Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Dimension: px
Commencer à balayer dès la page:

Download "Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes"

Transcription

1 Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction d Olivier BEAUMONT et d Yves ROBERT

2 Parallélisme et nouvelles plates-formes de calcul Pour répondre à une forte demande de calcul : utilisation simultanée de plusieurs ressources de calcul Évolution de plates-formes de calcul : super-calculateurs, grappes de calcul (cluster) moins coûteuses : réseau de stations grilles de calcul (grappes de grappes) Introduction 2/ 55

3 Parallélisme et nouvelles plates-formes de calcul Pour répondre à une forte demande de calcul : utilisation simultanée de plusieurs ressources de calcul Évolution de plates-formes de calcul : super-calculateurs, grappes de calcul (cluster) moins coûteuses : réseau de stations grilles de calcul (grappes de grappes) Introduction 2/ 55

4 Parallélisme et nouvelles plates-formes de calcul Pour répondre à une forte demande de calcul : utilisation simultanée de plusieurs ressources de calcul Évolution de plates-formes de calcul : super-calculateurs, grappes de calcul (cluster) moins coûteuses : réseau de stations grilles de calcul (grappes de grappes) Introduction 2/ 55

5 Parallélisme et nouvelles plates-formes de calcul Pour répondre à une forte demande de calcul : utilisation simultanée de plusieurs ressources de calcul Évolution de plates-formes de calcul : super-calculateurs, grappes de calcul (cluster) moins coûteuses : réseau de stations grilles de calcul (grappes de grappes) Introduction 2/ 55

6 Paralle lisme et nouvelles plates-formes de calcul Pour re pondre a une forte demande de calcul : utilisation simultane e de plusieurs ressources de calcul E volution de plates-formes de calcul : super-calculateurs, grappes de calcul (cluster) moins cou teuses : re seau de stations grilles de calcul (grappes de grappes) Introduction 2/ 55

7 Parallélisme et nouvelles plates-formes de calcul Pour répondre à une forte demande de calcul : utilisation simultanée de plusieurs ressources de calcul Évolution de plates-formes de calcul : super-calculateurs, grappes de calcul (cluster) moins coûteuses : réseau de stations grilles de calcul (grappes de grappes) tendances : hétérogénéité et dynamicité Introduction 2/ 55

8 Techniques traditionnelles d ordonnancement Modélisation : Applications : graphe de tâches Plate-forme de calcul : processeurs homogènes ou hétérogènes réseau de communication avec ou sans congestion Objectifs : X = D X allocation alloc(t ) : processeur traitant la tâche T ,5 15 C = A B D = C ,3 V = D T Y ordonnancement σ(t ) : date de début d exécution de T. temps d exécution total (Makespan) optimal Résultats : problème NP-complet pour des tâches indépendantes algorithmes d approximation (heuristiques de liste) Introduction 3/ 55

9 Techniques traditionnelles d ordonnancement Modélisation : Applications : graphe de tâches Plate-forme de calcul : processeurs homogènes ou hétérogènes réseau de communication avec ou sans congestion Objectifs : allocation alloc(t ) : processeur traitant la tâche T ordonnancement σ(t ) : date de début d exécution de T. temps d exécution total (Makespan) optimal Résultats : problème NP-complet pour des tâches indépendantes algorithmes d approximation (heuristiques de liste) P1 P2 P3 P4 Introduction 3/ 55

10 Techniques traditionnelles d ordonnancement Modélisation : Applications : graphe de tâches Plate-forme de calcul : processeurs homogènes ou hétérogènes réseau de communication avec ou sans congestion Objectifs : allocation alloc(t ) : processeur traitant la tâche T ordonnancement σ(t ) : date de début d exécution de T. temps d exécution total (Makespan) optimal P1 P2 P3 temps Résultats : problème NP-complet pour des tâches indépendantes algorithmes d approximation (heuristiques de liste) Introduction 3/ 55

11 Techniques traditionnelles d ordonnancement Modélisation : Applications : graphe de tâches Plate-forme de calcul : processeurs homogènes ou hétérogènes réseau de communication avec ou sans congestion Objectifs : allocation alloc(t ) : processeur traitant la tâche T ordonnancement σ(t ) : date de début d exécution de T. temps d exécution total (Makespan) optimal Résultats : problème NP-complet pour des tâches indépendantes algorithmes d approximation (heuristiques de liste) Introduction 3/ 55

12 Conception d ordonnancements efficaces Algorithme d approximation exemple : 3/2-approximation optimal : 2 secondes 3 secondes optimal : 2 heures 3 heures Algorithme asymptotiquement optimal exemple : T opt + O(1) optimal : 2 secondes 5 minutes + 2 secondes optimal : 2 heures 2 heures + 5 minutes On se concentre sur un seul des problèmes soulevés : concevoir des ordonnancements efficaces pour les plates-formes hétérogènes à grande échelle. On s intéresse à des plates-formes statiques. La dynamicité des plates-formes émergentes reste à prendre en compte... Introduction 4/ 55

13 Conception d ordonnancements efficaces Algorithme d approximation exemple : 3/2-approximation optimal : 2 secondes 3 secondes optimal : 2 heures 3 heures Algorithme asymptotiquement optimal exemple : T opt + O(1) optimal : 2 secondes 5 minutes + 2 secondes optimal : 2 heures 2 heures + 5 minutes On se concentre sur un seul des problèmes soulevés : concevoir des ordonnancements efficaces pour les plates-formes hétérogènes à grande échelle. On s intéresse à des plates-formes statiques. La dynamicité des plates-formes émergentes reste à prendre en compte... Introduction 4/ 55

14 Introduction au régime permanent L exemple du routage de paquets

15 Routage de paquets Problème P 3 P 5 P 1 P 2 P 4 D. Bertsimas & D. Gamarnik, «Asymptotically optimal algorithm for job shop scheduling and packet routing» Journal of Algorithms, Plusieurs ensembles de paquets à acheminer depuis leur source jusqu à leur destination Routage non fixé Les paquets d un même ensemble peuvent emprunter des chemins différents Un paquet parcourt une arête en temps 1 Une arête transporte un seul paquet à chaque instant Introduction Routage de paquets 6/ 55

