Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH)

Dimension: px
Commencer à balayer dès la page:

Download "Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH)"

Transcription

1 République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d Oran -Mohamed Boudiaf USTO-MB Faculté des Sciences Département d Informatique Mémoire pour obtenir le diplôme de Magister Présenté par HOUACINE Abdelkrim Spécialité : Informatique Option: Systèmes, Réseaux et Bases de Données (SRBDD) Intitulé Système Immunitaire Artificiel Parallèle appliqué aux Flow Shop Hybride (FSH) Soutenu le : / / 2011 Devant le jury composé de: Présidente Mme. BELBACHIR Hafida Professeur (USTO) Rapporteur Mr. BELKADI Khaled Maître de conférences A (USTO) Examinatrice Melle. NOUREDDINE Myriam Maître de conférences A (USTO) Examinateur Mr. RAHAL Sid Ahmed Maître de conférences A (USTO) Novembre 2011

2 Remerciements Merci mon Dieu de m avoir dressé et éclairé un chemin vers la réussite Je remercie tout particulièrement mon encadreur, Mr BELKADI KHALED, responsable du laboratoire LIMEPS (Laboratoire d Informatique, Modélisation et Evaluation des Performances des Systèmes), pour m avoir proposé ce sujet, et à qui je voudrais exprimé ma profonde gratitude, pour sa disponibilité et ses encouragements. Mes remerciements vont également à Mme H.BELBACHIR responsable de la Post-graduation «systèmes, réseaux et bases de données» pour m avoir donné l occasion de faire partie de la dite option et pour m avoir fait l honneur de présider le jury de thèse de magister. Je remercie vivement tous les membres du jury, qui m ont fait l honneur de lire et de juger notre travail : Mr. S.RAHAL maître de conférences à l USTO Melle. M.NOUREDDINE maître de conférences à l USTO Mes remerciements vont particulièrement à tous mes collègues de la post-graduation «systèmes, réseaux et bases de données» en particulier, Khaled Ben Ali, Amine Mahmoudi, Houari Benyettou et Kateb Ameur Je remercie aussi, Mr Belkhira Sid Ahmed Hichem, pour donner le courage de réaliser ce travail. Merci à tous ceux qui ont contribuer de prés ou de loin à la réalisation de ce travail

3 Table des matières

4 Table des matières Introduction générale 1 Chapitre I : Généralités 1.1 Introduction Les systèmes de production La disposition des lignes de production La disposition produit La disposition Processus La disposition cellulaire La disposition fixe Les différents types d ateliers Présentation du problème Ordonnancement dans les systèmes de production L atelier de type Flow Shop Hybride (FSH) La configuration du système Flow Shop Hybride Une notation pour le problème FSH Les différents types du FSH La résolution du problème d ordonnancement dans le système FSH Problèmes NP_Difficiles Codage de la solution La complexité du Système FSH Les méthodes de résolution du problème d ordonnancement de type FSH Méthodes de résolution exactes Branch & Bound Résolution approchée Métaheuristiques à solution unique La descente Le Recuit simulé La recherche tabou Métaheuristiques à base de population Colonies de fourmis Les algorithmes génétiques Les métaheuristiques avancées Les algorithmes mémétiques La recherche dispersée (Scatter Search) Algorithme génétique avec gestion de population (GA/PM) Algorithme mémétique avec gestion de population (MA/PM) Métaheuristique électromagnétique Conclusion.. 23

5 Chapitre II : Les Systèmes Immunitaire Artificiel 2.1 Introduction Le système immunitaire Naturel Introduction Composantes de l immunité L immunité naturelle L immunité acquise Détection des antigènes Le récepteur des lymphocytes B (BCR) Le récepteur des lymphocytes T (TCR) Mécanisme de la détection du soi et du non soi La sélection positive La sélection négative de lymphocytes B (La délétion clonale) La sélection négative de lymphocytes T La théorie de la sélection clonale La théorie des réseaux immunitaires (idiotypique) La théorie du danger Le système immunitaire artificiel Introduction Représentation des différents mécanismes Affinité Génération des récepteurs La sélection positive La sélection négative La sélection clonale Modèle des réseaux immunitaires La théorie du danger Conclusion 39 Chapitre III : Développement de l algorithme immunitaire artificiel pour le problème du FSH 3.1 Introduction Le système immunitaire artificiel (AIS) Le principe de la sélection clonale La maturation d affinité L approche AIS proposée Algorithme Le processus de la sélection clonale dans l algorithme Le processus de la maturation d affinité dans l algorithme La mutation La génération des récepteurs Conclusion.. 47

6 Chapitre IV : L Algorithme immunitaire artificiel Parallèle pour le problème du FSH 4.1 Introduction Les architectures parallèles Structure d un ordinateur séquentiel conventionnel Classification des architectures parallèles Le parallélisme et les métaheuristiques Classification des métaheuristiques parallèle La première dimension La deuxième dimension La troisième dimension Stratégies de parallélisme Parallélisme de bas niveau Décomposition explicite du domaine ou l espace de recherche Recherches multiples indépendantes Recherches multiples coopératives Parallélisation de l Algorithme immunitaire artificiel Les paramètres de migration Nombre de sous populations La topologie d interconnexion 58 IV La topologie grille à deux dimensions 58 IV La topologie Anneau Stratégie de choix pour le remplacement des Anticorps. 58 IV La stratégie aléatoire 59 IV La stratégie bon/mauvais La fréquence de migration Présentation de l Algorithme immunitaire artificiel Parallèle avec migration Conclusion.. 60 Chapitre V : Implémentation et mise en oeuvre V.1 Introduction. 61 V.2 L algorithme immunitaire artificiel séquentiel. 61 V.2.1 Paramètres de tests.. 61 V.2.2 Problèmes de tests.. 61 V.2.3 Analyse. 62 V.3 L algorithme immunitaire artificiel Parallèle 69 V.3.1 Paramètres de tests. 69 V Influence de la stratégie du choix de remplacement. 70 V Influence du nombre de sous populations. 71 V Influence de la fréquence de migration. 73 V Comparaison entre l algorithme parallèle et l algorithme séquentiel. 75 V.4 Conclusion. 76 Conclusion générale.. 77 Bibliographie... 79

