Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Dimension: px
Commencer à balayer dès la page:

Download "Info0804. Cours 6. Optimisation combinatoire : Applications et compléments"

Transcription

1 Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014

2 Plan de la séance Différents problèmes d'optimisation académiques et industriels Problèmes de planification de personnel dans les transports Problèmes d'ordonnancement Optimisation et calcul HPC Métaheuristiques parallèles 2

3 Le problème de la planification du personnel dans les systèmes de transport 3

4 2 problèmes d'optimisation Offre de service Opérationnel Courses commerciales connues par les voyageurs 4

5 Problème de Graphicage Définition de l'offre de service Quels sont les points qui seront desservis? Découpage en services voiture Quelles sont les lignes qui seront empruntées par les véhicules? 5

6 Vehicle scheduling problem Différentes formulations Travelling Salesman Problem (TSP) Multiple Travelling Salesman Problem (MTSP) Vehicle Routing Problem (VRP) Capacitated Vehicle Routing Problem (CVRP) Vehicle Routing Problem with Time Windows(VRPTW) Vehicle Routing and Scheduling Problem (VSRP) + contraintes «industrielles» 6

7 Habillage Découpage en services agent De quelle façon assigner les personnels aux véhicules? 7

8 Approche de résolution habituelle Générer et affecter un coût à un ensemble initial (S) d horaires de personnel réalisables Formuler le problème de choisir dans S un sousensemble de coût minimum qui réalise toutes les tâches Couverture d ensemble (Set Covering Problem) ou Partitionnement d ensemble (Set Partitioning Problem) Résolution du SCP/SPP en utilisant un algorithme approprié (Branch and bound basé sur la PL) Utilisation de techniques de génération de colonnes pour déterminer S 8

9 Modélisation du problème d'habillage Modélisation sous forme de problèmes d'optimisation classiques de la recherche opérationnelle Vue concise de la structure sous-jacente des problèmes industriels Utilisation de méthodes d'optimisation existantes Différentes contraintes industrielles peuvent ensuite être ajoutées 3 problèmes Set Covering Problem (SCP) Set Partitioning Problem (SPP) Crew Scheduling Problem (CSP) 9

10 Set Covering Problem Ensemble fini X Ensemble S de sous-ensembles de X Trouver un sous-ensemble de S Qui couvre tous les éléments de X De cardinal minimum Solutions possibles s1, s2, s3, s4, s5 s2, s5, s6 Exemple : Formation d'un comité 10

11 Set Partitioning Problem Ensemble fini X Ensemble S de sous-ensembles de X Trouver un sous-ensemble de S Qui couvre tous les éléments de X De cardinal minimum Chaque élément ne doit être couvert qu'une seule fois Solutions possibles s 2, s 5, s 6 Exemple : Planification d'un mariage! 11

12 Modélisation mathématique du SCP et du SPP Minimiser n cjxj (1) Le coût de l'ensemble des colonnes i = 1,..., m (2) Chaque ligne doit être couverte : - Au moins une fois pour le SCP ( ) - Exactement une fois pour le SPP (=) j = 1,..., n (3) Une colonne peut être sélectionée (1) ou non (0) j= 1 Sous les contraintes n aijxj 1 j= 1 xj (0,1) c1 c2 c3 c4 c Ligne Ligne Ligne Ligne {c1, c3, c4} est une solution réalisable du SCP mais pas du SPP - {c2, c5} est une solution réalisable du SCP et du SPP Exemple 12

13 SCP, SPP et planification de personnel Division des services voiture en morceaux de course Création de services agent couvrant plusieurs morceaux de course Set Covering ou Set Partitioning? Exemple : déplacement haut-le-pied (deadhead) permis ou non 13

14 Le problème de Crew Scheduling N tâches effectuées par k personnels Début et fin d'une journée N-1 Tâches de travail au même dépôt N k 0 i Temps de travail maximum T 2 1 Arc de transition De coût cij S'il est possible pour un personnel de réaliser i puis j Temps Trouver les chemins de personnel N+1 j Personnel N+1 Personnel 2 0 i j N-1 Personnel 3 0 k N N+1 N+1 De coût total minimum De sorte que chaque tâche soit réalisée une seule fois Et que le temps de travail impliqué dans chaque chemin ne dépasse pas le temps de travail T 14

15 Modélisation mathématique du CSP Minimiser cij xij (1) Le coût de l'ensemble des arcs de transition j = 1,..., N (2) Le nombre d'arcs quittant une tâche est égal au nombre d'arcs entrant dans la tâche i = 1,...,N (3) Un arc quitte chaque tâche (4) K arcs originaires de 0 (dépôt) sont utilisés (K tâches sont choisies pour être la première tâche sur un chemin) i, j Sous les contraintes xjk = xij = 1 k xij i j x0 j = K j (Contraintes de limite de temps) (5) xij (0,1) i, j (6) Chaque arc peut être utilisé au maximum une fois (les chemins sont arc disjoints) 15

