Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle"

Transcription

1 Probabilités classiques Mathématiques discrètes Théorie des probabilités Cours 31, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 7 novembre 00, Sudbury Une expérience aléatoire (ou tout simplement expérience) est une action ou procédure qui produit un des résultats possibles d un ensemble donné de résultats possibles. Un résultat est une issue possible d un simple essai d une expérience aléatoire. Un événement E est n importe quel sous-ensemble de résultats de l ensemble fondamental S de tous les résultats possibles. On suppose que chaque résultat, de l ensemble fondamental de tous les résultats, est équiprobable, c est-à-dire, que tous les résultats ont la même probabilité de se réaliser. La probabilité p(e) d un événement E, qui est un sous-ensemble de l ensemble fondamental fini S de résultats équiprobables, est p(e) = E S. Affectation de probabilités Distribution uniforme Soit S l ensemble fondamental d une expérience aléatoire qui est composée de n résultats possibles, disons x 1, x,..., x n. On attribue une probabilité p(x i ) à chacun des résultats x i, i = 1,,...,n. Il faut que les deux conditions suivantes soient satisfaites : i) 0 p(x i ) 1, pour chaque résultat x i. Cette condition énonce que la probabilité de chaque résultat est égale à un nombre réel non négatif qui n est pas plus grand que 1. ii) n i=1 p(x i) = 1. Cette condition énonce que la somme des probabilités doit être égale à 1. Supposons que l ensemble fondamental S est composé de n éléments. Une distribution uniforme est une fonction de probabilité qui assigne la probabilité 1/n à chaque élément de S. Note : La fonction p de l ensemble de tous les résultats possibles vers l intervalle [0, 1] est appelée distribution de probabilité.

2 Probabilité d un événement Combinaisons d événements La probabilité d un événement E est la somme des probabilités des résultats dans E. Autrement dit, si E = {x 1, x,...,x m } S, alors p(e) = m p(x i ). i=1 Avec cette nouvelle définition des probabilités, les théorèmes de la section précédente sont toujours valides. p(e) = 1 p(e) et p(e) = 1 p(e) Quand deux événements E 1 et E de la même expérience aléatoire sont mutuellement exclusifs, la probabilité que E 1 ou E se réalisent est p(e 1 E ) = p(e 1 ) + p(e ). Combinaisons d événements Probabilité conditionnelle Si les événements E 1, E,..., de la même expérience aléatoire, est une suite d événement mutuellement exclusifs deux à deux, alors ( ) p E i = p(e i ). i i Quand deux événements E 1 et E ne sont pas mutuellement exclusifs, la probabilité que E 1 ou E se réalisent est p(e 1 E ) = p(e 1 ) + p(e ) p(e 1 E ). Soit E et D des événements avec p(d) > 0. La probabilité conditionnelle de E étant donné D, notée p(e D), est définie par p(e D) = p(e D). p(d) En général, pour trouver la probabilité conditionnelle de E étant donné que l événement D s est réalisé, on utilise D comme ensemble fondamental. Dans ce cas, pour qu un résultat de E se produise, il faut que ce résultat soit également dans D.

3 Événements indépendants Expérience de Bernoulli Si p(e D), qui est la probabilité conditionnelle de E sachant D, est égale à p(e), alors le fait que D se réalise ou pas ne change pas la probabilité de E. Dans ce cas, E et D sont des événements indépendants. Les événements E et D sont indépendants si et seulement si p(e D) = p(e)p(d). Il existe plusieurs expériences aléatoires qui se conforment exactement ou presque à cette liste de conditions : 1. L expérience aléatoire est composée de n essais, où le nombre d essais n est fixé à l avance.. Les essais sont identiques. Chaque essai peut produire seulement deux résultats, ou peut être réduit à deux résultats. Ces deux résultats sont soit un succès, soit un échec. 3. Les essais sont indépendants, le résultat de n importe quel essai en particulier n a aucune influence sur le résultat de n importe quel autre essai. 4. Le probabilité de succès est constante d essais en essais. Une expérience aléatoire pour laquelle les conditions 1 à 4 sont satisfaites est appelée expérience de Bernoulli ou expérience binomiale. Notation Probabilités binomiales p(s) Le symbole pour la probabilité d un succès. p(e) Le symbole pour la probabilité d un échec. p La probabilité d un succès. p = p(s). q La probabilité d un échec. q = 1 p = p(e). n Le nombre d essais. k Le nombre de succès parmi les n essais. Notez que 0 k n. n k Le nombre d échecs parmi les n essais. Dans une expérience binomiale avec une probabilité de succès p (et donc une probabilité d échec q = 1 p), la probabilité de k succès dans n essais (et donc de n k échecs) est p(k) = C(n, k) p k q n k = n! (n k)! k! pk q n k = b(k; n, p).