7 Liste des figures Chapitre I : Généralités Figure 1.1: Organisation en Flow Shop. 6 Figure 1.2: Le schéma d un atelier de type FSH... 6 Figure 1.3 : Positionnement du problème du FSH parmi les autres organisations 7 Figure 1.4 : Schéma d un FSH avec stocks intermédiaire. 8 Figure 1.5 : FSH avec stock inter étages pour chaque machine 9 Figure 1.6 :FSH avec stock inter étages et un stock pour chaque machine en entrée 9 Figure 1.7:FSH avec un stock unique en entrée et des stocks inter étage propre à chaque machine 9 Figure 1.8 : FSH avec un stock unique en entrée et unique entre les étages 9 Figure 1.9 : FSH avec un stock en entrée propre à chaque machine et pas de stock inter 10 Figure 1.10 : FSH avec un stock unique en entrée et pas de stock inter 10 Figure 1.11 : Diagramme de Gantt. 12 Chapitre II : Les Systèmes Immunitaire Artificiel Figure2.1 : Structure de base d'une Lymphocyte T Figure2.2 : Structure de base d'une immunoglobuline.. 27 Figure 2.3: Une simple idée du processus de la sélection clonale. 30 Figure 2.4: Le processus de la sélection clonale et la sélection négative. 30 Figure 2.5: Sélection de segment dans des librairies pour former un anticorps 34 Figure 2.6: Algorithme de la sélection clonale.. 37 Figure 2.7: Représentation schématique de l évolution de l algorithme de la sélection clonale Chapitre III : Développement de l algorithme immunitaire artificiel pour le problème du FSH Figure 3.1: Principe de la sélection clonale. 41 Figure 3.2 : Structure d un FSH4:FH2 (P2, P3) Cmax Figure 3.3: Organigramme de l Algorithme Figure 3.4: Le processus de la mutation large. 46 Figure 3.5: Le processus de la mutation simple.. 46 Chapitre IV : L Algorithme immunitaire artificiel Parallèle pour le problème du FSH Figure 4.1: Architecture d un ordinateur séquentiel conventionnel 49 Figure 4.2: Structure SIMD Figure 4.3: Structure MIMD. 51 Figure 4.4: Schéma de l organisation d une machine à mémoire partagée 51 Figure 4.5: Schéma de l organisation d une machine à mémoires distribuées. 51 Figure 4.6: Parallélisme Bas Niveau Figure 4.7: Configuration en Maitre-Esclave. 54 Figure 4.8: Décomposition de l espace de recherche. 55 Figure 4.9: Décomposition de l espace de recherche l Algorithme Maître 56 Figure 4.10: Topologie Anneau Figure 4.11: Algorithme exécuter par le maître pour PAIS_MIG 59 Figure 4.12: Algorithme exécuter aux niveaux des esclaves PAIS_MIG.. 60 Chapitre V : Implémentation et mise en œuvre Figure 5.1: Structure d un FSH4:FH2 (P3, P2) Cmax. 61 Figure 5.2: Structure d un FSH4:FH3 (P4, P2, P3) Cmax.. 62 Figure 5.3: Graphe de variation de la moyenne du Cmax Avec l augmentation du Taux de mutation. FSH4 :FH2(P3,P2). 62 Figure 5.4 :Graphe de variation de la moyenne du Cmax Avec l augmentation du Taux de mutation FSH4:FH3(P4,P2,P3) 63 Figure 5.5 : Graphe de variation de la moyenne du temps CPU Avec l augmentation du Taux de mutation. FSH4 :FH2(P3,P2). 63

8 Figure 5.6 : Graphe de variation de la moyenne du temps CPU Avec l augmentation du Taux de mutation.fsh4 :FH3(P4,P2,P3). 64 Figure 5.7 : Graphe de variation de la moyenne du Cmax Avec l augmentation du Taux de remplacement FSH4 :FH2(P3,P2).. 65 Figure 5. 8 : Graphe de variation de la moyenne du Cmax Avec l augmentation du Taux de remplacement. FSH4 :FH3(P4,P2,P3). 65 Figure 5.9 : Graphe de variation de la moyenne du temps CPU Avec l augmentation du Taux de remplacement. FSH4:FH2 (P3, P2) 66 Figure 5.10 : Graphe de variation de la moyenne du temps CPU Avec l augmentation du Taux de remplacement. FSH4 :FH3(P4,P2,P3).. 66 Figure 5.11 : Graphe de variation de la moyenne du Cmax Avec l augmentation de la fréquence de génération pour le remplacement.fsh4 :FH2(P3,P2) Figure 5.12 : Graphe de variation de la moyenne du Cmax Avec l augmentation de la fréquence de génération pour le remplacement.fsh4 :FH3(P4,P2,P3).. 68 Figure 5.13 : Graphe de variation de la moyenne du temps CPU Avec l augmentation de la fréquence de génération pour le remplacement. FSH4 :FH2(P3,P2) Figure 5.14 : Graphe de variation de la moyenne du temps CPU Avec l augmentation de la fréquence de génération pour le remplacement. FSH4 : FH3(P4,P2,P3) Figure 5.15 : Variation de la moyenne du Cmax pour différentes stratégies du choix.. 70 Figure 5.16 : Variation de la moyenne du Cmax avec l augmentation du nombre de sous populations- N=5 71 Figure 5.17:Variation de la moyenne du Cmax avec l augmentation du nombre de sous populations N=10 71 Figure 5.18 : Variation de la moyenne du Cmax avec l augmentation du nombre de sous populations- N= Figure 5.19 : Variation de la moyenne du Cmax avec l augmentation du nombre de sous populations- N= Figure 5.20 : Variation de la moyenne du Cmax avec l augmentation de la fréquence de migration - N= Figure 5.21 : Variation de la moyenne du Cmax avec l augmentation de la fréquence de migration - N= Figure 5.22 : Variation de la moyenne du Cmax avec l augmentation de la fréquence de migration - N= Figure 5.23 : Variation de la moyenne du Cmax avec l augmentation de la fréquence de migration - N= Figure 5.24 : Comparaison entre les deux versions en fonction de la qualité des solutions obtenues