16 Relaxation lagrangienne pour le CSP Minimiser cij xij + N ui (1 i= 1 i, j xij ) (1) Introduction des multiplicateurs u et relaxation i de l équation 3 (un arc quitte chaque tâche) j Sous les contraintes xjk = k xij j = 1,..., N (2) Il doit y avoir K chemins d arcs disjoints contraints par la limite de temps T (4) La fonction objectif est de minimiser le coût (lagrangien) total de ces K chemins i x0 j = K j (Contraintes de limite de temps) (5) xij (0,1) i, j (6) Difficulté du problème : nécessité d avoir des chemins d arcs disjoints - Solution : relaxer l équation 6 16

17 Relaxation lagrangienne pour le CSP Minimiser N cij xij + ui (1 i= 1 i, j xij ) j Sous les contraintes xjk = k xij j = 1,..., N i Problème relaxé : Trouver les k chemins contraints par la limite de temps, de coût (lagrangien) minimum, parmi N chemins Solution du problème relaxé : Borne inférieure de la solution du CSP original Optimisation de subgradient : Permet de trouver les bons ui x0 j = K j (Contraintes de limite de temps) x 0 j (0,1) j = 1,..., N xij 0 entier i 0, j On permet aux arcs (et donc aux tâches) d apparaître dans plusieurs chemins, sauf ceux qui démarrent au dépôt 17

18 Méthode par séparation et évaluation (Branch and bound) Si la procédure d'optimisation de subgradient trouve une solution réalisable On a trouvé la solution optimale du problème original Sinon i.e. si, dans la meilleure solution, il reste des tâches de degrés entrant/sortant différents de 1 i.e. si certaines tâches sont utilisées plusieurs fois ou pas du tout une procédure de séparation-évaluation est nécessaire pour trouver la solution optimale À partir de la solution associée à la meilleure borne inférieure, interdire successivement les arcs associés à des tâches de degrés entrant/sortant > 1 18

19 Méthode par séparation et évaluation (Branch and bound) 19

20 Problème d'ordonnancement industriel : Production d'aluminium 20

21 Le processus industriel de production d'aluminium 21

22 Le processus de coulée Coulée de l'aluminium sur une machine à couler horizontale 22

23 Considérations du problème Déterminer l ordre de passage de n commandes en considérant plusieurs contraintes technologiques et administratives Date de livraison à respecter pour chaque commande Deux types de réglages: Changement du moule pour des produits de dimension différente Drainage des fours pour des produits d alliage différent Objectifs multiples à minimiser Pertes de temps à la machine à couler Retard total pour l ensemble des commandes Perte de capacité de transport 23

24 Exemple de problème 24

25 Single Machine Scheduling Problem Une machine est toujours disponible durant la période d'ordonnancement La machine traite les jobs un à la fois Le temps de traitement de chaque job sur la machine est connu et ne dépend pas des jobs précédents Le temps de traitement inclut le temps de setup et le temps sur machine 25

26 Objectifs classiques à optimiser 26

27 Implémentation logicielle 27

28 Variantes Plusieurs machines parallèles Atelier sériel (flowshop) 28

29 Variantes Atelier à cheminements multiples (job shop) 29

30 Optimisation et calcul HPC 30

31 Optimisation et calcul HPC Architectures parallèles actuelles Clusters, SMPs, processeurs multi-coeur, GPUs, hybrides Offrent des ressources de calcul imposantes Le problème est de les utiliser efficacement! Stratégies de parallélisation des méthodes arborescentes Maître-esclave, décomposition de domaine Stratégies de parallélisation des métaheuristiques Accélération du processus de recherche de solutions Amélioration de la recherche par la concurrence Problématiques Performance, portabilité et reproductibilité sur une architecture cible Architectures hybrides méthodes hybrides 31

32 Hybridation technologique 32

33 Hybridation technologique 33

34 Métaheuristiques parallèles Conception Implémentation 34

35 Métaheuristiques parallèles Métaheuristiques : stratégies efficaces pouvant demander beaucoup de ressources Temps de calcul Mémoire Les 2 contributions principales du parallélisme aux métaheuristiques : Accélérer le processus de recherche de solutions Améliorer la recherche par des activités concurrentes 35

36 Stratégies de parallélisation des métaheuristiques Processus de recherche simple Parallélisation interne Décomposition de domaine Processus de recherche multiples Processus indépendants Processus coopératifs Approches hybrides 36

37 La coopération entre processus de recherche Résolution d un problème par un groupe d agents coopérant Nouvelle forme d apprentissage Parallélisme naturel 3 questions importantes Quelle information doit être partagée? À quel moment doit-elle être partagée? Entre quels processus doit-elle être partagée? 37