4 Pile ou face Pile ou face probabilités binomiales Une pièce est lancée trois fois. Trouver la probabilité d avoir exactement deux faces. Solution : Ce problème peut être résolue à l aide des probabilités classiques. S = {FFF, FFP, FPF, FPP, PFF, PFP, PPF, PPP} Il y a trois façons d obtenir exactement deux faces. La réponse est 3/ ou Il y a un nombre fixé d essais (trois).. Il y a seulement deux résultats possibles pour chaque essai. 3. Les essais sont indépendants les uns des autres. 4. La probabilité de succès (avoir une face) est de 1/ pour chaque essai. Dans ce cas, le nombre d essais est n = 3, le nombre de succès est k =, la probabilité d un succès est p = 0.5 et la probabilité d un échec est q = 1 p = 0.5. En substituant dans la formule, on obtient p( = b(; 3, 0.5) = 3! (3!! ( 1 ) ( 1 ) 1 = = 3 = ce qui est la même réponse obtenue qu au transparent précédent. Distribution binomiale Garçons et filles On note b(k; n, p) la probabilité d obtenir k succès parmi n essais indépendants de Bernoulli avec une probabilité de succès p et une probabilité d échec q = 1 p. Considérée comme une fonction de k, cette fonction est appelée distribution binomiale. k p(k)c(3,0) ( 1 0 ( 1 3 ( C(3,1) 1 1 ( 1 ( C(3, 1 ( 1 1 ( C(3,3) 1 3 ( 1 p(k) p(k) ) 0 Supposons que la probabilité d avoir un garçon est de 0.51 (et donc que la probabilité d avoir une fille est de 0.49) et que le sexe des enfants nés dans une famille est indépendant les une des autres. Quelle est la probabilité que dans une famille de cinq enfants il y ait exactement 3 garçons? Solution : Supposons que d avoir un garçon soit un succès avec une probabilité de p = 0.51 et avoir une fille soit un échec avec une probabilité de q = Le nombre d essais est de n = 5 pour ce problème. On demande pour le probabilité d avoir k = 3 succès. p(3) = b(3; 5, 0.51) = C(5, 3)

5 Garçons et filles (suite) Garçons et filles (suite) Quelle est la probabilité qu une famille de cinq enfants ait au moins un garçon? Solution : Il y aura au moins un garçon s il n y a pas juste des filles. La probabilité d avoir juste des filles est C(5, 0) = = , et donc la réponse est Quelle est la distribution de probabilité de la variable k = nombre de garçons pour une famille de cinq enfants? k p(k) p(k) p(k) 0 C(5, 0) C(5, 1) C(5, C(5, 3) C(5, 4) C(5, 5) k=0 p(k) = 1 Variable aléatoire Variable aléatoire Une variable aléatoire est une fonction de l ensemble fondamental d une expérience aléatoire vers l ensemble des nombres réels. Autrement dit, une variable aléatoire affecte un nombre réel à chaque résultat possible. Note : Une variable aléatoire est une fonction. Elle ni une variable, ni aléatoire! Une variable aléatoire est une fonction de l ensemble fondamental d une expérience aléatoire vers l ensemble des nombres réels. Expérience aléatoire : Lancer deux pièces. Ensemble fondamental : S = {(F, F), (F, P), (P, F), (P, P)} Variable aléatoire X 1 = nombre de faces. Variable aléatoire X = nombre de piles. Variable aléatoire X 3 = 1 si les deux côtés sont les mêmes, 0 sinon. Résultat de S (F, F) (F, P) (P, F) (P, P) Variable aléatoire X Variable aléatoire X Variable aléatoire X