9 Liste des tableaux Chapitre I : Généralités Tableau 1.1 : Ordonnancement et affectation des Jobs sur les machines des différents étages. 11 Tableau 1.2 : Combinatoire de temps de calcul estimé pour le FH2 (P3, P2) Chapitre II : Les Systèmes Immunitaire Artificiel Tableau 2.1 : Les recherches concernant le système immunitaire artificiel dans les dernières années. 32

10 Sigles et Abréviations AIS : Le système immunitaire artificiel. FSH : Flow Shop Hybride. PAIS_MIG : L algorithme immunitaire artificiel parallèle avec migration. Th : Les lymphocytes T helper. Tc : Les lymphocytes T cytotoxiques. NK : Natural Killer. CPA : Les Cellules Présentatrices d'antigène CMH : Complexe Majeur d'histocompatibilité BCR : Le récepteur des lymphocytes B Ig : Les immunoglobulines. Ac : Anticorps TCR : Le récepteur des lymphocytes T AIS_seq : L algorithme immunitaire artificiel séquentiel

11 Introduction générale

12 Introduction générale 1 La fonction ordonnancement vise à organiser l utilisation des ressources technologiques et humaines présentes dans les ateliers ou les services de l entreprise pour satisfaire soit directement les demandes des clients, soit les demandes issues d un plan de production préparé par la fonction de planification de l entreprise. Compte tenu de l évolution des marchés et de leurs exigences, cette fonction doit organiser l exécution simultanée de multiples travaux sur des délais de réalisation de plus en plus courts, à l aide de ressources plus ou moins polyvalentes disponibles en quantités limitées. Ceci constitue un problème complexe à résoudre. En cela, apporter des solutions efficaces et performantes aux problèmes d ordonnancement constitue sûrement un enjeu économique important. Les problèmes d ordonnancement industriel ne peuvent généralement être résolus en un temps polynomial par des algorithmes exacts de nature séquentielle ou parallèle et font ainsi partie de la classe des problèmes dits NP-Difficiles. Les métaheuristiques représentent alors des alternatives intéressantes pour la résolution de ce type de problème. Même si ces heuristiques ne garantissent pas l optimalité, elles assurent généralement une bonne qualité de solutions dans un temps de calcul raisonnable. Plusieurs travaux réalisés au cours des dernières années ont démontré l utilité et l efficacité des métaheuristiques pour la résolution de ces problèmes d optimisation combinatoire. Le système immunitaire artificiel (AIS) est une nouvelle technique utilisée pour résoudre les problèmes de l optimisation combinatoire. Les AIS sont des systèmes computationels qui explorent, dérivent et appliquent les différents mécanismes inspirés du système immunitaire biologique naturel dans le but de résoudre les problèmes dans différents domaines. Le but du travail que nous présenterons dans cette thèse de magister est d une part, la proposition d un algorithme basé sur la théorie des systèmes immunitaire artificiel (AIS) pour résoudre le problème d ordonnancement dans un système de production de type Flow Shop Hybride (FSH) et d autre part, de paralléliser cet algorithme pour avoir plus d efficacité et de performance. Le but de paralléliser cette méthode est d améliorer la qualité des solutions obtenues, Les solutions sont les meilleurs ordonnancement des différents travaux dans un FSH qui optimisent (minimisent) le Cmax (le temps d achèvement des travaux).

13 Introduction générale 2 Cette thèse de magister est organisée en cinq chapitres : Dans le premier Chapitre nous allons présenter les notions liées aux systèmes de production, en suite nous allons présenter le problème d ordonnancement dans un système de production de type Flow Shop Hybride (FSH) et en fin les différentes méthodes de résolution utilisées pour le résoudre. Dans le deuxième chapitre, nous présenterons les systèmes immunitaires artificiels en détaillant les différents concepts et mécanismes inspirés du système immunitaire naturel pour la résolution des problèmes en général et les problèmes d optimisation en particulier. Dans le troisième chapitre, nous présenterons l algorithme immunitaire artificiel adopté pour résoudre le problème d ordonnancement dans un système de production de type Flow Shop Hybride. Dans le quatrième chapitre, nous présenterons les différentes architectures parallèles et les différentes stratégies de parallélisation des métaheuristiques et en fin nous détaillerons la stratégie de parallélisation que nous avons choisi pour cet algorithme. Le cinquième chapitre est consacré à l implémentation et à la mise en œuvre des deux versions séquentielle et parallèle de l algorithme adopté en présentant les résultats expérimentaux obtenus. Enfin, nous terminerons par une conclusion générale et quelques perspectives.