38 Parallélisation des algorithmes génétiques Parallélisation maître-esclave sur une population unique Paralélisation de grain fin sur une population unique Population sur le processeur maître Appel aux esclaves pour appliquer les opérateurs génétiques Répartition des individus sur les processeurs Parallélisation de gros grain sur des population multiples (modèle en îles) Une population par processeur Migration d'individus 38

39 Parallélisation de l OCF Niveau Colonie Interaction (indépendant/coopératif) Échange d information (phéromone/solutions) Coordination et schéma d échange Niveau Fourmi Construction des solutions Gestion de la phéromone Gestion de la liste de candidats Recherche locale 39

40 Études de cas 40

41 Résolution exacte du CSP sur CPU/GPU 41

42 Architecture GPU GPU Architecture massivement parallèle Prix raisonnable CUDA (Compute Unified Device Architecture) Challenges Conception Programmation 42

43 Relaxation lagrangienne pour le CSP Problème relaxé Relaxation lagrangienne pour le CSP - Construction du problème - Définition des arcs fixés - Résolution du problème relaxé - Optimisation de subgradient Branch and Bound Calcul des plus courts chemins contraints bloc i : plus court chemin à partir de i thread : sommet du graphe 43

44 Résultats expérimentaux Code C++ CUDA 4.0 Problèmes tests 50 à 500 tâches OR-Library (benchmarks publics de la communauté scientifique) Nœud de calcul GPU sur Clovis GPU Tesla C2050 Architecture Fermi 448 unités de calcul 44

45 Résultats expérimentaux 180 Temps CPU Temps d'exécution (s) Temps CPU+GPU Nombre de tâches 45

46 Optimisation par Colonie de Fourmis sur CPU/GPU 46

47 Optimisation par Colonie de Fourmis Inspiré des comportements collectifs des insectes sociaux Construction des solutions Règle de transition Informations heuristique Phéromone Mise à jour de la phéromone Intensification Évaporation Initialisation des traces de phéromone Pour un nombre de cycles donné faire Pour chaque fourmi k faire - Positionnement de la fourmi k sur une ville choisie aléatoirement - Construction de la tournée par la règle de transition - Calcul de la longueur de la tournée Mise à jour de la meilleure tournée Mise à jour des traces de phéromone 47

48 Optimisation par Colonie de Fourmis sur GPU 48

49 Résultats expérimentaux 50 41,02 Accélérations ,39 31,68 13,58 5,74 5,35 eil51 8,62 kroa100 16,77 11,9 d198 20,8 19,72 23,14 20,34 14,76 lin318 rat783 fl1577 d2103 Problèmes 49

50 Conclusion et perspectives Calcul HPC potentiel pour méthodes exactes et approchées Intégration aux solutions logicielles commerciales Beaucoup de travail reste à faire, conceptuel et technique GPU performance vs. effort de recherche et développement? Mais, que nous réserve le futur du HPC? 50

51 La semaine prochaine Pas de semaine prochaine, c'est terminé 51

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Tournées de véhicules

Tournées de véhicules Tournées de véhicules De la théorie aux outils d aide à la décision Olivier Péton, Ecole des Mines de Nantes, novembre 2008 Les principaux problèmes de tournées Deux problèmes de base : Problème du voyageur

Plus en détail

Optimisation Combinatoire et Colonies de Fourmis Nicolas Monmarche April 21, 1999 Sommaire Inspiration biologiques Ant Colony Optimization Applications TSP QAP Flow Shop Problemes dynamiques 1 Historique

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Chapitre 5 :. Introduction aux méthodes par séparation et évaluation Les méthodes arborescentes ( Branch and Bound Methods ) sont des méthodes exactes d'optimisation qui pratiquent une énumération intelligente

Plus en détail

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/

HEURISTIQUES D'OPTIMISATION. Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ HEURISTIQUES D'OPTIMISATION Evelyne LUTTON - INRA AgroParisTech - Grignon http ://evelyne-lutton.fr/ D'après Patrick Siarry, LiSSi, Univ. de Paris-Est Créteil MÉTA-HEURISTIQUES Du grec : méta :au-delà,

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

MTH8442 Ordonnancement de Plan production. (3-0-6) 3 cr

MTH8442 Ordonnancement de Plan production. (3-0-6) 3 cr MTH8442 Ordonnancement de Plan production de cours Automne 2008 (3-0-6) 3 cr Michel Gamache Local A-305.29 340-4711 poste 5920 michel.gamache@polymtl.ca François Soumis Local A-520.15 340-4711 poste 6044

Plus en détail

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3)

Plan du cours. Métaheuristiques pour l optimisation combinatoire. Quelques problèmes classiques (2/3) Quelques problèmes classiques (1/3) Plan du cours Quelques problèmes classiques Quelques algorithmes classiques Métaheuristiques pour l optimisation combinatoire un peu de vocabulaire codage des solutions taxinomie méthodes complètes méthodes