6 Variable aléatoire Espérance mathématique Une variable aléatoire est une fonction de l ensemble fondamental d une expérience aléatoire vers l ensemble des nombres réels. Expérience aléatoire : Lancer un dé. Ensemble fondamental : S = {1,, 3, 4, 5, 6} Variable aléatoire X 1 = 1 si paire, 0 si impaire. Variable aléatoire X =.5 si égal à 6, 0 sinon. Variable aléatoire X 3 = résultat. Résultat de S Variable aléatoire X Variable aléatoire X Variable aléatoire X L espérance mathématique E(X) de la variable aléatoire X(s) définie dans l ensemble fondamental S = {s 1, s,...,s n } est égale à E(X) = n p(s i )X(s i ). i=1

Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F

Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F Mathématiques discrètes Probabilités discrètes Cours 30, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 27 novembre 2008, Sudbury Julien Dompierre

Plus en détail

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2

Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2 Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles 22 Probabilités conditionnelles Ω, B, P est un espace probabilisé. 22. Définition et propriétés des probabilités conditionnelles Considérons l expérience aléatoire qui consiste à lancer deux fois un dé

Plus en détail

Les probabilités dans nos familles

Les probabilités dans nos familles Les probabilités dans nos familles en groupe-classe en équipe individuelle Activité 2 Au cours de cette activité, l élève construit un diagramme en arbre dans le but de trouver les différentes combinaisons

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Probabilité mathématique et distributions théoriques

Probabilité mathématique et distributions théoriques Probabilité mathématique et distributions théoriques 3 3.1 Notion de probabilité 3.1.1 classique de la probabilité s Une expérience ou une épreuve est dite aléatoire lorsqu on ne peut en prévoir exactement

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers première question supplémentaire. Cette méthode mène à une variable aléatoire suivant la loi binomiale. Copie n 5 : ce groupe résout très rapidement la question en considérant l'événement contraire! Heureusement

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Les espaces vectoriels

Les espaces vectoriels Agrégation interne UFR MATHÉMATIQUES 1. Généralités Les espaces vectoriels Dans tout le chapitre, K représente un corps commutatif. 1.1. Notion d espace vectoriel On considère un ensemble E sur lequel

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi Cette œuvre est mise à disposition selon les termes de la licence

Plus en détail

Modélisation stochastique, Processus stochastiques

Modélisation stochastique, Processus stochastiques Modélisation stochastique, 6 octobre 2009 1 / 54 Modélisation stochastique, 1 2 3 2 / 54 Modélisation stochastique, Rappel : Variables aléatoires Exemple : Pièce de monnaie soit jetée trois fois. X(ω)

Plus en détail

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque Feuille 1 L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009 1 Combinatoire 1.1 Exercice 1 A le chambre des députés d un pays composé de 100 départements, chaque département est représenté par

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Exercices : Analyse combinatoire et probabilité

Exercices : Analyse combinatoire et probabilité Exercices : Analyse combinatoire et probabilité 1. Le jeu de Cluedo consiste à retrouver l assassin du Dr. Lenoir, l arme et le lieu du crime. Sachant qu il y a six armes, neuf lieux et six suspects, de

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen

Cours de DEUG Probabilités et Statistiques. Avner Bar-Hen Cours de DEUG Probabilités et Statistiques Avner Bar-Hen Université Aix-Marseille III 3 Table des matières Table des matières i Analyse combinatoire 1 1 Arrangements................................ 1 1.1

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES OFM FRANÇAISES MATHÉMATIQUES ENVOI NO. 3 CORRIGÉ 1 Exercices du groupe B Exercice 1. Soit n 1 un entier tel que le quotient de 2 n par n est une puissance

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

5. Quelques lois discrètes

5. Quelques lois discrètes 5. Quelques lois discrètes MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois discrètes 1/46 Plan 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire Rappels Symboles Combinatoires Tirage de p parmi n éléments avec remise sans remise ordre important Bn p n p A p n n! pn pq! ordre non-important - Cn p n! pn pq!p! Coefficients Binomiaux