14 Chapitre I Généralités

15 Chapitre I Généralités Introduction Depuis les dernières décennies, les systèmes de production ont connu un développement prodigieux, où la gestion de production et l ordonnancement des tâches sont devenus les éléments qui posent plus de problèmes très importants. Comme l augmentation de la production et la diminution des coûts sont devenus l objectif majeur dans toutes les entreprises, les chercheurs ont tenté à trouver et à développer de nouvelles stratégies et méthodes pour la résolution de tels problèmes ; beaucoup plus meilleures que les anciennes. La gestion de production a pour but de fournir des outils permettant le contrôle et la planification de processus de production. Toutes les études montrent que ces fonctions doivent coopérer pour permettre l automatisation de la production et que certaines sous fonctions telles que la gestion des stocks sont bien maîtrisées mais ce n est pas le cas pour d autres comme la planification et l ordonnancement en particulier, qui sont encore assez mal résolus malgré les nombreux efforts faits actuellement. Les problèmes d ordonnancement se rencontrent très souvent notamment dans l optimisation de la gestion des systèmes de production. La plupart des problèmes d ordonnancement sont NP-difficiles. Il s ensuit que ces problèmes sont impossibles à résoudre de manière exacte ; les chercheurs se sont orientés vers l utilisation de méthodes approchées appelées «heuristiques». Contrairement à une méthode exacte qui vise à l obtention d une solution optimale, l objectif d une heuristique est de trouver une «bonne solution en un temps raisonnable». Dans ce chapitre on va présenter les différentes notions liées aux systèmes de production et ensuite on va présenter le problème d ordonnancement dans un système de production de type Flow Shop Hybride (FSH) et en fin on va voir les différentes méthodes de résolution utilisées pour le résoudre. 1.2 Les systèmes de production L ordonnancement dans un système de production consiste à assigner les différents travaux (Jobs) qui ont besoin d être traités aux différentes ressources, Ces ressources sont principalement les machines qui développent les travaux mais peut inclure aussi la main-d'oeuvre exigée pour opérer les machines. Donc, la planification industrielle fait référence à la planification des travaux sur les machines afin qu'ils puissent être traités de la manière la plus optimale. Le processus de planification (ordonnancement) peut être fait d une manière efficace en identifiant les caractéristiques fondamentales du processus de production : La disposition des lignes de production Les différentes familles d ateliers de production

16 Chapitre I Généralités La disposition des lignes de production [BON 08] C est l'organisation des ressources dans l'unité de la production et il y a 4 dispositions fondamentales: La disposition produit Dans ce type de disposition, chaque produit a sa propre ligne de production. Ce qui est traduit par avoir un ensemble de ressources consacrées uniquement pour le traitement d un type de produit particulier, les ressources sont arrangées d une manière à maximiser le taux de production pour ce type de produit. Généralement, dans ce type de disposition les machines exigées sont arrangées dans une ligne suivant l'ordre de la séquence du traitement.cette disposition est utilisée pour la production des produits en grande quantité et permet de minimiser le temps de placement des produits La disposition Processus Appelé aussi une Disposition Fonctionnelle parce que dans cette disposition les machines utilisées pour le même traitement sont regroupées. Le but de cette disposition est de maximiser l'utilisation des machines. Contrairement à la Disposition Produit, les machines sont partagées entre les produits qui les ont besoin La disposition cellulaire Quand les produits qui ont besoin d'un traitement semblable sont groupés et toutes les machines utilisées pour traiter ce groupe sont arrangées dans une cellule. La disposition est appelée une disposition cellulaire. La différence entre la Disposition Processus et la Disposition Cellulaire est que les machines dans la cellule ne sont pas identiques mais constituent toutes les machines qui sont exigées pour traiter un groupe des produits La disposition fixe C'est un type unique de disposition où le travail reste immobile à une place et les machines sont déplacées à l'emplacement du travail. Cette disposition est utilisée pour certains types de produits, surtout ceux qui sont trop lourd pour être déplacés dans l'unité de production Les différents types d ateliers Il existe cinq grandes familles essentielles de problèmes d ateliers [VIG 97] : 1. Problèmes à "1 Machine" : pour lesquels chaque travail (job) n est constitué que d une opération à réaliser. 2. Problèmes à "Machines Parallèles" : pour lesquels chaque travail n est constitué que d une opération qui peut être réalisée par une ou plusieurs machines (selon les contraintes prises en compte), 3. Problèmes d "Open-Shop" : pour lesquels la gamme de fabrication n est pas fixée (les opérations peuvent s exécuter en parallèle) et différente pour chaque travail.