16 Routage de paquets Problème P 3 P 5 P 1 P 2 P 4 D. Bertsimas & D. Gamarnik, «Asymptotically optimal algorithm for job shop scheduling and packet routing» Journal of Algorithms, Plusieurs ensembles de paquets à acheminer depuis leur source jusqu à leur destination Routage non fixé Les paquets d un même ensemble peuvent emprunter des chemins différents Un paquet parcourt une arête en temps 1 Une arête transporte un seul paquet à chaque instant Introduction Routage de paquets 6/ 55

17 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

18 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

19 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

20 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

21 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

22 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

23 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

24 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

25 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

26 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

27 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

28 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

29 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

30 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

31 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

32 Routage de paquets P 3 P 5 P 1 P 4 P 2 n k,l i,j : nombre total de paquets acheminés de k à l, transmis par l arête (i, j). Congestion : C i,j = (k,l) n k,l >0 n k,l i,j C max = max i,j C i,j C max : borne inférieure sur le temps total d exécution Introduction Routage de paquets 7/ 55

33 Routage de paquets Équations 1/2 P k P k 1 Paquets émis par une source : j (k,j) A 2 Paquets reçus par une destination : 3 Loi de conservation (nœud relais i) : i (i,j) A n k,l i,j = i (j,i) A n k,l j,i n k,l k,j = nk,l i (i,l) A n k,l i,l = n k,l (k, l), j k, j l Introduction Routage de paquets 8/ 55

34 Routage de paquets Équations 1/2 P k Pl 1 Paquets émis par une source : j (k,j) A 2 Paquets reçus par une destination : 3 Loi de conservation (nœud relais i) : i (i,j) A n k,l i,j = i (j,i) A n k,l j,i n k,l k,j = nk,l i (i,l) A n k,l i,l = n k,l (k, l), j k, j l Introduction Routage de paquets 8/ 55

35 Routage de paquets Équations 1/2 P i 1 Paquets émis par une source : j (k,j) A 2 Paquets reçus par une destination : 3 Loi de conservation (nœud relais i) : i (i,j) A n k,l i,j = i (j,i) A n k,l j,i n k,l k,j = nk,l i (i,l) A n k,l i,l = n k,l (k, l), j k, j l Introduction Routage de paquets 8/ 55

36 Routage de paquets Équations 2/2 4 Congestion C i,j = (k,l) n k,l >0 nk,l i,j 5 Fonction objective : C max C i,j, i, j Minimiser C max Programme linéaire en rationnels : résolu en temps polynomial Introduction Routage de paquets 9/ 55

37 Algorithme de routage 1 Calculer une solution optimale C max, n k,l i,j 2 Ordonnancement périodique : du programme linéaire On pose Ω = Cmax On utilise Cmax Ω périodes de durée Ω Pendant chaque période, l arête (i, j) transmet (au plus) n k,l m k,l i,j = i,j Ω paquets de k à l C max 3 Terminaison : on traite séquentiellement les paquets résiduels Ordonnancement valide, asymptotiquement optimal : C max C C max + O( C max ) Introduction Routage de paquets 10/ 55

38 Étude du régime permanent Principe : Relaxation de la fonction objective (temps d exécution débit) Nombres rationnels de paquets dans le programme linéaire Construction d un ordonnancement périodique Grand nombre de périodes obtention d un régime permanent Intérêt : Ordonnancement asymptotiquement optimal, adapté à : grands volumes de données applications constituées d un grand nombre de tâches indépendantes Permet aussi d obtenir une description plus compacte de l ordonnancement : période, décrite par intervalles au lieu de la route empruntée par chaque paquet Introduction Routage de paquets 11/ 55

39 Diffusion en régime permanent Position du problème et bibliographie Résolution efficace sous le modèle bidirectionnel Complexité sous le modèle unidirectionnel Heuristiques à un seul arbre Expérimentations

40 Diffusion en régime permanent Position du problème et bibliographie Résolution efficace sous le modèle bidirectionnel Complexité sous le modèle unidirectionnel Heuristiques à un seul arbre Expérimentations

41 Communications collectives en régime permanent Communication collective : opération de communication faisant intervenir plusieurs interlocuteurs Hypothèse de régime permanent : communications pipelinées un grand nombre de messages suivant le même schéma diffusion : distribution : multicast : réduction : Diffusion en régime permanent Introduction 13/ 55

42 Communications collectives en régime permanent Communication collective : opération de communication faisant intervenir plusieurs interlocuteurs Hypothèse de régime permanent : communications pipelinées un grand nombre de messages suivant le même schéma diffusion : distribution : multicast : réduction : Diffusion en régime permanent Introduction 13/ 55

43 Bibliographie Diffusion sur des architectures spécialisées homogènes (utilisation d arbres de diffusion concurrents) grille, tore hypercube graphe de De Bruijn réseaux pair-à-pair Topologies hétérogènes : optimisation d une diffusion bibliothèques de communication pour environnements hétérogènes (ECO, MagPIe, MPICH-G2,... ) NB : en optimisant le débit d une série de diffusions, on résout de façon asymptotique le problème de la diffusion d un message de grande taille Diffusion en régime permanent Introduction 14/ 55

44 Modèle de communications plate-forme : graphe G = (V, E, c) P 1, P 2,..., P n : machines (processeurs) P source (possède les données à diffuser) (P j, P k ) E : lien de communication enter pondération sur les arêtes : c(j, k)= temps d un transfert d un message de taille 1 de P j à P j congestion au niveau d une machine : modèle de communication un-port, avec 2 variantes : 10 P 4 P P bidirectionnel : un processeur peut émettre et reçoit un message à la fois unidirectionnel : un processeur peut émettre ou reçoit un message à la fois P 2 Diffusion en régime permanent Introduction 15/ 55

45 Modèle de communications plate-forme : graphe G = (V, E, c) P 1, P 2,..., P n : machines (processeurs) P source (possède les données à diffuser) (P j, P k ) E : lien de communication enter pondération sur les arêtes : c(j, k)= temps d un transfert d un message de taille 1 de P j à P j congestion au niveau d une machine : modèle de communication un-port, avec 2 variantes : bidirectionnel : un processeur peut émettre et reçoit un message à la fois unidirectionnel : un processeur peut émettre ou reçoit un message à la fois P 4 P 1 P 2 P 3 Diffusion en régime permanent Introduction 15/ 55