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut

Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou

Plus en détail

Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex

Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Agrégation externe Année 2003-2004 Corrigé de l exercice sur le test

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

Chapitre 1. Ensembles et sous-ensembles

Chapitre 1. Ensembles et sous-ensembles Chapitre 1 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Un ensemble est une collection d objets satisfaisant un certain nombre de propriétés et chacun de ces objets est appelé

Plus en détail

Probabilités et statistique

Probabilités et statistique Probabilités et statistique Christophe Guyeux Jean-François Couchot guyeux[arobase]iut[moins]bm[point]univ[moins]fcomte[point]fr couchot[arobase]iut[moins]bm[point]univ[moins] 14 septembre 2009 Table des

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Bac Blanc de Mathématiques Correction Durée : 3 heures

Bac Blanc de Mathématiques Correction Durée : 3 heures Terminale STG Mercatique Jeudi 1 avril 2010 Bac Blanc de Mathématiques Correction Durée : 3 heures L usage de la calculatrice est autorisé. Le sujet comporte 6 pages. EXERCICE 1 3 points Cet eercice est

Plus en détail

2. Variables aléatoires unidimensionnelles

2. Variables aléatoires unidimensionnelles 2. Variables aléatoires unidimensionnelles MTH2302D S. Le Digabel, École Polytechnique de Montréal A2016 (v1) MTH2302D: variables aléatoires 1/20 Plan 1. Définitions 2. Variables aléatoires discrètes (masse)

Plus en détail

Répétition d expériences identiques et indépendantes

Répétition d expériences identiques et indépendantes Répétition d expériences identiques et indépendantes I) Situation étudiée On considère une expérience aléatoire possédant un ensemble fini d issues. On répète plusieurs fois cette expérience dans les mêmes

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

Test de sélection du 4 juin 2013

Test de sélection du 4 juin 2013 Test de sélection du 4 juin 2013 Vous étiez 270 candidat-e-s à ce test de sélection, et 62 d entre vous (23%) participeront au stage olympique de Montpellier, du 19 au 29 août 2013, dont 12 filles : la

Plus en détail

2. Quel type de probabilité (théorique, fréquentielle ou subjective) est-il possible d'attribuer aux situations suivantes?

2. Quel type de probabilité (théorique, fréquentielle ou subjective) est-il possible d'attribuer aux situations suivantes? Introduction. Indique si les expériences suivantes sont aléatoires ou non. A) Tirer un as d un jeu de cartes. B) Prévoir la date de la prochaine pleine lune. C) Prévoir la journée où il tombera au moins

Plus en détail

Enseignement des statistiques et des probabilités en LP dan le cadre du nouveau programme Bac pro 3 ans

Enseignement des statistiques et des probabilités en LP dan le cadre du nouveau programme Bac pro 3 ans Enseignement des statistiques et des probabilités en LP dan le cadre du nouveau programme Bac pro 3 ans 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% 1 3 5 7 9 11 13 15 17 19 21 23 25 Objectif : Rappel des objectifs

Plus en détail

1 - Probabilités et probabilités conditionnelles. PAES Faculté de Médecine P. et M. Curie V. Morice

1 - Probabilités et probabilités conditionnelles. PAES Faculté de Médecine P. et M. Curie V. Morice Probabilités et Biostatistique 1 - Probabilités et probabilités conditionnelles Evaluation ation d'un test diagnostique PAES Faculté de Médecine P. et M. Curie V. Morice Pourquoi la biostatistique : la

Plus en détail

Espaces de probabilités.

Espaces de probabilités. Université Pierre et Marie Curie 2010-2011 Probabilités et statistiques - LM345 Feuille 2 Espaces de probabilités. 1. Donner un exemple d'une famille de parties d'un ensemble qui ne soit pas une tribu.