17 Chapitre I Généralités 5 4. Problèmes de "Job-Shop" : pour lesquels la gamme de fabrication est linéaire (une opération de la gamme ne peut être commencée que lorsque l opération qui la précède dans la gamme est terminée) mais différente pour chaque travail. 5. Problèmes de "Flow Shop" : où la gamme de fabrication est linéaire et identique pour chaque travail. 1.3 Présentation du problème Ordonnancement dans les systèmes de production L ordonnancement consiste à organiser dans le temps la réalisation des taches compte tenu des contraintes pour atteindre les objectifs déterminés au préalable. Le but d un ordonnancement c est généralement d optimiser une dimension particulière du problème telle que : le coût, les revenus, le temps ou l efficacité. Donc, un ordonnancement doit être développé afin qu'un résultat optimum soit obtenu qui prend en considération les limites imposées par les contraintes. Dans un système de production, les taches sont les étapes du processus de transformation de la matière première en un produit fini. Un produit dans une phase de production est appelé un travail. Les ressources pourraient être les machines sur lesquelles les travaux sont traités, la main d œuvre pour opérer les machines. Chacune des ressources a certaines contraintes. Par exemple, les machines et la main d œuvre ont des contraintes du temps : ils ne peuvent pas travailler sans arrêt mais ils ont besoins du temps pour reposer, nourriture, entretien, etc. Un autre type de contrainte est que seulement un travail peut être traité par une machine et un homme à tout moment donné. En outre, les contraintes monétaires limitent le nombre des machines, main-d'oeuvre, heures de travail, etc. donc on a beaucoup de contraintes à respecter pour un ordonnancement optimal. Maximiser la productivité dans un système de production est l'objectif fondamental d'un ordonnancement optimal. Un ordonnancement optimal peut dire plusieurs choses en fonction de la définition de la productivité. Dans une installation industrielle, la productivité peut être mesurée par le nombre des travaux traités par unité de temps avec ou sans prendre en compte la disponibilité des produits dans les délais pour les clients, utilisation des ressources et par d autres façons. En fonction de la façon choisie pour mesurer la productivité un ordonnancement peut avoir un ou plusieurs objectifs à atteindre. Parmi les objectifs on trouve Cmax (le temps total d achèvement des travaux), décalage, retard et autres.

18 Chapitre I Généralités 6 Après le processus de l'optimisation un ordonnancement complet fournit essentiellement le début et la fin de chaque travail sur chaque machine et peut inclure aussi des informations diverses concernant les heures de fonctionnement des machines, le temps d entretient, temps pour le repos et l allocation des ouvriers aux machines etc L atelier de type Flow Shop Hybride (FSH) Une topologie du système de production telle qu a été présentée précédemment (Flow Shop, job Shop, etc.) offre l avantage de fournir instantanément une image des entreprises. Néanmoins, il est très rare que l organisation d une entreprise puisse nous permettre de la classer uniquement dans une des classes de cette topologie. On découvre beaucoup plus souvent des organisations mixtes soit en parallèle soit en série de type Masse Atelier [VIG 97] La configuration du système Flow Shop Hybride Dans un problème de type Flow Shop on ne considère que le problème d ordonnancement des taches (Gamme linéaire). Le problème d affectation (qui découle de la présence des machines parallèles à chaque étage) n existe pas puisqu il n y a qu une seule ressource (machine) par étage Figure 1.1: Etage 1 Etage 2 Etage m Figure 1.1 : Organisation en Flow Shop Un FSH est un Flow Shop mais avec des machines parallèles à chaque étage (le nombre des machines peut être différent dans chaque étage). Un FSH est constitué d un ensemble de m étages, Chaque étage j (j=1,, m) est composé de M (j) machines parallèles. N jobs visitent les m étages dans le même ordre (étage1, etage2, étage3,, étage m ) et les dates de fin sont connues pour chaque Job Figure 1.2 : Station d entrée.... stock.... stock stock.... Station de sortie 1 er étage 2 ème étage m ème étage Figure 1.2 : Le schéma d un atelier de type FSH

19 Chapitre I Généralités 7 M(l) = 1 Job-shop avec des machines dupliquées Gamme identique Gamme fixée (linéaire) k étages k = 1 Job-shop Flow-Shop Hybride k = 1 Machines parallèles Gamme non fixée (ordre quelconque) Gamme identique M(l) = 1 Open-shop Flow-shop M(l) = 1 L ordre ou la Séquence des travaux (jobs) est identique tous les temps d exécution des jobs sont positifs il existe au moins un temps d exécution nul Flow-shop de permutation Flow-shop k = 1 Flow-shop généralisé ou flexible flow line k = 1 k = 1 k = 1 Une Machine k désigne le nombre d étages et M(l) désigne le nombre de machines à l étage l. Figure 1.3 : Positionnement du problème du FSH parmi les autres organisations [VIG 97] L atelier de type Flow Shop Hybride a les caractéristiques suivantes : a) A chaque étage un Job est traité par une seule machine et toutes les machines peuvent exécuter les mêmes opérations, mais pas avec la même performance (la performance d une machine peut être liée à la compétence de l agent qui l utilise). b) A tout moment, une machine ne peut traiter qu un seul job, entre chaque étage les Jobs peuvent attendre ou non dans des stocks limités ou illimités. c) Le FSH est un problème générique qui peut modéliser les opérations de production, le stock et le transport entre étages [VIG97]. La résolution du problème FSH, consiste à rechercher un ordonnancement en entrée (étage1) des Jobs, et leurs affectation aux machines des différents étages dans le but d optimiser un critère de performance (Cmax, Tmax, Lmax.etc.) Une notation pour le problème FSH Le système FSH est un système de production désigné par plusieurs champs [VIG 97] : a) Champ α α β γ. j α 2 { }( ) Composé de 4 paramètres : [ 1α 2]( α 3α 4) α j= 1 tel que :