46 Modèle de communications plate-forme : graphe G = (V, E, c) P 1, P 2,..., P n : machines (processeurs) P source (possède les données à diffuser) (P j, P k ) E : lien de communication enter pondération sur les arêtes : c(j, k)= temps d un transfert d un message de taille 1 de P j à P j congestion au niveau d une machine : modèle de communication un-port, avec 2 variantes : bidirectionnel : un processeur peut émettre et reçoit un message à la fois P 4 P 1 bidirectionnel unidirectionnel : un processeur peut émettre ou reçoit un message à la fois P 2 P 3 Diffusion en régime permanent Introduction 15/ 55

47 Modèle de communications plate-forme : graphe G = (V, E, c) P 1, P 2,..., P n : machines (processeurs) P source (possède les données à diffuser) (P j, P k ) E : lien de communication enter pondération sur les arêtes : c(j, k)= temps d un transfert d un message de taille 1 de P j à P j congestion au niveau d une machine : modèle de communication un-port, avec 2 variantes : bidirectionnel : un processeur peut émettre et reçoit un message à la fois P 4 P 1 unidirectionnel unidirectionnel : un processeur peut émettre ou reçoit un message à la fois P 2 P 3 Diffusion en régime permanent Introduction 15/ 55

48 Diffusion en régime permanent Position du problème et bibliographie Résolution efficace sous le modèle bidirectionnel Complexité sous le modèle unidirectionnel Heuristiques à un seul arbre Expérimentations

49 Approche par programmation linéaire Adaptation de la méthode de Bertsimas et Gamarnik Quantités moyennes de messages transmis par unité de temps Débit = quantité moyenne reçue par chaque destination, par unité de temps Une source / plusieurs destinations On distingue tout de même la destination des messages : send(p i P j, k) : Nombre moyen de messages envoyés à destination de k, traversant l arête (P i, P j ) en une unité de temps. Diffusion en régime permanent Modèle bidirectionnel 17/ 55

50 Approche par programmation linéaire Adaptation de la méthode de Bertsimas et Gamarnik Quantités moyennes de messages transmis par unité de temps Débit = quantité moyenne reçue par chaque destination, par unité de temps Une source / plusieurs destinations On distingue tout de même la destination des messages : send(p i P j, k) : Nombre moyen de messages envoyés à destination de k, traversant l arête (P i, P j ) en une unité de temps. Diffusion en régime permanent Modèle bidirectionnel 17/ 55

51 Contraintes On peut écrire les mêmes contraintes que pour le routage de paquets : tous les messages sont émis par la source cible P k send(p source P j, k) = ρ (P source,p j ) E tous les messages sont reçus par une destination cible P k send(p j k, k) = ρ (P j,p k ) E conservation du nombre de messages cible P k, P i P k, P source send(p j P i, k) = send(p i P j, k) (P j,p i ) E (P i,p j ) E Diffusion en régime permanent Modèle bidirectionnel 18/ 55

52 Contraintes On peut écrire les mêmes contraintes que pour le routage de paquets : tous les messages sont émis par la source cible P k send(p source P j, k) = ρ (P source,p j ) E tous les messages sont reçus par une destination cible P k send(p j k, k) = ρ (P j,p k ) E conservation du nombre de messages cible P k, P i P k, P source send(p j P i, k) = send(p i P j, k) (P j,p i ) E (P i,p j ) E Diffusion en régime permanent Modèle bidirectionnel 18/ 55

53 Contraintes On peut écrire les mêmes contraintes que pour le routage de paquets : tous les messages sont émis par la source cible P k send(p source P j, k) = ρ (P source,p j ) E tous les messages sont reçus par une destination cible P k send(p j k, k) = ρ (P j,p k ) E conservation du nombre de messages cible P k, P i P k, P source send(p j P i, k) = send(p i P j, k) (P j,p i ) E (P i,p j ) E Diffusion en régime permanent Modèle bidirectionnel 18/ 55

54 Nombre de message sur une arête La distinction des messages par destination est fictive Quel est le nombre total de messages sur l arête (i, j)? s(p i P j ) = k send(p i P j, k)? Certains messages à destination de k et k sont en fait deux copies du même message : on ne veut pas les transmettre deux fois Hypothèse optimiste : s(p i P j ) = max {send(p i P j, k)} k il existe une destination k 0 (réalisant le max k ) telle que les messages envoyés vers toute autre destination k forment un sous-ensemble des messages envoyés à k 0 Pas de justification de cette hypothèse ici : on cherche d abord une majoration du débit, pas forcément réalisable Diffusion en régime permanent Modèle bidirectionnel 19/ 55

55 Nombre de message sur une arête La distinction des messages par destination est fictive Quel est le nombre total de messages sur l arête (i, j)? s(p i P j ) = k send(p i P j, k) non Certains messages à destination de k et k sont en fait deux copies du même message : on ne veut pas les transmettre deux fois Hypothèse optimiste : s(p i P j ) = max {send(p i P j, k)} k il existe une destination k 0 (réalisant le max k ) telle que les messages envoyés vers toute autre destination k forment un sous-ensemble des messages envoyés à k 0 Pas de justification de cette hypothèse ici : on cherche d abord une majoration du débit, pas forcément réalisable Diffusion en régime permanent Modèle bidirectionnel 19/ 55

56 Nombre de message sur une arête La distinction des messages par destination est fictive Quel est le nombre total de messages sur l arête (i, j)? s(p i P j ) = k send(p i P j, k) non Certains messages à destination de k et k sont en fait deux copies du même message : on ne veut pas les transmettre deux fois Hypothèse optimiste : s(p i P j ) = max {send(p i P j, k)} k il existe une destination k 0 (réalisant le max k ) telle que les messages envoyés vers toute autre destination k forment un sous-ensemble des messages envoyés à k 0 Pas de justification de cette hypothèse ici : on cherche d abord une majoration du débit, pas forcément réalisable Diffusion en régime permanent Modèle bidirectionnel 19/ 55

57 Nombre de message sur une arête La distinction des messages par destination est fictive Quel est le nombre total de messages sur l arête (i, j)? s(p i P j ) = k send(p i P j, k) non Certains messages à destination de k et k sont en fait deux copies du même message : on ne veut pas les transmettre deux fois Hypothèse optimiste : s(p i P j ) = max {send(p i P j, k)} k il existe une destination k 0 (réalisant le max k ) telle que les messages envoyés vers toute autre destination k forment un sous-ensemble des messages envoyés à k 0 Pas de justification de cette hypothèse ici : on cherche d abord une majoration du débit, pas forcément réalisable Diffusion en régime permanent Modèle bidirectionnel 19/ 55