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

Chapitre 3. Eléments pour comprendre et écrire des démonstrations

Chapitre 3. Eléments pour comprendre et écrire des démonstrations Chapitre 3 Eléments pour comprendre et écrire des démonstrations Une des tâches essentielles en mathématique est de chercher à s assurer que telle ou telle proposition est vraie ou fausse. Il ne suffit

Plus en détail

Exercices corrigés de probabilités et statistique

Exercices corrigés de probabilités et statistique Exercices corrigés de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Devoir Survéillé n 2 (1 ere ES/L) Samedi 14 décembre Durée : 3 h calculatrice autorisée - pas d échange de calculatrice ou de matériel Proposition de corrigé Dans tout ce devoir, la

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même!

De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même! Chapitre 1 La récursivité De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même! 1.1 Définition et types de récursivité Définition 1 (Définition récursive,

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

Éléments de logique et de théorie des ensembles

Éléments de logique et de théorie des ensembles 1 Éléments de logique et de théorie des ensembles Pour les exemples et exercices traités dans ce chapitre les ensembles usuels de nombres entiers, rationnels réels et complexes sont supposés connus, au

Plus en détail

Chapitre 3 : Combinatoire, Probabilités

Chapitre 3 : Combinatoire, Probabilités STAT03 : probabilités COURS Décembre 2000 Chapitre 3 : Combinatoire, Probabilités 1 Dénombrement 1.1 Introduction L étude statistique nous conduit à étudier une population finie et parfaitement déterminée

Plus en détail

Mathématiques et Philosophie en classe de seconde

Mathématiques et Philosophie en classe de seconde Mathématiques et Philosophie en classe de seconde Intervention du Professeur de mathématiques. Effectif de la classe : 34 élèves. Intervention : quinze heures en alternance avec le cours de Philosophie.

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante :

E G = Définition : La probabilité d'un événement E peut être définie intuitivement par la formule suivante : 8.1 Notations Notations: : vénement : vénement contraire à : ou (ou les deux), correspond à l union : et, correspond à l intersection U : L univers contient tous les événements possibles xercice 1 : Je

Plus en détail

Complexité des algorithmes

Complexité des algorithmes Complexité des algorithmes par Robert Rolland R. Rolland, Aix Marseille Université, Institut de Mathématiques de Marseille I2M Luminy Case 930, F13288 Marseille CEDEX 9 e-mail : robert.rolland@acrypta.fr

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

COMBINATOIRE, PROBABILITÉS

COMBINATOIRE, PROBABILITÉS COMBINATOIRE, PROBABILITÉS ET STATISTIQUES Version 2006 Lang Fred 1 Table des matières 1 Factorielles et coefficients binômiaux 3 1.1 Définitions........................................ 3 1.2 Propriétés

Plus en détail

MATHÉMATIQUES 3 PÉRIODES

MATHÉMATIQUES 3 PÉRIODES BACCALAURÉAT EUROPÉEN 006 MATHÉMATIQUES 3 PÉRIODES DATE : 8 juin 006 (matin) DURÉE DE L'EXAMEN : 3 heures (180 minutes) MATÉRIEL AUTORISÉ : Formulaire européen Calculatrice non graphique et non programmable

Plus en détail

Exercice n 1 Brevet Métropole Juin 2010

Exercice n 1 Brevet Métropole Juin 2010 Exercice n 1 Brevet Métropole Juin 2010 On considère le programme de calcul suivant : Choisir un nombre de départ. Multiplier ce nombre par (-2). Ajouter 5 au produit. Multiplier le résultat par 5. Ecrire

Plus en détail

Transparents Philippe Lambert. Faculté des Sciences Sociales Université de Liège

Transparents Philippe Lambert. Faculté des Sciences Sociales Université de Liège SOCI1241-1 Eléments du calcul des probabilités appliquées aux sciences sociales et exercices pratiques (en ce compris les bases de statistiques inférentielles) Transparents Philippe Lambert http : //www.statsoc.ulg.ac.be/proba.html

Plus en détail

ENTRÉE EN TS. Exercice 1 Second degré - les aspects élémentaires.