20 Chapitre I Généralités 8 α 1 : Désigne le problème FSH α 2 : Désigne le nombre d étages Le couple ( α3 α 4 ) est répété autant de fois qu il y a d étages. Dans chaque étage : α 3: désigne le type de machine (φ,p,q,r) de l étage j. α 4 : Désigne le nombre de machines dans l étage j. b) Champ β Permet de définir les contraintes prises en compte, Ce champ peut être sous la forme : β = β1,..., βn, ou β i peut être une concaténation de différents paramètres, résumant les contraintes appliquées sur l étage i du système. Dans la notation utilisée dans le FSH l indice supérieur désigne le n de l étage. Les indices inférieurs i et j correspondent respectivement au n du Job (pièce) et au n de la machine sur laquelle est traitées la pièce [VIG 97]. c) le champ γ Ce champ correspond au critère à optimiser : Cmax, Lmax,,etc. D après la description des trois champs, le problème FSH sera noté comme suit : Exemple : FH2, (P2, P1) Cmax (1) FH2, (P2, P1) split (l) Cmax (2) ( j ) 2 ( ) ( P 3 ) ( 2 j ) 5 j = P j = 3 FSH (3) 1 L exemple (1) dénote un FSH à 2 étages avec machines parallèles (P) ; 2 machines dans le 1 ier étage et 1 machine dans le second. Le critère à optimiser est le Cmax. On note l absence du champ β : pas de contrainte sur le système. L exemple (2) dénote un FSH à 2 étages avec machines parallèles (P) ; 2 machines dans le 1 ier étage et 1 machine dans le second. Le critère à optimiser est le Cmax. Une contrainte de décomposition en sous lots (split) est appliquée au 1 ier étage. L exemple (3) dénote la configuration représentée par le schéma suivant avec un stock inter étage (Figure 1.4) Figure 1.4 : Schéma d un FSH avec stocks intermédiaire

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Chapitre 5 :. Introduction aux méthodes par séparation et évaluation Les méthodes arborescentes ( Branch and Bound Methods ) sont des méthodes exactes d'optimisation qui pratiquent une énumération intelligente

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Système immunitaire artificiel

Système immunitaire artificiel République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique

Plus en détail

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases)

Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Optimisation Combinatoire (Méthodes approchées) VI. Algorithmes à Population (Les bases) Algorithmes à Population Idée principale 'Amélioration' d'un ensemble de solutions Recombiner des solutions Orienté

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

CH.5 MÉTHODES APPROCHÉES

CH.5 MÉTHODES APPROCHÉES CH.5 MÉTHODES APPROCHÉES 5.1 Les voisinages 5. Les méthodes de descentes 5. Le recuit simulé 5.4 La Méthode Tabou 5.5 Les algorithmes génétiques Opti-comb ch 5 1 5.1 Les voisinages Dans les problèmes de

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE Université des sciences et de la technologie Houari Boumediene USTHB Faculté d'électronique

Plus en détail

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau Nadia Lahrichi, Walter Rei ROADEF 2010 Plan de la présentation

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

Les Algorithmes Mémétiques

Les Algorithmes Mémétiques RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE Université des Sciences et de la Technologie d Oran U.S.T.O. Faculté des Sciences Département

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Remerciements. Je tiens à remercier le dieu, le tout puissant de. ma donnée la patience, la santé et le courage pour. finir ce travail.

Remerciements. Je tiens à remercier le dieu, le tout puissant de. ma donnée la patience, la santé et le courage pour. finir ce travail. Remerciements Je tiens à remercier le dieu, le tout puissant de ma donnée la patience, la santé et le courage pour finir ce travail. Je tiens à remercier profondément mon encadreur : Monsieur KALFALI TOUFIK

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Rapport. TME2 - Problème d affectation multi-agents

Rapport. TME2 - Problème d affectation multi-agents Rapport TME2 - Problème d affectation multi-agents Auteurs : Encadrant : Lan Zhou Safia Kedad-Sidhoum Minh Viet Le Plan I. Problème :... 2 II. Question 1 - Formulation linéaire du problème :... 2 III.

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Des outils pour l optimisation et la robustesse. Marc Sevaux

Des outils pour l optimisation et la robustesse. Marc Sevaux Des outils pour l optimisation et la sse Marc Sevaux Université de Valenciennes et du Hainaut-Cambrésis Laboratoire d Automatique, de Mécanique et d Informatique Industrielles et Humaines (UMR CNRS 8530)

Plus en détail

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R

Architecture des ordinateurs. Optimisation : pipeline. Pipeline (I) Pipeline (II) Exemple simplifié : Instructions de type R Architecture des ordinateurs Licence Informatique - Université de Provence Jean-Marc Talbot Optimisation : pipeline jtalbot@cmi.univ-mrs.fr L3 Informatique - Université de Provence () Architecture des

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

L enseignement de l algorithmique au Lycée

L enseignement de l algorithmique au Lycée L enseignement de l algorithmique au Lycée Sisteron 12 novembre 2009 Fernand Didier didier@irem.univ-mrs.fr Approche naïve C est une méthode, une façon systématique de procéder, pour faire quelque chose

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Cours Systèmes d exploitation 1

Cours Systèmes d exploitation 1 Cours Systèmes d exploitation 1 Achraf Othman Support du cours : www.achrafothman.net 1 Plan du cours Chapitre 1 : Gestion des processus Chapitre 2 : Ordonnancement des processus Chapitre 3 : La communication

Plus en détail

TS214 - Compression/Décompression d une image binaire

TS214 - Compression/Décompression d une image binaire Filière Télécommunications, 2 ème année TS214 - Compression/Décompression d une image binaire De nombreux télécopieurs utilisent la recommandation T.4 Groupe 3 de l International Telecommunications Union

Plus en détail

Algorithmes de tri. 1 Introduction

Algorithmes de tri. 1 Introduction Algorithmes de tri L objectif de ce document est de présenter plusieurs algorithmes classiques de tri. On commence par présenter chaque méthode de manière intuitive, puis on détaille un exemple d exécution

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

M2 TIIR (2013-2014) Bilel Derbel

M2 TIIR (2013-2014) Bilel Derbel M2 TIIR (2013-2014) Bilel Derbel Notre but est de concevoir une application générique sur grid5000 qui permet de déployer des calculs parallèles de façon transparente Plus précisément, nous nous plaçons

Plus en détail

DEPARTEMENT D ETUDES EUROPEENNES ECONOMIQUES

DEPARTEMENT D ETUDES EUROPEENNES ECONOMIQUES DEPARTEMENT D ETUDES EUROPEENNES ECONOMIQUES GUIDE DES ETUDIANTS Ce guide est destiné à vous introduire au fonctionnement du Collège et du Département d études économiques européennes, en présentant les

Plus en détail

Algorithmique. De la seconde à la terminale

Algorithmique. De la seconde à la terminale Algorithmique De la seconde à la terminale Le calendrier Rentrée 2009 : o En seconde : nouveau programme pour tous Rentrée 2010 : o En première : aménagements en ES et S Rentrée 2011 : o En première :

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Applications des métaheuristiques #1 Coloration de graphes

Applications des métaheuristiques #1 Coloration de graphes Applications des métaheuristiques #1 Coloration de graphes MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Applications des métaheuristiques #1 Coloration de graphes 1/29 Plan

Plus en détail

Titre : «La Méthode de Recherche à Voisinage Variable (RVV)

Titre : «La Méthode de Recherche à Voisinage Variable (RVV) REPUBLIQUE ALGERIENNE DEMOCRATIQUE & POPULAIRE Ministère de l Enseignement Supérieur & de la Recherche Scientifique Université USTO MB Faculté des Sciences Département d Informatique Spécialité : Informatique

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Préparation des données d entrée pour la définition d un plan de validation

Préparation des données d entrée pour la définition d un plan de validation L ingénierie des systèmes complexes Préparation des données d entrée pour la définition d un plan de validation Référence Internet 22745.010 Saisissez la Référence Internet 22745.010 dans le moteur de

Plus en détail

5.1 Les méthodes Métaheuristiques

5.1 Les méthodes Métaheuristiques 5.1 Les méthodes Métaheuristiques Les métaheuristiques constituent une classe de méthodes qui fournissent des solutions de bonne qualité en temps raisonnable à des problèmes combinatoires réputés difficiles

Plus en détail

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac

La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac La classification 2012-2013 Fabien Chevalier Jérôme Le Bellac Introduction : Classification : méthode d analyse de données Objectif : Obtenir une représentation schématique simple d'un tableau de données

Plus en détail

DÉCOUVREZ LES NOBELS : LE PRIX NOBEL D ÉCONOMIE 2012

DÉCOUVREZ LES NOBELS : LE PRIX NOBEL D ÉCONOMIE 2012 DÉCOUVREZ LES NOBELS : LE PRIX NOBEL D ÉCONOMIE 2012 Demandred 09 novembre 2015 Table des matières 1 Introduction 5 2 Un marché de la rencontre efficace 7 2.1 L algorithme de Gale-Shapley :...........................

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

The Current State and Future of Search Based Software Engineering

The Current State and Future of Search Based Software Engineering The Current State and Future of Search Based Software Engineering Mark Harman 1 IEEE International Conference on Software Engineering FoSE 07: Future of Software Engineering 1 King's College, LONDON, UK

Plus en détail

Coaching, Une méthode scientifique

Coaching, Une méthode scientifique Coaching, Une méthode scientifique ROSELYNE KATTAR Tout le monde parle de coaching sans savoir exactement de quoi il s agit. Afin de clarifier cette approche selon moi, je vous propose de répondre à 3

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Un algorithme génétique à diversité augmentée pour des problèmes de tournées de véhicules multi-dépôts multi-périodes

Un algorithme génétique à diversité augmentée pour des problèmes de tournées de véhicules multi-dépôts multi-périodes Un algorithme génétique à diversité augmentée pour des problèmes de tournées de véhicules multi-dépôts multi-périodes Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau Nadia Lahrichi, Walter Rei 2009

Plus en détail

2B La résolution de modèles linéaires par Excel 2010

2B La résolution de modèles linéaires par Excel 2010 2B La résolution de modèles linéaires par Excel 2010 Nous reprenons ici, de façon plus détaillée, la section où est indiqué comment utiliser le solveur d'excel 2010 pour résoudre un modèle linéaire (voir

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

Problème du voyageur de commerce par algorithme génétique

Problème du voyageur de commerce par algorithme génétique Problème du voyageur de commerce par algorithme génétique 1 Problème du voyageur de commerce Le problème du voyageur de commerce, consiste en la recherche d un trajet minimal permettant à un voyageur de

Plus en détail

Modélisation et Optimisation de la Planification de Réseaux Sans Fil

Modélisation et Optimisation de la Planification de Réseaux Sans Fil Modélisation et Optimisation de la Planification de Réseaux Sans Fil Thèse soutenue le 8 décembre 2008 par Alexandre GONDRAN Devant le Jury : M. Jean-Marie GORCE rapporteur Pr, INSA Lyon M. Olivier HUDRY

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

Equilibre de charge. Equilibre de charge statique Equilibre de charge dynamique

Equilibre de charge. Equilibre de charge statique Equilibre de charge dynamique Equilibre de charge Equilibre de charge statique Equilibre de charge dynamique Approches centralisées Approches distribuées Approches semi-distribuées Jaillet Info53 - L3 Informatique - 2006 1 Equilibre

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Méthodes de test. Mihaela Sighireanu

Méthodes de test. Mihaela Sighireanu UFR d Informatique Paris 7, LIAFA, 175 rue Chevaleret, Bureau 6A7 http://www.liafa.jussieu.fr/ sighirea/cours/methtest/ Partie I 1 Propriétés 2 Un peu de génie logiciel de test 3 Eléments Problèmes Point

Plus en détail

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101

Hela Boukef. To cite this version: HAL Id: tel-00577101 https://tel.archives-ouvertes.fr/tel-00577101 Sur l ordonnancement d ateliers job-shop flexibles et flow-shop en industries pharmaceutiques : optimisation par algorithmes génétiques et essaims particulaires Hela Boukef To cite this version: Hela Boukef.

Plus en détail

Projet de programmation Java Puissance 4

Projet de programmation Java Puissance 4 Projet de programmation Java Puissance 4 Juliusz Chroboczek et Gabriel Scherer Version du 13 novembre 2014 Le but de ce projet est d implémenter en Java un jeu de plateau qui s appelle Puissance 4. Votre

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Classement et identification des grandes Écoles de pensée

Classement et identification des grandes Écoles de pensée Classement et identification des grandes Écoles de pensée De 1900 à nos jours, de nombreuses écoles de pensée se sont succédées avec des périodes de recouvrement. Si les écoles de pensée sont bien identifiées,

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Etude d Algorithmes Parallèles de Data Mining

Etude d Algorithmes Parallèles de Data Mining REPUBLIQUE TUNISIENNE MINISTERE DE L ENSEIGNEMENT SUPERIEUR, DE LA TECHNOLOGIE ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DE TUNIS ELMANAR FACULTE DES SCIENCES DE TUNIS DEPARTEMENT DES SCIENCES DE L INFORMATIQUE

Plus en détail

Utilisation d EXCEL pour résoudre des problèmes de programmation linéaire

Utilisation d EXCEL pour résoudre des problèmes de programmation linéaire Utilisation d EXCEL pour résoudre des problèmes de programmation linéaire Introduction Le solveur d'excel est un outil puissance d'optimisation et d'allocation de ressources. Il peut vous aider à déterminer

Plus en détail

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en Java

L'Intelligence Artificielle pour les développeurs Concepts et implémentations en Java Avant-propos 1. Objectifs du livre 15 2. Public et prérequis 15 3. Structure du livre 16 4. Code en téléchargement 18 Introduction 1. Présentation du chapitre 19 2. Définir l intelligence 19 3. L intelligence

Plus en détail

Conception d une Métaheuristique Réactive

Conception d une Métaheuristique Réactive République Algérienne Démocratique et Populaire وزارة التعليم العالي والبحث العلمي Ministère de l Enseignement Supérieur et de la Recherche Scientifique UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE d ORAN

Plus en détail

1 Introduction. 2 Algorithmes sans élagage. 2.1 Minimax. Chapitre 3 : Jeux (Février 2007, Pierre Gançarski)

1 Introduction. 2 Algorithmes sans élagage. 2.1 Minimax. Chapitre 3 : Jeux (Février 2007, Pierre Gançarski) Chapitre 3 : Jeux (Février 2007, Pierre Gançarski) 1 Introduction Quatre caractérisques pour les jeux étudiés : jeux à deux : deux adversaires eectuent alternativement des coups, chaque défaillance de

Plus en détail

Complément C7 Infodauphine.com

Complément C7 Infodauphine.com Complément C7 Infodauphine.com Pourquoi se soucier des performances? L'utilisateur n'aime pas attendre Le timing peut-être critique Trading VBA est un outil de productivité La notion de temps d'exécution

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

Management des processus opérationnels

Management des processus opérationnels Ecole Nationale Supérieure de Management Master Management des organisations Management des processus opérationnels Dr TOUMI Djamila Cours n 1: La vision processus dans le management des organisations

Plus en détail

CRÉER UN COURS EN LIGNE

CRÉER UN COURS EN LIGNE Anne DELABY CRÉER UN COURS EN LIGNE Deuxième édition, 2006, 2008 ISBN : 978-2-212-54153-3 2 Que recouvre le concept d interactivité? Dans une perspective de cours en ligne, une activité interactive est

Plus en détail

INTRODUCTION AU DATA MINING

INTRODUCTION AU DATA MINING INTRODUCTION AU DATA MINING 6 séances de 3 heures mai-juin 2006 EPF - 4 ème année - Option Ingénierie d Affaires et de Projets Bertrand LIAUDET Phase 4 : Modélisation non-supervisée - 5 : Règles d association

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

Le système SMART 1. Indexation

Le système SMART 1. Indexation Le système SMART Le système SMART (System for the Mechanical Analysis and Retrieval of Text) (aussi appelé Salton's Magic Automatic Retrieval Technique:-) est un système de RI expérimental. Il utilise

Plus en détail

Prise en Main de MS Project

Prise en Main de MS Project Prise en Main de MS Project Télécharger une version de démo valable 60 jours ici: http://www.zdnet.fr/telecharger/windows/fiche/0,39021313,39076442s,00.htm Microsoft Project vous aide à créer des prévisions

Plus en détail

Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif

Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif 1 Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif Narration pour présentation Prezi (http://prezi.com/5tjog4mzpuhh/analyse-de-donneestextuelles-analyse-de-contenu-qualitative/)

Plus en détail