58 Contrainte du modèle un-port Temps moyen d utilisation de l arête (P i, P j ) : T (i, j) = s(i j) c i,j Un processeur ne peut émettre deux message à la fois temps moyen d émission par unité de temps borné : P i T (i, j) 1 (P i,p j ) E Un processeur ne peut recevoir deux message à la fois temps moyen de réception par unité de temps borné : P i T (k, i) 1 (P k,p i ) E Diffusion en régime permanent Modèle bidirectionnel 20/ 55

59 Contrainte du modèle un-port Temps moyen d utilisation de l arête (P i, P j ) : T (i, j) = s(i j) c i,j Un processeur ne peut émettre deux message à la fois temps moyen d émission par unité de temps borné : P i T (i, j) 1 (P i,p j ) E Un processeur ne peut recevoir deux message à la fois temps moyen de réception par unité de temps borné : P i T (k, i) 1 (P k,p i ) E Diffusion en régime permanent Modèle bidirectionnel 20/ 55

60 Contrainte du modèle un-port Temps moyen d utilisation de l arête (P i, P j ) : T (i, j) = s(i j) c i,j Un processeur ne peut émettre deux message à la fois temps moyen d émission par unité de temps borné : P i T (i, j) 1 (P i,p j ) E Un processeur ne peut recevoir deux message à la fois temps moyen de réception par unité de temps borné : P i T (k, i) 1 (P k,p i ) E Diffusion en régime permanent Modèle bidirectionnel 20/ 55

61 Programme linéaire obtenu Maximiser ρ opt P k V cibles P k V cibles ( Pk V cibles, P i P i P k, P source (i, j) E, P i V, P i V, X send(p source P j, k) = ρ opt (P source,p j ) E X (P j,p k ) E send(p j P k, k) = ρ opt X send(p j P i, k) = X send(p i P j, k) (P j,p i ) E X (P i,p j ) E send(p i P j, k) c i,j T i,j P k V cibles X T i,j 1 (i,j) E X (j,i) E T j,i 1 P i, P j, P k V send(p i P j, k) 0 O(n 2 ) contraintes (non triviales) pour O(n 3 ) variables Diffusion en régime permanent Modèle bidirectionnel 21/ 55

62 Construction d un ensemble d arbres de débit optimal On cherche à atteindre la borne ρ opt calculé par le programme linéaire. G s = (V, E, s) : graphe dont les arêtes sont étiquetées par la valeur de s(p i P j ) dans une solution optimale du programme linéaire Propriété Dans G s, il existe un flot de valeur ρ opt de la source vers tout nœud. ρ opt est la valeur de la coupe minimale entre P source et tout autre sommet P i Diffusion en régime permanent Modèle bidirectionnel 22/ 55

63 Construction d un ensemble d arbres de débit optimal Version pondérée du théorème d Edmonds sur les arborescences Étant donné le graphe dirigé pondéré G s, on peut trouver un ensemble d arbres A 1,..., A k et un ensemble de poids x 1,... x k tels que k x it i G s et x i = ρ opt en temps fortement polynomial, et k V 3 + E. i Ce résultat permet d obtenir : un ensemble d arbres réalisant ρ opt, leur pondération le nombre d arbres est borné par V 3 + E Diffusion en régime permanent Modèle bidirectionnel 23/ 55

64 Exemple d extraction d arbres 1 Résultat du programme linéaire : P 0 P /2 1/2 P 1 1/ /2 P 2 = P 1 1 1/2 1/2 P 2 ρ opt = 1 1 P 3 P 4 P 3 P 4 2 Découpage en arbres (théorème d Edmonds) : = 1 2 P 1 P 0 P P 0 P 1 P 2 P 3 P 4 P 3 P 4 Diffusion en régime permanent Modèle bidirectionnel 24/ 55

65 Organisation des communications Équations du modèle un-port organisation des communications { un processeur pour les émissions P out processeur P i un processeur pour les réceptions P in P in source P out source G B : P1 in P1 out P2 int P2 out P3 in P3 out P in 4 P out 4 Ensemble de communications pouvant se faire simultanément : couplage dans le graphe biparti G B Diffusion en régime permanent Modèle bidirectionnel 25/ 55

66 Extraction de couplages Version pondérée du théorème de König Il est possible de décomposer G B en une somme pondérée de couplages, telles que la somme des pondérations est au plus égale au degré maximal d un nœud dans G B. nombre de couplages borné par E Le degré maximal d un nœud dans le graphe biparti dont les arêtes sont étiquetées par la valeur s(p i P j ) vaut 1 (d après les contraintes un-port). P1 in P3 in 1/2 1/2 P1 out 1/2 P3 out P in source P out source 1/2 1/2 P2 int P4 in P2 out 1/2 P4 out = 1 2 P1 in P3 in P1 out P3 out P in source P out source P2 int P4 in P2 out P4 out P1 in P3 in P1 out P3 out P in source P out source P2 int P4 in P2 out P4 out Diffusion en régime permanent Modèle bidirectionnel 26/ 55

67 Reconstruction d une période Quantités rationnelles de messages dans chaque couplage Durée de la période = PPCM des dénominateurs des quantités de messages dans chaque couplage Période découpée en intervalles représentant les couplages Affectation des transferts en respectant les dépendances (un processeur retransmet lors d une période les messages reçus à la période précédente) Liens t Ps P1 Ps P2 P1 P2 P2 P1 P1 P3 P2 P4 Diffusion en régime permanent Modèle bidirectionnel 27/ 55

68 Reconstruction d une période Quantités rationnelles de messages dans chaque couplage Durée de la période = PPCM des dénominateurs des quantités de messages dans chaque couplage Période découpée en intervalles représentant les couplages Affectation des transferts en respectant les dépendances (un processeur retransmet lors d une période les messages reçus à la période précédente) Liens t Ps P1 Ps P2 P1 P2 P2 P1 P1 P3 P2 P4 Diffusion en régime permanent Modèle bidirectionnel 27/ 55