ENTRÉE EN TS. Exercice 1 Second degré - les aspects élémentaires. 1 ENTREE EN CLASSE DE TERMINALE S. FEUILLE D EXERCICES 2015 1. Pour qui est ce document. Ce document est destiné à tous les élèves entrant en Terminale S, quelle qu ait été leur moyenne dans la discipline

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

Statistiques Appliquées Rôle des femmes dans la société

Statistiques Appliquées Rôle des femmes dans la société Statistiques Appliquées Rôle des femmes dans la société Denis Schelling Semestre d automne 2012 Résumé A partir de données concernant le rôle des femmes dans la société, nous avons effectué une analyse

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires.

Terminologie. La théorie des probabilités fournit des modèles mathématiques permettant l'étude des expériences aléatoires. Probabilités Terminologie Une expérience ou une épreuve est qualiée d'aléatoire si on ne peut pas prévoir son résultat et si, répétée dans des conditions identiques, elle peut donner des résultats diérents.

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe Table des Matières Essais Successifs (ES) 1 Rappels : Fonctions et Ordres de grandeurs 2 Diviser pour Régner 3 Approches Gloutonnes 4 Programmation Dynamique 5 Essais Successifs (ES) Le problème des n

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

Cours de Probabilités et de Statistique

Cours de Probabilités et de Statistique Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011

BREVET DE TECHNICIEN SUPÉRIEUR SOUS ÉPREUVE : MATHÉMATIQUES. Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 BREVET DE TECHNICIEN SUPÉRIEUR A. P. M. E. P. SOUS ÉPREUVE : MATHÉMATIQUES Le GROUPEMENT Agencement de l environnement architectural de 2001 à 2011 Métropole 2001..........................................

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

CHAPITRE II NOTIONS DE PROBABILITES

CHAPITRE II NOTIONS DE PROBABILITES CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

Probabilités, fiche de T.D. n o 2

Probabilités, fiche de T.D. n o 2 U.F.R. de Mathématiques Licence de Mathématiques S6, M66, année 2013-2014 Probabilités, fiche de T.D. n o 2 Ex 1. Jour de chance Un site de jeux propose le jeu suivant. Chaque internaute désireux de jouer

Plus en détail

Probabilités conditionnelles

Probabilités conditionnelles Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber

Plus en détail

Valorisation par arbitrage. M1 - Arnold Chassagnon, Université de Tours, PSE - 2012

Valorisation par arbitrage. M1 - Arnold Chassagnon, Université de Tours, PSE - 2012 Valorisation par arbitrage - M1 - Arnold Chassagnon, Université de Tours, PSE - 2012 Plan du cours Introduction : l hypothèse d absence d opportunité d arbitrage 1. Synthèse des actifs par un système de

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

Exercices de probabilités et statistique

Exercices de probabilités et statistique Exercices de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

Suites numériques. Sommaire :

Suites numériques. Sommaire : Suites numériques I Activité n o 2 page 295 Sommaire : II Généralités sur les suites numériques III Variations et bornes IV Suites arithmétiques V Suites géométriques VI Suites convergentes VII Représentation

Plus en détail

Sujet 6 : Modèles de la planification tactique: planification de production

Sujet 6 : Modèles de la planification tactique: planification de production Sujet 6 : Modèles de la planification tactique: planification de production MSE3312: Planification de production et gestion des opérations Andrew J. Miller Dernière mise au jour: November 18, 2009 Dans

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

ECGE 1224 - Statistiques en économie et gestion : TP 1

ECGE 1224 - Statistiques en économie et gestion : TP 1 ECGE 14 - Statistiques en économie et gestion : TP 1 Exercice 1 Un dé parfaitement équilibré est lancé. Soit X la variable aléatoire (v.a.) correspondant au résultat obtenu avec le dé. a) Justifer pourquoi

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE Exercice 1. Fred et Sarah sont les aînés d une même et grande famille. Fred a

Plus en détail

Préparation aux épreuves écrites du CAPES Conseils de rédaction

Préparation aux épreuves écrites du CAPES Conseils de rédaction Préparation aux épreuves écrites du CAPES Conseils de rédaction Claire Debord Le texte qui suit est une libre compilation de plusieurs textes sur le même thème, notamment ceux de Christophe Champetier

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2010 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 7 pages numérotées de 1 à 7 dont une page en annexe à rendre avec la copie. L

Plus en détail