Plus en détail

Programmation multigpu OpenMP versus MPI

Programmation multigpu OpenMP versus MPI 17 février 2011 Gabriel Noaje Programmation multigpu OpenMP versus OpenMP 1 Programmation multigpu OpenMP versus MPI Gabriel Noaje, Michaël Krajecki, Christophe Jaillet gabriel.noaje@univ-reims.fr Équipe

Plus en détail

NVIDIA CUDA. Compute Unified Device Architecture. Sylvain Jubertie. Laboratoire d Informatique Fondamentale d Orléans 2011-2012

NVIDIA CUDA. Compute Unified Device Architecture. Sylvain Jubertie. Laboratoire d Informatique Fondamentale d Orléans 2011-2012 NVIDIA CUDA Compute Unified Device Architecture Sylvain Jubertie Laboratoire d Informatique Fondamentale d Orléans 2011-2012 Sylvain Jubertie (LIFO) NVIDIA CUDA 2011-2012 1 / 58 1 Introduction 2 Architecture

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux

Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis

Plus en détail

Une heuristique hybride pour le problème de set packing biobjectif p.1/19

Une heuristique hybride pour le problème de set packing biobjectif p.1/19 Une heuristique hybride pour le problème de set packing biobjectif Xavier Delorme 1,2, Xavier Gandibleux 2,3 et Fabien DEGOUTIN 2,4 1. Ecole Nationale Supérieure des Mines de Saint-Etienne Centre : Génie

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Présentation CaSciModOT Performances et Architectures

Présentation CaSciModOT Performances et Architectures Présentation CaSciModOT Performances et Architectures Code parallèle : Un peu de théorie Architectures variables : C(n,p)? Quel code? Quelle architecture? Structure d un code : partie parallèle / séquentielle

Plus en détail

Voyageur de commerce et solution exacte

Voyageur de commerce et solution exacte Voyageur de commerce et solution exacte uteurs :. Védrine,. Monsuez e projet consiste à réaliser un outil capable de trouver le plus court trajet pour un commercial qui doit visiter n villes, les n villes

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

M2-OSIL Mémoire Thématique-Présoutenance le 02.12.2009. Ayse Sena Eruguz

M2-OSIL Mémoire Thématique-Présoutenance le 02.12.2009. Ayse Sena Eruguz M2-OSIL Mémoire Thématique-Présoutenance le 02.12.2009 Ayse Sena Eruguz 1 Plan Introduction Présentation de la Problématique Facteurs de Modélisation Modèles de Localisation-Allocation Applications Méthodes

Plus en détail

Demande d attribution de ressources informatiques. Sur le Centre de Calculs Interactifs de l Université de Nice Sophia-Antipolis

Demande d attribution de ressources informatiques. Sur le Centre de Calculs Interactifs de l Université de Nice Sophia-Antipolis Demande d attribution de ressources informatiques Sur le Centre de Calculs Interactifs de l Université de Nice Sophia-Antipolis Titre du projet : Nom du laboratoire : Nom de l établissement hébergeur :

Plus en détail

Programmation par contraintes pour la gestion du trafic ferroviaire

Programmation par contraintes pour la gestion du trafic ferroviaire Programmation par contraintes pour la gestion du trafic ferroviaire Joaquin Rodriguez joaquin.rodriguez@inrets.fr INRETS Forum "Systèmes & logiciels pour les NTIC dans le transport" - Seminaire Planification

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines ROADEF 09, 10-12 février 2009, Nancy (France) O. Guyon 1.2, P. Lemaire 2, É. Pinson 1 et D. Rivreau 1 1 LISA - Institut

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments A- 0/0 Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com

Plus en détail

Progrès récents en confection de tournées de véhicules et problèmes connexes

Progrès récents en confection de tournées de véhicules et problèmes connexes Progrès récents en confection de tournées de véhicules et problèmes connexes Michel Gendreau CIRRELT et MAGI, École Polytechnique de Montréal Journée de la recherche École Polytechnique, 30 mai 2013 Plan

Plus en détail

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN

A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN A Hybrid Routing Protocol based on Fuzzy C-Means Clustering and Ant Colony Optimization for Lifetime Improvement in WSN Mourad Hadjila Hervé Guyennet RGE Université Franche-Comté femto-st, DISC, Besançon

Plus en détail

Raisonnement symbolique et géométrique pour la robotique mobile

Raisonnement symbolique et géométrique pour la robotique mobile Introduction à la réunion finale Raisonnement symbolique et géométrique pour la robotique mobile J. Guitton, J.L. Farges Control Architectures of Robots - Bourges - 30 mai 2008 1 Plan Introduction Vers

Plus en détail

Algorithme d optimisation par colonie de fourmis pour le problème de jobshop

Algorithme d optimisation par colonie de fourmis pour le problème de jobshop Algorithme d optimisation par colonie de fourmis pour le problème de jobshop Plan Optimisation par colonie de fourmi 1 Optimisation par colonie de fourmi Principes généraux Mise en œuvre Procédure 2 Construction