69 Reconstruction d une période Quantités rationnelles de messages dans chaque couplage Durée de la période = PPCM des dénominateurs des quantités de messages dans chaque couplage Période découpée en intervalles représentant les couplages Affectation des transferts en respectant les dépendances (un processeur retransmet lors d une période les messages reçus à la période précédente) Liens t Ps P1 Ps P2 P1 P2 P2 P1 P1 P3 P2 P4 Diffusion en régime permanent Modèle bidirectionnel 27/ 55

70 Reconstruction d une période Quantités rationnelles de messages dans chaque couplage Durée de la période = PPCM des dénominateurs des quantités de messages dans chaque couplage Période découpée en intervalles représentant les couplages Affectation des transferts en respectant les dépendances (un processeur retransmet lors d une période les messages reçus à la période précédente) Liens t Ps P1 Ps P2 P1 P2 P2 P1 P1 P3 P2 P4 Diffusion en régime permanent Modèle bidirectionnel 27/ 55

71 Reconstruction d une période Période de l ordonnancement Quantités rationnelles de messages dans chaque couplage Durée Liensde la 2k période 2k = + 1 PPCM 2k des + 2 dénominateurs t des quantités de messages P s P 1 dans chaque couplage M 1 k Période découpée en intervalles représentant les couplages P s P 2 Mk 2 Affectation des transferts en respectant les dépendances (un processeur retransmet lors d une période les messages reçus à la période P 1 précédente) P 2 Mk 1 1 description d une période par intervalles P 2 P 1 M 2 k 1 P 1 P 3 M 1 k 1 M 2 k 2 P 2 P 4 M 1 k 2 M 2 k 1 Diffusion en régime permanent Modèle bidirectionnel 27/ 55

72 Résultats sous le modèle bidirectionnel Pour la diffusion de messages ordonnancement périodique de débit optimal asymptotiquement optimal pour le temps d exécution description compacte (période décrite par intervalles) Extension à d autres primitives de communications collectives : Étude similaire pour la réduction, la distribution Par contre le multicast (diffusion restreinte) est NP-complet, et non-apx Diffusion en régime permanent Modèle bidirectionnel 28/ 55

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Allocation de ressources pour réseaux virtuels Projet de fin d études. Mikaël Capelle. Marie-José Huguet Slim Abdellatif Pascal Berthou

Allocation de ressources pour réseaux virtuels Projet de fin d études. Mikaël Capelle. Marie-José Huguet Slim Abdellatif Pascal Berthou Allocation de ressources pour réseaux virtuels Projet de fin d études Mikaël Capelle Marie-José Huguet Slim Abdellatif Pascal Berthou 27 Juin 2014 Plan 1 Introduction - La virtualisation de réseau 2 3

Plus en détail

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Applications #2 Problème du voyageur de commerce (TSP)

Applications #2 Problème du voyageur de commerce (TSP) Applications #2 Problème du voyageur de commerce (TSP) MTH6311 S. Le Digabel, École Polytechnique de Montréal H2014 (v2) MTH6311: Heuristiques pour le TSP 1/34 Plan 1. Introduction 2. Formulations MIP

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

CORBA haute performance

CORBA haute performance CORBA haute performance «CORBA à 730Mb/s!» Alexandre DENIS PARIS/IRISA, Rennes Alexandre.Denis@irisa.fr Plan Motivations : concept de grille de calcul CORBA : concepts fondamentaux Vers un ORB haute performance

Plus en détail

Factorisation des matrices creuses

Factorisation des matrices creuses Chapitre 5 Factorisation des matrices creuses 5.1 Matrices creuses La plupart des codes de simulation numérique en mécanique des fluides ou des structures et en électromagnétisme utilisent des discrétisations

Plus en détail

THÈSE L UNIVERSITÉ BORDEAUX I

THÈSE L UNIVERSITÉ BORDEAUX I THÈSE présentée à L UNIVERSITÉ BORDEAUX I ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D INFORMATIQUE Par Hejer REJEB POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : Informatique Étude des problèmes d ordonnancement

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments A- 0/0 Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com

Plus en détail

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie

Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation

Plus en détail

Ordonnancement Temps Réel. Emmanuel GROLLEAU & Pascal RICHARD LISI/ENSMA {grolleau,richardp}@ensma.fr

Ordonnancement Temps Réel. Emmanuel GROLLEAU & Pascal RICHARD LISI/ENSMA {grolleau,richardp}@ensma.fr Ordonnancement Temps Réel Emmanuel GROLLEAU & Pascal RICHARD LISI/ENSMA {grolleau,richardp}@ensma.fr 2 Plan de la présentation 1. Introduction aux systèmes temps réel 1.1 Différents modèles de tâches 1.2

Plus en détail

Deuxième partie II ALGORITHMES DANS LES GRAPHES

Deuxième partie II ALGORITHMES DANS LES GRAPHES Deuxième partie II ALGORITHMES DANS LES GRAPHES Représentation des graphes Représentation en mémoire : matrice d incidence / Matrice d incidence Soit G = (, E) graphe simple non orienté avec n = et m =

Plus en détail

Contributions à l expérimentation sur les systèmes distribués de grande taille

Contributions à l expérimentation sur les systèmes distribués de grande taille Contributions à l expérimentation sur les systèmes distribués de grande taille Lucas Nussbaum Soutenance de thèse 4 décembre 2008 Lucas Nussbaum Expérimentation sur les systèmes distribués 1 / 49 Contexte

Plus en détail

Nouvelles méthodes pour l ordonnancement sur

Nouvelles méthodes pour l ordonnancement sur Université de Bordeaux I Laboratoire Bordelais de Recherche en Informatique HABILITATION À DIRIGER DES RECHERCHES au titre de l école doctorale de Mathématiques et Informatique de Bordeaux par Monsieur

Plus en détail

Recommandation dans les réseaux sociaux professionnels

Recommandation dans les réseaux sociaux professionnels Recommandation dans les réseaux sociaux professionnels Application sur un réseau bibliographique 6 mai 2010 Objectif et Motivation Techniques utilisées Algorithme exhaustive de recherche de toutes les

Plus en détail

Table des matières I La programmation linéaire en variables continues 1 Présentation 3 1 Les bases de la programmation linéaire 5 1.1 Formulation d'un problème de programmation linéaire........... 5 1.2

Plus en détail

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines

Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines Résolution d un problème de Job-Shop intégrant des contraintes de Ressources Humaines ROADEF 09, 10-12 février 2009, Nancy (France) O. Guyon 1.2, P. Lemaire 2, É. Pinson 1 et D. Rivreau 1 1 LISA - Institut

Plus en détail

Parallélisme et Répartition

Parallélisme et Répartition Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique baude@unice.fr web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Evaluation des performances de programmes parallèles haut niveau à base de squelettes

Evaluation des performances de programmes parallèles haut niveau à base de squelettes Evaluation des performances de programmes parallèles haut niveau à base de squelettes Enhancing the Performance Predictability of Grid Applications with Patterns and Process Algebras A. Benoit, M. Cole,

Plus en détail

Dossier de candidature à un poste de CR2 concours 07/03

Dossier de candidature à un poste de CR2 concours 07/03 Dossier de candidature à un poste de CR2 concours 07/03 Loris Marchal Laboratoire de l Informatique du Parallélisme UMR CNRS-ENS Lyon-UCB Lyon-INRIA 5668 École Normale Supérieure de Lyon Contenu du dossier

Plus en détail

Algorithmique distribuée d exclusion mutuelle : vers une gestion efficace des ressources

Algorithmique distribuée d exclusion mutuelle : vers une gestion efficace des ressources Algorithmique distribuée d exclusion mutuelle : vers une gestion efficace des ressources Jonathan Lejeune LIP6-UPMC/CNRS, Inria 19 septembre 2014 Directeur : Pierre Sens Encadrants : Luciana Arantes et

Plus en détail

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration Julien MATHEVET Alexandre BOISSY GSID 4 Rapport Load Balancing et migration Printemps 2001 SOMMAIRE INTRODUCTION... 3 SYNTHESE CONCERNANT LE LOAD BALANCING ET LA MIGRATION... 4 POURQUOI FAIRE DU LOAD BALANCING?...

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Titre. Ordonnancement sur plates-formes hétérogènes de tâches partageant des données

Titre. Ordonnancement sur plates-formes hétérogènes de tâches partageant des données Laboratoire des Sciences de l Image, de l Informatique et de la Télédétection UMR CNRS-ULP 7005 Équipe Image et Calcul Parallèle Scientifique Thèse présentée pour obtenir le grade de Docteur de l Université

Plus en détail

Planifica(on du stockage intermédiaire dans l industrie du shampoing

Planifica(on du stockage intermédiaire dans l industrie du shampoing dans l industrie du shampoing R. Belaid, V. T kindt, C. Esswein, rabah.belaid@etu.univ-tours.fr Université François Rabelais Tours Laboratoire d Informatique 64 avenue Jean Portalis, 37200, Tours Journées

Plus en détail

Administration réseau Routage et passerelle

Administration réseau Routage et passerelle Administration réseau Routage et passerelle A. Guermouche A. Guermouche Cours 2 : Routage et passerelle 1 Plan 1. Introduction 2. Routage dans IP Principes de base Manipulation des tables de routage 3.

Plus en détail

et techniques d ordonnancement : approches statiques et dynamiques

et techniques d ordonnancement : approches statiques et dynamiques ÉCOLE NORMALE SUPÉRIEURE DE LYON Laboratoire de l Informatique du Parallélisme THÈSE pour obtenir le grade de Docteur de l École Normale Supérieure de Lyon spécialité : Informatique au titre de l école

Plus en détail

Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi

Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi Ordonnancement avec exclusion mutuelle par un graphe d intervalles ou d une classe apparentée : complexité et algorithmes ~ Frédéric Gardi - 14 Juin 2005 - - Faculté des Sciences de Luminy - 1. Introduction

Plus en détail

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07

Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1. Rapport de recherche LIMOS/RR-13-07 Introduction au Branch Cut and Price et au solveur SCIP (Solving Constraint Integer Programs) Hélène Toussaint 1 Rapport de recherche LIMOS/RR-13-07 19 avril 2013 1. helene.toussaint@isima.fr Résumé Ce

Plus en détail

Besoin de concevoir des systèmes massivement répartis. Comment tester le système? Solution. Évaluation de systèmes répartis à large échelle

Besoin de concevoir des systèmes massivement répartis. Comment tester le système? Solution. Évaluation de systèmes répartis à large échelle Besoin de concevoir des systèmes massivement répartis. Évaluation de systèmes répartis à large échelle Sergey Legtchenko Motivation : LIP6-INRIA Tolérance aux pannes Stockage de données critiques Coût

Plus en détail

Routage, Allocations de Ressources et Équilibres.

Routage, Allocations de Ressources et Équilibres. Routage, Allocations de Ressources et Équilibres. Johanne Cohen Johanne.Cohen@loria.fr CNRS, Laboratoire LORIA, Nancy. Routage, Allocations de Ressources et Équilibres. p.1/23 Jeu Ciseaux/Papier/Caillou.

Plus en détail

Modélisation et résolution du problème de transport de gaz: application au réseau principal français

Modélisation et résolution du problème de transport de gaz: application au réseau principal français Modélisation et résolution du problème de transport de gaz: application au réseau principal français Présentation des travaux de thèse GDF SUEZ - INPT - ENSIACET - LGC EMN 24 mars 2011 Le gaz en Europe

Plus en détail

Optimisation for Cloud Computing and Big Data

Optimisation for Cloud Computing and Big Data 1 / 23 Optimisation for Cloud Computing and Big Data Olivier Beaumont, Lionel Eyraud-Dubois 2 / 23 Aujourd hui Problèmes de fiabilité on va oublier la dynamicité Placement de VMs en programmation par contraintes

Plus en détail

Analyse et mesure de performances du calcul distribué

Analyse et mesure de performances du calcul distribué Analyse et mesure de performances du calcul distribué Mohsine Eleuldj Département Génie Informatique, EMI eleuldj@emi.ac.ma CruCID Workshop, EMI, Rabat, 5 au 7 juillet 1999 Motivation Types d applications

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Réseaux grande distance

Réseaux grande distance Chapitre 5 Réseaux grande distance 5.1 Définition Les réseaux à grande distance (WAN) reposent sur une infrastructure très étendue, nécessitant des investissements très lourds. Contrairement aux réseaux

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

Routage dynamique et protocoles de routage. Claude Chaudet Xavier Misseri

Routage dynamique et protocoles de routage. Claude Chaudet Xavier Misseri Routage dynamique et protocoles de routage Claude Chaudet Xavier Misseri Principe du routage Configurer les tables de routage (des routeurs) afin que les paquets empruntent le meilleur chemin disponible

Plus en détail

optimisation robuste de réseaux de télécommunications

optimisation robuste de réseaux de télécommunications optimisation robuste de réseaux de télécommunications Orange Labs Laboratoire Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne Olivier Klopfenstein thèse effectuée sous la direction de

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

Interconnexion des réseaux - Routage

Interconnexion des réseaux - Routage Interconnexion des réseaux - Routage Concept de l interconnexion Équipement de la couche 3 - Domaine de broadcast Détermination du chemin Routage Table de routage Algorithmes de routage statiques et dynamiques

Plus en détail

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes Chapitre 7 Problèmes de flots. 7.1 Exemple. Un réseau electrique est formé de lignes reliant des noeuds (transformateurs, centre de redistributions,...), chaque ligne a une capacité de transport maximale.

Plus en détail

Allocation de tâches et théorie des jeux. p. Allocation des tâches. 1) Allocation de tâches.

Allocation de tâches et théorie des jeux. p. Allocation des tâches. 1) Allocation de tâches. Allocation de tâches et théorie des jeux. Johanne ohen Johanne.ohen@loria.fr 1) Allocation de tâches. 1. Définition sous forme d un jeu. 2. Existence d un équilibre de Nash Allocation des tâches. m machines

Plus en détail

Projet OpNet. Spécialité Réseaux 2003/2004 Yannick GRENZINGER Loic JAQUEMET

Projet OpNet. Spécialité Réseaux 2003/2004 Yannick GRENZINGER Loic JAQUEMET Projet OpNet Spécialité Réseaux 2003/2004 Yannick GRENZINGER Loic JAQUEMET 1Présentation...3 1.1Le besoin de mobilité...3 1.2Le protocole IP Mobile...4 1.3Opnet...5 1.4Le projet...6 2La réalisation du

Plus en détail

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué

Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Séminaire du LGI Centrale Paris Livraison de colis pour des clients du e-commerce : modèles de Wardrop, et Logit simple ou imbriqué Y. Hayel 1, D. Quadri 2, T. Jimenez 1, L. Brotcorne 3, B. Tousni 3 LGI,

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Le placement

Aspects théoriques et algorithmiques du calcul réparti Le placement Aspects théoriques et algorithmiques du calcul réparti Le placement Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com Aspects théoriques

Plus en détail

INTRODUCTION A L OPTIMISATION

INTRODUCTION A L OPTIMISATION INTRODUCTION A L OPTIMISATION Les domaines d application L optimisation est essentiellement un outil d aide à la décision au sein de l entreprise, mais aussi pour des individus. Le terme optimal est souvent

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Le placement

Aspects théoriques et algorithmiques du calcul réparti Le placement Aspects théoriques et algorithmiques du calcul réparti Le placement Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com Aspects théoriques

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

LOSS NETWORK MODELS AND MULTIPLE METRIC PERFORMANCE SENSITIVITY ANALYSIS FOR MOBILE WIRELESS MULTI-HOP NETWORKS HOANG TUAN NHA DINH HONG THANH

LOSS NETWORK MODELS AND MULTIPLE METRIC PERFORMANCE SENSITIVITY ANALYSIS FOR MOBILE WIRELESS MULTI-HOP NETWORKS HOANG TUAN NHA DINH HONG THANH LOSS NETWORK MODELS AND MULTIPLE METRIC PERFORMANCE SENSITIVITY ANALYSIS FOR MOBILE WIRELESS MULTI-HOP NETWORKS GROUPE 4: LANG KHAC CHIEN HOANG TUAN NHA DINH HONG THANH Plan de presentation Introduction

Plus en détail

TD2 : CORRECTION. Exercice 1 : 1. Quel est l avantage de la séparation de l adressage en deux parties dans l adressage Internet?

TD2 : CORRECTION. Exercice 1 : 1. Quel est l avantage de la séparation de l adressage en deux parties dans l adressage Internet? TD2 : CORRECTION I. connaître son environnement réseau a. Quelle est l adresse IPv4 de votre PC? l adresse IPv6? ipconfig : Adresse IPv4..............: 192.168.1.13 Masque de sous-réseau.... : 255.255.255.0

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

ÉCOLE DOCTORALE MATHÉMATIQUES ET INFORMATIQUE MASTER 2 RECHERCHE : SYSTÈMES ET LOGICIELS Projet présenté par : Jean-Denis Lesage

ÉCOLE DOCTORALE MATHÉMATIQUES ET INFORMATIQUE MASTER 2 RECHERCHE : SYSTÈMES ET LOGICIELS Projet présenté par : Jean-Denis Lesage Université Joseph Fourier U.F.R Informatique & Mathématiques Appliquées Institut National Polytechnique de Grenoble ENSIMAG I.M.A.G. ÉCOLE DOCTORALE MATHÉMATIQUES ET INFORMATIQUE MASTER 2 RECHERCHE : SYSTÈMES

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Simulation des réseaux de capteurs sans fil de grande taille

Simulation des réseaux de capteurs sans fil de grande taille Simulation des réseaux de capteurs sans fil de grande taille Cheick-Tidjane KONE Directeurs: Francis LEPAGE Co-encadrant : Michael DAVID Journée thématique RGE Jeudi 3 juin 2010 Qu est-ce qu un réseau

Plus en détail

Page 1 2 La présente invention concerne le domaine des architectures informatiques, et en particulier un procédé pour le développement d applications destiné à un fonctionnement en réseau, par exemple

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Table des matières. Cours Système d Exploitation. Chapitre II : Gestion des processus

Table des matières. Cours Système d Exploitation. Chapitre II : Gestion des processus Chapitre II : Gestion des processus Table des matières I Processus et contexte d un processus 2 II État d un processus 3 III Système d exploitation multi-tâches et parallélisme 3 IV Problèmes dues au multi-tâches

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Quelques problèmes NP-complets

Quelques problèmes NP-complets Chapitre 12 Quelques problèmes NP-complets Maintenant que nous connaissons la NP-complétude d au moins un problème (SAT), nous allons montrer qu un très grand nombre de problèmes sont NP-complets. Le livre

Plus en détail

1 Etude des propriétés d un réseau de Petri

1 Etude des propriétés d un réseau de Petri UNIVERSITE DE CAEN U.F.R. de SCIENCES 1 ière session 2005 Master EEA 1A, Pro AEII et recherche ESCI Examen: Réseaux de Petri AE406T2 durée: 1h30 Responsable : G. Scorletti Chaque candidat doit, au début

Plus en détail

Algorithmique dans les systèmes distribués - Elec9on de leader -

Algorithmique dans les systèmes distribués - Elec9on de leader - Algorithmique dans les systèmes distribués - Elec9on de leader - Eddy Caron 03 M. ENS- Lyon Quelques algorithmes distribués Quelques méthodes générales d approche Principe général: introduire des contraintes

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Couplages et colorations d arêtes

Couplages et colorations d arêtes Couplages et colorations d arêtes Complément au chapitre 5 «Une employée mécontente» et au chapitre 9 «L apprentie sudokiste» Considérons n équipes de hockey qui doivent s affronter lors d un tournoi.

Plus en détail

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA 75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 1 - Introduction Qu est-ce qu un

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

Examen de Réseau Licence Licence GMI Maîtrise (Tous documents autorisés)

Examen de Réseau Licence Licence GMI Maîtrise (Tous documents autorisés) Examen de Réseau Licence Licence GMI Maîtrise (Tous documents autorisés) Contexte du sujet : Une entreprise spécialisée dans la production de matériel de mesure et d analyse météorologique propose des

Plus en détail

Comparaison de modèles mathématiques et implémentation d une métaheuristique pour le Master Surgical Scheduling Problem

Comparaison de modèles mathématiques et implémentation d une métaheuristique pour le Master Surgical Scheduling Problem École Polytechnique de l Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr Département Informatique 5 e année 2013-2014 Rapport de Projet

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)

Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2) Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter

Plus en détail

Multiplication par une constante entière

Multiplication par une constante entière Multiplication par une constante entière Vincent Lefèvre Juin 2001 Introduction But : générer du code optimal à l aide d opérations élémentaires (décalages vers la gauche, additions, soustractions). Utile

Plus en détail

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance

Ensimag 2A. Rapport de TER. Application de la Recherche Opérationnelle à la Finance Ensimag 2A Rapport de TER Application de la Recherche Opérationnelle à la Finance Elève : Yuefei HUANG Tuteur : Zoltán SZIGETI Mai, 2010 2 Sommaire 1. Introduction... 3 2. Le marché des changes et arbitrage...

Plus en détail

Le problème du flot maximal avec contraintes sur le nombre de chemins

Le problème du flot maximal avec contraintes sur le nombre de chemins Le problème du flot maximal avec contraintes sur le nombre de chemins Jérôme Truffot, Christophe Duhamel, Philippe Mahey jerome.truffot@isima.fr, christophe.duhamel@isima.fr, philippe.mahey@isima.fr LIMOS,

Plus en détail

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Ebauche Rapport finale

Ebauche Rapport finale Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Programme de la 3ème année

Programme de la 3ème année Programme de la 3ème année de la licence informatique Recopié du Syllabus L3 Informatique. 2003-2004 (UPS Toulouse) Algorithmes, Types de données et preuves (84h) Objectif : Approfondir l'algorithmique

Plus en détail

Introduction. La gestion des qualités de services dans Internet. La garantie de QoS. Exemple

Introduction. La gestion des qualités de services dans Internet. La garantie de QoS. Exemple Introduction Aujourd hui les applications (en particulier multimédia) nécessitent des qualités de service de natures très différentes La gestion des qualités de services dans Internet Exemples: Transfert

Plus en détail

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt

Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut

Plus en détail

2.3.3 Protocole CDP (Cisco Discovery Protocol)

2.3.3 Protocole CDP (Cisco Discovery Protocol) 2.3.3 Protocole CDP (Cisco Discovery Protocol) Examinez la présentation. Quels sont les deux réseaux, auxquels sont destinés les paquets, qui nécessitent que le routeur effectue une recherche récursive?

Plus en détail

TD7 Réseau IP, DNS, ARP, routage, transport {Nicolas.Ollinger, Emmanuel.Godard, Yann.Esposito}@lif.univ-mrs.fr 24 novembre 2004

TD7 Réseau IP, DNS, ARP, routage, transport {Nicolas.Ollinger, Emmanuel.Godard, Yann.Esposito}@lif.univ-mrs.fr 24 novembre 2004 TD7 Réseau IP, DNS, ARP, routage, transport {Nicolas.Ollinger, Emmanuel.Godard, Yann.Esposito}@lif.univ-mrs.fr 4 novembre 004 Internet peut-être vu comme un réseau de sous-réseaux hétérogènes. Le ciment

Plus en détail

Quelques perspectives pour la programmation mathématique en commande robuste

Quelques perspectives pour la programmation mathématique en commande robuste Quelques perspectives pour la programmation mathématique en commande robuste P. Apkarian, D. Arzelier, D. Henrion, D. Peaucelle UPS - CERT - LAAS-CNRS Contexte de la commande robuste 2 Théorie de la complexité

Plus en détail

Cours d introduction aux réseaux informatiques Année académique 2010-2011 Interrogation finale de première session Juin 2011

Cours d introduction aux réseaux informatiques Année académique 2010-2011 Interrogation finale de première session Juin 2011 Cours d introduction aux réseaux informatiques Année académique 00-0 Interrogation finale de première session Juin 0 Remettez une feuille par question même si vous ne répondez pas à la question. Indiquez

Plus en détail

Master Informatique Fondamentale - M1 Compilation

Master Informatique Fondamentale - M1 Compilation Master Informatique Fondamentale - M1 Compilation Analyse Statique Paul Feautrier ENS de Lyon Paul.Feautrier@ens-lyon.fr perso.ens-lyon.fr/paul.feautrier 12 mai 2007 1 / 38 Indécidabilité de la Terminaison

Plus en détail

LOSLIER Mathieu IR1 31 Mai 2011. Rapport TP Firewall

LOSLIER Mathieu IR1 31 Mai 2011. Rapport TP Firewall Rapport TP Firewall 1 Table des matières Rapport TP Firewall... 1 Introduction... 3 1. Plate-forme de sécurité étudiée... 3 2. Routage classique... 3 2.1 Mise en œuvre du routage classique... 4 2.2 Configuration

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail