fourmis : cas des problèmes de sac à dos Inès Alaya To cite this version: Inès Alaya. Optimisation multi-objectif par colonies de fourmis : cas des problèmes

Plus en détail

Ne laissez pas le stockage cloud pénaliser votre retour sur investissement

Ne laissez pas le stockage cloud pénaliser votre retour sur investissement Ne laissez pas le stockage cloud pénaliser votre retour sur investissement Préparé par : George Crump, analyste senior Préparé le : 03/10/2012 L investissement qu une entreprise fait dans le domaine de

Plus en détail

Optimisation par colonies de fourmis. COSTANZO Andrea LUONG Thé Van MARILL Guillaume

Optimisation par colonies de fourmis. COSTANZO Andrea LUONG Thé Van MARILL Guillaume Optimisation par colonies de fourmis COSTANZO Andrea LUONG Thé Van MARILL Guillaume 19 mai 2006 Table des matières 1 Introduction 4 1.1 Pourquoi les fourmis?.................................. 4 1.2 Relation

Plus en détail

Que sont les sources d énergie renouvelable?

Que sont les sources d énergie renouvelable? Que sont les sources d énergie renouvelable? Comme leur nom l indique, il s agit de sources qui se renouvellent et ne s épuiseront donc jamais à l échelle du temps humain! Les sources non renouvelables

Plus en détail

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay

Plus en détail

Usine Numérique Intégration Produit Production

Usine Numérique Intégration Produit Production Usine Numérique Intégration Produit Production Bernard Hoessler Manufacturing Business Group EMEA Paris 25 Novembre 2010 Du monde virtuel au monde réél Page 2 Stratégie développée dans l industrie Exploiter

Plus en détail

La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs

La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs Éric D. Taillard 1 Luca M. Gambardella 1 Michel Gendreau 2 Jean-Yves Potvin 2 1 IDSIA, Corso Elvezia 36, CH-6900 Lugano. E-mail

Plus en détail

Enquête 2014 de rémunération globale sur les emplois en TIC

Enquête 2014 de rémunération globale sur les emplois en TIC Enquête 2014 de rémunération globale sur les emplois en TIC Enquête 2014 de rémunération globale sur les emplois en TIC Les emplois repères de cette enquête sont disponibles selon les trois blocs suivants

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

Agrégation des portefeuilles de contrats d assurance vie

Agrégation des portefeuilles de contrats d assurance vie Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l

Plus en détail

PC-DMIS NC. 3D Form Inspect. PC-DMIS NC Gage

PC-DMIS NC. 3D Form Inspect. PC-DMIS NC Gage Mesurer dans la machine-outil Solutions logicielles de mesure Contrôle sur machine suivi du processus Solutions logicielles évolutives En tant que leader technologique du palpage et du contrôle outils

Plus en détail

DES FOURMIS POUR LIVRER DU MAZOUT

DES FOURMIS POUR LIVRER DU MAZOUT DES FOURMIS POUR LIVRER DU MAZOUT É. D. Taillard (1), G. Agazzi (2), L.-M. Gambardella (3) Résumé La livraison de certains biens peut engendrer des coûts non négligeables par rapport à la valeur de la

Plus en détail