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Séminaire du LGI Centrale Paris Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Y. Hayel 1, D. Quadri 2, T. Jimenez 1, L. Brotcorne 3, B. Tousni 3 LGI,

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation

Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation Comparaison entre une architecture matérielle dédiée et un GP-GPU pour l optimisation Université de Bretagne-Sud Lab-STICC, Lorient, France ROADeF Troyes, France 13-15 Février 2013 1/22 Objectifs Après

Plus en détail

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE

APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE APPLICATION DE LA RECHERCHE OPÉRATIONNELLE DANS DES APPLICATIONS OPÉRATIONNELLES FRANCIS SOURD SNCF INNOVATION & RECHERCHE INAUGURATION DE L INSTITUT HENRI FAYOL 17/05/2013 DE L OPTIMISATION MATHEMATIQUE

Plus en détail

L approche Bases de données

L approche Bases de données L approche Bases de données Cours: BD. Avancées Année: 2005/2006 Par: Dr B. Belattar (Univ. Batna Algérie) I- : Mise à niveau 1 Cours: BDD. Année: 2013/2014 Ens. S. MEDILEH (Univ. El-Oued) L approche Base

Plus en détail

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES

CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES CATALOGUE DE FORMATIONS OPTIMISATION DE PERFORMANCE ET ARCHITECTURES PARALLÈLES Trois types de formation LES FORMATEURS Les experts techniques AS+ Groupe EOLEN disposent d une réelle expérience pratique

Plus en détail

Segmentation d'images à l'aide d'agents sociaux : applications GPU

Segmentation d'images à l'aide d'agents sociaux : applications GPU Segmentation d'images à l'aide d'agents sociaux : applications GPU Richard MOUSSA Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 Université de Bordeaux - France Laboratoire de recherche

Plus en détail

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23 Table des Figures 7 Introduction Générale 9 1. Outils et plate-formes de construction d application 9 2. Intégration de paradigmes de conception dans le cycle de vie 10 2.1. Equilibrage de charge et équilibrage

Plus en détail

Calculs parallèles et Distribués. Benmoussa Yahia Université M hamed Bougara de Boumerdès yahia.benmoussa@gmail.com

Calculs parallèles et Distribués. Benmoussa Yahia Université M hamed Bougara de Boumerdès yahia.benmoussa@gmail.com Calculs parallèles et Distribués Benmoussa Yahia Université M hamed Bougara de Boumerdès yahia.benmoussa@gmail.com Calculs parallèles et Distribués Introduction Parallélisation sur mémoire distribuée.

Plus en détail

Kick-off ANR Compass

Kick-off ANR Compass Kick-off ANR Compass Contribution MDLS Pierre Kestener CEA-Saclay, DSM, France Maison de la Simulation Meudon, 14 mars 2013 1 / 10 La Maison de la Simulation Laboratoire de recherche pluridisciplinaire

Plus en détail

Rappels, SISD, SIMD. Calculateurs hybrides (GPU-OpenCL) Rappels, MIMD mémoire partagée. Rappels, MIMD mémoire partagée. Rappels... SISD,...

Rappels, SISD, SIMD. Calculateurs hybrides (GPU-OpenCL) Rappels, MIMD mémoire partagée. Rappels, MIMD mémoire partagée. Rappels... SISD,... Rappels, SISD, SIMD Calculateurs hybrides (GPU-OpenCL) Rappels... SISD,... SIMD Formation d Ingénieurs de l Institut Galiléee MACS 3 Philippe d Anfray Philippe.d-Anfray@cea.fr CEA DSM 2013-2014 SISD :

Plus en détail

Méthodes de Résolution de problèmes En Intelligence Artificielle

Méthodes de Résolution de problèmes En Intelligence Artificielle Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une

Plus en détail

C09: Conception parallèle

C09: Conception parallèle méthodologie de conception en quatre étapes virtualisation applications structurées et non structurées aspect analytique: S, E Accélération Amdahl Accélération Gustafson Surcharge de parallélisation Conception

Plus en détail

INFORMATIQUE - PROJET DE DEVELOPPEMENT INTERNET/INTRANET

INFORMATIQUE - PROJET DE DEVELOPPEMENT INTERNET/INTRANET MINISTERE DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE ENSEIGNEMENT DE PROMOTION SOCIALE DE REGIME 1 DOSSIER PEDAGOGIQUE UNITE DE FORMATION INFORMATIQUE

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

ParaView / VTK / HDF5 un cas d utilisation : SimSERT. RDataDev OSUG 10 Avril 2015 Yves Rogez

ParaView / VTK / HDF5 un cas d utilisation : SimSERT. RDataDev OSUG 10 Avril 2015 Yves Rogez ParaView / VTK / HDF5 un cas d utilisation : SimSERT RDataDev OSUG 10 Avril 2015 Yves Rogez ParaView / VTK / HDF5 un cas d utilisation : SimSERT 1. Contexte : CONSERT / ROSETTA 2. ParaView : Fonctionnalités,

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Méthodes arborescentes exactes et approchées

Méthodes arborescentes exactes et approchées Méthodes arborescentes exactes et approchées Complexité, Algorithmes Randomisés et Approchés October 8, 2015 Problème d optimisation (rappel) Définition : Nom du problème : P Paramètres génériques du problème

Plus en détail

Runtime. Gestion de la réactivité des communications réseau. François Trahay Runtime, LaBRI sous la direction d'alexandre Denis Université Bordeaux I

Runtime. Gestion de la réactivité des communications réseau. François Trahay Runtime, LaBRI sous la direction d'alexandre Denis Université Bordeaux I Runtime Gestion de la réactivité des communications réseau François Trahay Runtime, LaBRI sous la direction d'alexandre Denis Université Bordeaux I 1 Le calcul hautes performances La tendance actuelle

Plus en détail

G. Lesauvage. Laboratoire d Informatique et du Traitement de l Information et des Systèmes

G. Lesauvage. Laboratoire d Informatique et du Traitement de l Information et des Systèmes Gestion dynamique des activités des chariots cavaliers sur un terminal portuaire à conteneurs en environnement incertain - approche par intelligence collective - G. Lesauvage Unité de Formation et de Recherche

Plus en détail

Deux stratégies parallèles de l'optimisation par colonie de fourmis

Deux stratégies parallèles de l'optimisation par colonie de fourmis 4 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 25-29, 2007 TUNISIA Deux stratégies parallèles de l'optimisation par colonie de fourmis HERNANE

Plus en détail

Cours de Génie Logiciel

Cours de Génie Logiciel Cours de Génie Logiciel Sciences-U Lyon Gestion de Projet Informatique http://www.rzo.free.fr Pierre PARREND 1 Mars 2005 Sommaire Gestion de projet informatique Cycle de vie du logiciel Modèles de Méthodes

Plus en détail

Planification des salles opératoires avec durées d interventions aléatoires

Planification des salles opératoires avec durées d interventions aléatoires Planification des salles opératoires avec durées d interventions aléatoires Mehdi LAMIRI, Xiaolan XIE, Alexandre DOLGUI et Frédéric GRIMAUD Centre Ingénierie et santé Centre Génie Industriel et Informatique

Plus en détail

Recherche opérationnelle dans le secteur de la construction (4/5)

Recherche opérationnelle dans le secteur de la construction (4/5) Recherche opérationnelle dans le secteur de la construction (4/5) Antoine Jeanjean Ingénieur de recherche Ecole des Mines de Nantes Amphi Georges Besse 14h30-16h30 Plan de la présentation Le Groupe Bouygues

Plus en détail

Evaluation des performances de programmes parallèles haut niveau à base de squelettes

Evaluation des performances de programmes parallèles haut niveau à base de squelettes Evaluation des performances de programmes parallèles haut niveau à base de squelettes Enhancing the Performance Predictability of Grid Applications with Patterns and Process Algebras A. Benoit, M. Cole,

Plus en détail

Analyse et mesure de performances du calcul distribué

Analyse et mesure de performances du calcul distribué Analyse et mesure de performances du calcul distribué Mohsine Eleuldj Département Génie Informatique, EMI eleuldj@emi.ac.ma CruCID Workshop, EMI, Rabat, 5 au 7 juillet 1999 Motivation Types d applications

Plus en détail

Gestion dynamique des tâches dans les grappes

Gestion dynamique des tâches dans les grappes Gestion dynamique des tâches dans les grappes une approche à base de machines virtuelles Fabien Hermenier Équipe ASCOLA, École des Mines de Nantes 26 novembre 2009 Fabien Hermenier (ASCOLA) Gestion dynamique

Plus en détail

Planification et ordonnancement sous incertitudes Application à la gestion de projet

Planification et ordonnancement sous incertitudes Application à la gestion de projet Toulouse, 14 mai 2003 Planification et ordonnancement sous incertitudes Application à la gestion de projet Julien Bidot Plan Séminaire au LAAS Planification de tâches et ordonnancement Domaine d application

Plus en détail

Recherche opérationnelle dans le secteur de la construction (3/5)

Recherche opérationnelle dans le secteur de la construction (3/5) Recherche opérationnelle dans le secteur de la construction (3/5) Antoine Jeanjean Ingénieur de recherche Ecole des Mines de Nantes Amphi Georges Besse 14h30-16h30 Plan de la présentation Le Groupe Bouygues

Plus en détail

CRIHAN Centre de Ressources Informatiques de HAute-Normandie

CRIHAN Centre de Ressources Informatiques de HAute-Normandie ACT-MG-v2 CRIHAN Centre de Ressources Informatiques de HAute-Normandie Journée Entreprises & HPC-PME au CRIHAN - 11 avril 2013 CRIHAN Missions Concept : mutualisation de services et d équipements Réseau

Plus en détail

Présentation livre Simulation for Supply Chain Management. Chapitre 1 - Supply Chain simulation: An Overview

Présentation livre Simulation for Supply Chain Management. Chapitre 1 - Supply Chain simulation: An Overview Présentation livre Simulation for Supply Chain Management Chapitre 1 - Supply Chain simulation: An Overview G. Bel, C. Thierry et A. Thomas 1 Plan Gestion de chaînes logistiques et simulation Points de

Plus en détail

Le voyageur de commerce

Le voyageur de commerce Université de Strasbourg UFR Maths-Informatique Licence 3 - Semestre 6 Le voyageur de commerce Jonathan HAEHNEL & Marc PAPILLON Strasbourg, le 3 mai 2012 Table des matières 1 Etat des lieux 4 1.1 Fonctionnalités..............................

Plus en détail

Optimisation du trafic au sol sur les grands aéroportsa

Optimisation du trafic au sol sur les grands aéroportsa Optimisation du trafic au sol sur les grands aéroportsa Plan Contexte Simulations accélérées du trafic au sol Optimisation des séquences d'avions sur les pistes Résolution des conflits au roulage Applications

Plus en détail

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008

Olivier Coulaud Projet ScAlApplix. 8 janvier 2008 Simulation de la propagation de fissures dans les lentilles du Laser Méga Joule : de la physique des matériaux au calcul haute performance en passant par l'algorithmique, la visualisation et le pilotage

Plus en détail

Gobelins. un système d exploitation distribué pour un cluster à image unique. Geoffroy Vallée EDF/IRISA/RESAM

Gobelins. un système d exploitation distribué pour un cluster à image unique. Geoffroy Vallée EDF/IRISA/RESAM Gobelins un système d exploitation distribué pour un cluster à image unique Geoffroy Vallée EDF/IRISA/RESAM gvallee@irisa.fr http://www.edf.fr/der/ http://www.irisa. fr/paris 1 Plan de l exposé Introduction

Plus en détail

Minimisation des distances dans un réseau de transports publics urbains avec demande élastique

Minimisation des distances dans un réseau de transports publics urbains avec demande élastique Minimisation des distances dans un réseau de transports publics urbains avec demande élastique Loïc YON LIMOS UMR 6158, Université Blaise Pascal Résumé Dans un contexte économique toujours plus exigeant,

Plus en détail

RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE RÉPUBLIQUE ALGERIÉNNE DÉMOCRATIQUE ET POPULAIRE MINISTÉRE DE L ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE Université des sciences et de la technologie Houari Boumediene USTHB Faculté d'électronique

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

Routage de camions dans le secteur du BTP

Routage de camions dans le secteur du BTP Routage de camions dans le secteur du BTP 1 / 25 Routage de camions dans le secteur du BTP Projet Orlogès Sylvain Rosembly 1 Nathalie Bostel 2 Pierre Dejax 3 1 Master ORO - Ecole des Mines de Nantes 2

Plus en détail

Projet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS

Projet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS Proet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS Université Toulouse 3 Paul Sabatier Présenté par : Mohamed Esseghir LALAMI Titre

Plus en détail

LA R.O. à MONTRÉAL. Succès en planification Nouveaux défis en temps réel. François Soumis GERAD

LA R.O. à MONTRÉAL. Succès en planification Nouveaux défis en temps réel. François Soumis GERAD LA R.O. à MONTRÉAL Succès en planification Nouveaux défis en temps réel François Soumis GERAD 1 SUCCÈS EN PLANIFICATION Trois entreprises issues de l université INRO AD OPT GIRO Les problèmes, la science,

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux

Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux CO 2 maîtrisé Carburants diversifiés Véhicules économes Raffinage propre Réserves prolongées Solveurs linéaires sur GPU pour la simulation d'écoulement en milieux poreux J-M. Gratien,, M. Hacene, T. Guignon

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

Evaluation de performance en Sûreté de Fonctionnement

Evaluation de performance en Sûreté de Fonctionnement Groupe SdF Midi-Pyrénées Toulouse 5 juin 2015 Evaluation de performance en Sûreté de Fonctionnement - Andre.cabarbaye Plan Introduction Types de performances Finalité des analyses Attentes du donneur d

Plus en détail

Le problème du flot maximal avec contraintes sur le nombre de chemins

Le problème du flot maximal avec contraintes sur le nombre de chemins Le problème du flot maximal avec contraintes sur le nombre de chemins Jérôme Truffot, Christophe Duhamel, Philippe Mahey jerome.truffot@isima.fr, christophe.duhamel@isima.fr, philippe.mahey@isima.fr LIMOS,

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion

Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Vérification de logiciels par analyse statique Contexte et motivations Les techniques envisagées Evolution des processus Conclusion Contexte et motivations Specification Design architecture Revues and

Plus en détail

MODELISATION INTEGREE DES ACTIVITES DE MAINTENANCE ET DE PRODUCTION

MODELISATION INTEGREE DES ACTIVITES DE MAINTENANCE ET DE PRODUCTION 3 e Conférence Francophone de MOdélisation et SIMulation Conception, Analyse et Gestion des Systèmes Industriels MOSIM 01 du 25 au 27 avril 2001 - Troyes (France) MODELISATION INTEGREE DES ACTIVITES DE

Plus en détail

Chapitre IV : La gestion du processeur Mécanismes d ordonnancement

Chapitre IV : La gestion du processeur Mécanismes d ordonnancement Chapitre IV : La gestion du processeur Mécanismes d ordonnancement Eric.Leclercq@u-bourgogne.fr Département IEM http://ufrsciencestech.u-bourgogne.fr http://ludique.u-bourgogne.fr/~leclercq 1 er mars 2007

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

Plan du cours. Programmation logique et Prolog (PL) Programmation logique par contraintes (PLC) Problèmes de satisfaction de contraintes (CSP/PC)

Plan du cours. Programmation logique et Prolog (PL) Programmation logique par contraintes (PLC) Problèmes de satisfaction de contraintes (CSP/PC) Plan du cours Programmation logique et Prolog (PL) SWI-Prolog, Sicstus Programmation logique par contraintes (PLC) Sicstus Problèmes de satisfaction de contraintes (CSP/PC) Choco (Sicstus & Bin Prolog)

Plus en détail

Exemple d un modèle de PL. 2. Programmation linéaire a. modélisation. Programmation linéaire (PL) Exemple d un modèle de PL (suite)

Exemple d un modèle de PL. 2. Programmation linéaire a. modélisation. Programmation linéaire (PL) Exemple d un modèle de PL (suite) Exemple d un modèle de PL IFT1575 Modèles de recherche opérationnelle (RO). Programmation linéaire a. modélisation Données du problème (Wyndor Glass, sec..1 H&L): Deux types de produits (produit 1, produit

Plus en détail

Module BDR Master d Informatique (SAR) Cours 5- bases de données parallèles Anne Doucet Anne.Doucet@lip6.fr

Module BDR Master d Informatique (SAR) Cours 5- bases de données parallèles Anne Doucet Anne.Doucet@lip6.fr Module BDR Master d Informatique (SAR) Cours 5- bases de données parallèles Anne Doucet Anne.Doucet@lip6.fr 1 Plan Introduction Architectures Placement des données Parallélisme dans les requêtes Optimisation

Plus en détail

Un Algorithme génétique pour le problème de ramassage et de livraison avec fenêtres de temps à plusieurs véhicules

Un Algorithme génétique pour le problème de ramassage et de livraison avec fenêtres de temps à plusieurs véhicules Un Algorithme génétique pour le problème de ramassage et de livraison avec fenêtres de temps à plusieurs véhicules I. Harbaoui Dridi (1),(2) R. Kammarti (1),(2) P. Borne (1) M. Ksouri (2) imenharbaoui@gmail.com

Plus en détail

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME

OÙ EN EST-ON? ABANDONNER L IDÉE D AVOIR UN ALGORITHME OÙ EN EST-ON? Que faire face à un problème dur? AAC S.Tison Université Lille1 Master1 Informatique Quelques schémas d algorithmes Un peu de complexité de problèmes Un peu d algorithmique avancée ou Que

Plus en détail

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs

Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Un algorithme génétique hybride pour des problèmes de tournées de véhicules multi-attributs Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau Nadia Lahrichi, Walter Rei ROADEF 2010 Plan de la présentation

Plus en détail

The Current State and Future of Search Based Software Engineering

The Current State and Future of Search Based Software Engineering The Current State and Future of Search Based Software Engineering Mark Harman 1 IEEE International Conference on Software Engineering FoSE 07: Future of Software Engineering 1 King's College, LONDON, UK

Plus en détail

1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle?

1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle? CONTRÔLE DE RECHERCHE OPÉRATIONNELLE Le contrôle est noté sur 30. 1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle? 2. Management de projet 2 pts Considérons le projet

Plus en détail

Développement d'une architecture pour l'implantation de stratégies de supervision pour les systèmes hybrides. Edgar Chacon LaSDAI

Développement d'une architecture pour l'implantation de stratégies de supervision pour les systèmes hybrides. Edgar Chacon LaSDAI Développement d'une architecture pour l'implantation de stratégies de supervision pour les systèmes hybrides Edgar Chacon LaSDAI Organisation de la présentation Description du group Projet: Développement

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail