Onveutetudierl'equationdierentiellesuivante

Dimension: px
Commencer à balayer dès la page:

Download "Onveutetudierl'equationdierentiellesuivante"

Transcription

1 Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique dont le symbole est la forme qua- manieresuivante: Table des matieres.. Preliminaires Solutionfondamentaleendimension d= 3. Solutionfondamentaleendimension d= 4. Solutionfondamentaleendimension d= Quelquesproprietesdel'equationdesondes 76. Preliminaires Denition unedistribution. Une ED0(Rd+)solutionde solution fondamentale de l'equation des ondes est xe=: ondes:enpassantalatransformeedefourierdanslavariablespatiale, Onchercheadeterminerunesolutionfondamentaledel'equationdes ^E+jj^E=(t) sin(tjj).onutilisealorsunevariationdesconstantes dontl'equationhomogeneassocieeapourbasedesolutionscos(tjj)et a(t)cos(tjj)+b(t)sin(tjj) aveclacondition a 0(t)cos(tj)+b0(t)sin(tjj)=0 cequidonnel'autreequation a0(t)jjsin(tjj)+b0(t)jjcos(tjj)=(t) etdonc a 0(t)= (t)sin(tjj) jj =0; b0(t)=(t)cos(tjj) jj = (t) jj :

2 Finalementonpeutchoisira(t)=0etb(t)=H(t)soit ^E+=H(t)sin(tjj) jj cette distribution expression E = represente E+ est egalement une distribution une solution temperee. fondamentale De m^eme, de la l'equationdesondes.onvientdoncdedemontrerleresultatintermediaire suivant: ladistributiontempereedonneeparlatransformeedefourierinverse Theoreme. Unesolutionfondamentaledel'equationdesondesest danslavariable xrd E+=H(t)F!x sin(tjj) jj S 0(R Rd): s'agitdoncdefairelecalculdelatransformeedefourierprecedente. Pourdeterminerlasolutionfondamentaledel'equationdesondes,il resultatestunefonctionlloc,etaucasdeladimensiond=3,oul'on Nous nous limiterons aux cas de dimension d = et d = ou le obtientunemesure.endimensionsuperieure,onobtientegalementdes distributions.. Solution fondamentale en dimension d= Endimensiond=,ona sin(tjj) jj = sin(t) : Theoreme dimension(spatiale) 3. Une solution d=estdonneepar fondamentale de l'equation des ondes en E+(t;x)= H(t jxj): RemarquonsqueE+estunefonctionLloc.Deplus,ladistribution E = E= H(t+jxj) estegalement fondamentalese+ uneete solution sontsupporteesrespectivementdansledemi fondamentale, chacune des deux solutions c^onet>jxjett< jxj.

3 3 Preuve. Rappelonsque F sin() = [ ;](x) parconsequentgr^aceaunchangementdevariable E+(t;x)=H(t)F sin(t) = H(t)[ t;t](x): Cequidonneleresultat. 3. Solution fondamentale en dimension d= unfacteurdeconvergencedanslatransformeedefourierinverse. Commenconsparapprocherlasolutionfondamentaleenintroduisant Lemme 4. La transformee de Fourier inverse de la fonction L\L!e "jjsin(tjj)=jjendimensiond=estdonneepar p t jxjh(t jxj)+o(") si"estassezpetit. Preuve. CalculonslatransformeedeFourierinverse F sin(tjj) jj e "jj Z = +Z () 0 S e "rsin(rt)eirx!d!dr 4 enpassantencoordonneespolaires.l'integralesurlecerclerepresente la tributionasupportcompact)aupoint transformee de Fourier de la mesure sur rx;cettetransformeeestune le cercle (qui est une dis- fonctionradiale cd!( rx)= Z Seirx!d!= Z 0 eirjxjcosd: Eneet,l'integrale Z r sinx r x e dx= Z r ix sinx 0 x cos(x)dx= Z r(+) sinx r( ) x dx tendvers Onpeutecrirexsouslaformex=jxjAe [ ;] ()lorsquer!+. duplan(dependantduvecteur x,cequidonnex oue!= =(;0)etAestunerotation jxje changementdevariable! A!,etenfaisantle t! par rotation, on obtient l'integrale A!quinemodienilamesurenilecercle,invariant ZSe t irjxj!d!= Z 0 eirjxj cos d:

4 4 AinsilatransformeedeFourierinverse()est-elleegalea 4 Z +Z 0 0 e "rsin(rt)eirjxjcosddr ouencoreapresquelquescalculs Z + 0 e "reir(t+jxjcos)drd {z } entenantcomptede(3).ceciterminelecalculsionutiliselelemme quisuit(aveca=tetb=jxj). Lemme 5. Soienta;b>0etsi">0estassezpetitalorsona Z d 0 a+bcos+i"d= 8 >< p > a b+o(") lorsquea>b>0 : i p b a+o(") lorsque0<a<b : Preuve. Cetteintegralepeut^etreecritecommeuneintegralecurviligne3 I dz i jzj= bz+az+b+i" quel'onpeutcalculeral'aidedutheoremedesresidus.lesp^olesdela fractionsontdonnespar z = a b p a b i"b b 4Im Z 0 = i t+jxj cos +i" ou dehorsdelademi-droite la branche consideree==4deplus,leresidudelafractionaux de la racine est par exemple celle denie en p^olesestdonneepar res bz+az+b+i" = b z+ z = z=z p a b i"b : Enn,remarquonsque jz+z j=+i" b =+" b > 3 des La fonctions preuve holomorphes de ce lemme n'a est pas parfaitement ete etudiee hors en MACS. programme Elle puisque est donnee la theorie purement indicatif. a titre

5 5 ce disqueunite.enoutre,ona qui implique que les deux p^oles ne peuvent ^etre a l'interieur du z+= a b + p a b b i" a b b =+i {z }: )+O(") Lorsquea>b>0,onendeduit "b (a b jz+j= a p a b b {z b 0 < } +O(")< etlorsque0<a<b jz+j= a " b p b a + a {z } b < sil'onsuppose"assezpetit. 0 <a b etparconsequentlep^ole z a l'exterieurz+ jz estal'interieurdudisqueunite j >, seul le residu au p^ole z+ jz+j< unecontributional'integralecurviligne.letheoremedesresidusdonne apporte donc I dz jzj= bz+az+b+i" = p i a b i"b Danslecas0<a<b,celapermetd'armerque : Z d 0 a+bcos+i"d= i p b a i" a b b cequidonneleresultatapresundeveloppementlimite.dem^emedans lecas0<b<a,celadonne Z d 0 a+bcos+i"d= p a b +i" b b a cequidonneleresultatapresundeveloppementlimite. Theoreme dimension(spatiale) 6. Une solution d=estdonneepar fondamentale de l'equation des ondes en E+(t;x)= H(t jxj) p t jxj: RemarquonsqueE+estunefonctionLlocpuisque ZZ jtj<a je+(t;x)jdtdx= Z a 0 Z t r 0 p t rdrdt= Z a 0 tdt<+

6 6 Preuve. Ilestclairque sin(tjj) jj e "jj! sin(tjj) jj danss0(rd+) lorsque"tendvers0,doncilsutdecalculer E+=lim "!0H(t)F sin(tjj) jj e "jj danss 0(Rd+): OrpourtoutefonctiondanslaclassedeSchwartz,ona ZZ t>jxj p t jxj+o(") '(t;x)dtdx! ZZ t>jxj p t jxj'(t;x)dtdx cequiterminelapreuve. 4. Solution fondamentale en dimension d=3 OnrappellelecalculdelatransformeedeFourierdelaGaussienne Z (3) + e e itdt= p e : t Donnons mationdelasolutionfondamentale. l'analogue du lemme 4 qui permet de calculer une approxi- Lemme 7. La transformee de Fourier inverse de la fonction L\L!e "jj=sin(tjj)=jjendimensiond=3estdonneepar 4jxjp " e (t+jxj) Preuve. Commeauparavant,onpasseencoordonneespolaires F sin(tjj) Z jj e = +Z (4) 0 S e sin(rt)eirx!d!dr 83 et mesuresurlaspherequel'onpeutcalculerexplicitement l'integrale sur la sphere represente la transformee de Fourier de la cd!( rx)= Z eirjxjcossind=sin(rjxj) 0 rjxj : AussilatransformeedeFourierinverse(4)est-elleegalea 4jxj Z + 0 e sin(rt)sin(rjxj)dr "jj "r " e (t "r jxj) "

7 7 ouencorepuisqueleproduitdesdeuxsinusestegala (sin(rt+rjxj)+ sin(rt rjxj)) 8jxjIm Z + e e ir(t jxj)dr+ Z + e e ir(t+jxj)dr cequidonneleresultatdesireentenantcomptede(3). Theoreme dimension(spatiale) 8. Une solution d=3estdonneeparladistribution fondamentale de l'equation des ondes en he+;'i= Z +Z 4 0 St'(t;t!)d!dt: Preuve. Puisque sin(tjj) jj e sin(tjj) jj danss0(rd+) lorsque"tendvers0,doncilsutdecalculer E+=lim "!0H(t)F sin(tjj) jj e danss 0(Rd+): Orona 4 Z Z + 0 '(t;x) p " e (t+jxj) jxj) dt dx " jxj = Z +Z SZ '(t;r!) p " e rdrd!dt (t+r) "! Z +Z 4 0 St'(t;t!)d!dt cequiachevelapreuve. 5. Quelques proprietes de l'equation des ondes initiales Remarquonsquelaresolutiondel'equationdesondesavecdonnees 8 xu=f surr Rd u(0;x)=u0 se l'autreadonneesinitialesnulles decompose en la resolution des deux equations, l'une homogene, 8< tv v(0;x)=u0 xv=0 tw (5) w(0;x)=0 "r! "jj " e "jj (t "r

8 8 puisquelasolutiondesondesestdonneeparu=v+w.cettedecomposition quivientdelalinearitedel'equationpeuts'avererutile. resoudrelorsqueu0=0,eneetsivj De plus, pour resoudre equation homogene, estsolutionde il sut de savoir la 8< tvj vj(0;x)=0 alors et dev plus = est solution = u(x) de l'equation des= ondes xv(0;x)+ homogene De m^eme pour resoudre l'equation inhomogene, il 8 ~w(0;s;x)=0 ~w etlasolutioncorrespondantal'equationinhomogeneestdonneeparla formulededuhamel Z w(t;x)= t 0 ~w(t s;s;x)ds: Ainsipeut-onserameneralaresolutiondel'equationhomogeneavec donneesinitialesu0=0etu. faits Revenons dans laa section l'equation preliminaire des ondes(passage generale. a En la transformee reprenant lesde calculs rier dans la variable spatiale, variation de la double constante dans Fou- l'equationordinaireobtenue)onvoitque Z tsin((t s)jj) ^f(s;)ds+cos(tjj)^u0()+sin(tjj) 0 jj jj ^u() estsolutiondel'equationordinaireobtenueapartirdel'equationdes ondesenpassantalatransformeedefourier.parconsequentsionnote E=E+ E =F (sin(tjj) ),ona u= Z t 0 E(t s; ) f(s; te(t; ) u0+e(t; ) u Lessolutionsfondamentalescalculeesjusqu'apresentverientlapropriete suppe f(t;x)r Rd:jtj>jxjg= ceciimpliqueleprincipedehuygens.

9 9 Theoreme des ondes avec 9 (Principe donnees de initiales Huygens). u0;u SiuE0(Rd) est solution supportees de l'equation bouleb(0;r)alors dans la suppub(0;r+jtj): Autrementdit,lapropagationdesondessefaitavitessenie. dehuygensfort. Onpeutameliorerceresultatendimensionimpaire:c'estleprincipe del'energied'unesolution l'equation des ondes homogene u(t;x)dansh(rd+)(ouc(r;h(rd))) commeetantlaquantite est conservee : on denit l'energie E[u](t)= Z jr(t;x)u(t;x)jdx: Alorsona ddt E[u](t)=Re Z ru =Re Z tu =0: Theoreme unesolutiondel'equationdesondeshomogene.alorsl'energie 0 (Conservation de l'energie). Soit u C(R;H(Rd)) estunefonctionconstantedutemps. E[u](t)

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

Les travaux doivent être remis sous forme papier.

Les travaux doivent être remis sous forme papier. Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24

Plus en détail

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables.

ANALYSE IV 29-06-2009. Informations. (5) Pour rendre l examen il faut signer une feuille de présence disponible avec les assistants responsables. EXAMEN CORRIGE ANALYSE IV 9-6-9 informations: http://cag.epfl.ch sections IN + SC Prénom : Nom : Sciper : Section : Informations () L épreuve a une durée de 3 heures et 45 minutes. () Les feuilles jaunes

Plus en détail

Cours de mathématiques.

Cours de mathématiques. Orsay 008-009 IFIPS S Mathématiques (M160). Cours de mathématiques. 1. Equations différentielles linéaires du second ordre. La fonction C : x cos x est indéfiniment dérivable sur R, et C (x) = S(x), avec

Plus en détail

Surfaces. (u; v) 7! M(u; v) = (x(u; v); y(u; v); z(u; v))

Surfaces. (u; v) 7! M(u; v) = (x(u; v); y(u; v); z(u; v)) Surfaces. Généralités sur les surfaces a) Surfaces paramétrées. - Dé nition : Une surface paramétrée S de l espace R 3 est une application d une partie de R à valeurs dans R 3, (u; v) 7! M(u; v) = (x(u;

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

Equations Différentielles

Equations Différentielles Cours optionnel S4 - Maths Renforcées 1 Equations Différentielles I- Définitions élémentaires. On appelle Equation Différentielle Ordinaire (EDO) toute équation (E) du type (E) : y (n) (t) = F (t; y(t);

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

solutions : Quand un pro vous dit noir joue 1, on joue 1.

solutions : Quand un pro vous dit noir joue 1, on joue 1. Ctt wtt 24 t u u é, t uét vu vz u t t KGS t ux u uu. t été éé Du Hutu (7 yu) ét u u v. S u vu éutt ux : 3 uu u t ué u 2 tu v uu 2 yu à 2. Pu u L : xv F (3 yu). Pu u A : - Bu (7yu). Et u u V : u Hutu (7

Plus en détail

f(z) = u(x, y) + i v(x, y),

f(z) = u(x, y) + i v(x, y), Université A/MIRA de Béjaia 27 mai 202 Faculté de la Technologie Département ST 2 Examen de Maths 5 Exercice points En utilisant les paramétrisations, montrer que l on a : z 2 dz = 0, où est la courbe

Plus en détail

Chapitre 6 La dérivation

Chapitre 6 La dérivation Capitre 6 La dérivation A) Nombre dérivé et tangente 1) Tangente en un point à une courbe et nombre dérivé Soit f(x) la fonction dont la courbe est représentée ci-dessus, et prenons deux points A et B

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Equations dierentielles

Equations dierentielles Equations dierentielles Université Mohammed I Faculté des Sciences Département de Mathématiques Oujda. Plan 1 Introduction 2 3 Résponsable du cours : Pr. NAJIB TSOULI. 1 Introduction 2 3 Introduction Une

Plus en détail

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier

Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Cours FI-GET-GPE-IMIAE: Transformée de Laplace Transformée de Fourier Préface. Le but de ce cours est d introduire les transformées de Laplace et Fourier et d en présenter les applications les plus usuelles.

Plus en détail

Chapitre 9 Les équations différentielles

Chapitre 9 Les équations différentielles Chapitre 9 Les équations différentielles A) Généralités Une équation différentielle est une équation dont l inconnue est une fonction et dans laquelle apparaissent une ou plusieurs dérivées de cette fonction.

Plus en détail

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7.

Mathématiques pour l informatique. - Soutien - 1 Nombres complexes. 2 Suites. Exercice 1. (Nombres complexes) Soit le nombre complexe z = (2 + 2i) 7. Mathématiques pour l informatique IMAC première année - Soutien - Nombres complexes Rappels. Un nombre complexe z admet plusieurs représentations : représentation vectorielle z = (a, b) où a, b R représentation

Plus en détail

( ) Question 2. . Calculer sa décomposition en éléments (x + 1)(x 2 + 2x + 2) simples f (x) = a x bx + c

( ) Question 2. . Calculer sa décomposition en éléments (x + 1)(x 2 + 2x + 2) simples f (x) = a x bx + c On considère les fonctions h et F définies par : x h(x) = x + arctan(x) et F( x) = dt x h t ( ) Question (A) La fonction h est continue et strictement croissante de vers (B) La fonction h est paire (C)

Plus en détail

LES DIODES. I La diode à jonction. I.1 Constitution. Elle est réalisée par une jonction PN. Symbole : Composant physique : Polytech'Nice Sophia 1

LES DIODES. I La diode à jonction. I.1 Constitution. Elle est réalisée par une jonction PN. Symbole : Composant physique : Polytech'Nice Sophia 1 I La diode à jonction I.1 Constitution Elle est réalisée par une jonction PN. Symbole : Composant physique : Polytech'Nice Sophia 1 I.2 Caractéristique d'une diode Définition : c'est le graphique qui donne

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Chapitre 4 Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Equations différentielles Ce chapitre est une première étude des équations différentielles, il vous sera d abord utile en physique et en

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS.

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 1. DEFINITION Soit l'équation différentielle du second ordre à coefficients constants ay + by + cy = ϕ( x) ( I) a R, b

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

1 Premières propriétés de cos, sin et tan

1 Premières propriétés de cos, sin et tan Lycée Roland Garros Mathématiques BCPST 1ère année 2013-2014 Chapitre n o 3 : Trigonométrie 1 Premières propriétés de cos, sin et tan Dénition 1. Soit x R. Dans un plan muni d'un repère orthonormé (O,

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES .Définition On appelle équation différentielle du n ième ordre une relation de la forme : f [ ( )] n x,,, K, 0 entre la variable réelle x, une fonction inconnue (x) et les dérivées

Plus en détail

Première S chapitre 11 : Applications du produit scalaire

Première S chapitre 11 : Applications du produit scalaire SOMMAIRE XI. 1. VECTEUR NORMAL A UNE DROITE... THEOREME : VECTEUR DIRECTEUR... DEFINITION : VECTEUR NORMAL... THEOREME : DROITE ET VECTEUR NORMAL... EXERCICES :... 3 XI.. CARACTERISATION D UN CERCLE...

Plus en détail

Intégrales doubles et triples - M

Intégrales doubles et triples - M Intégrales s et - fournie@mip.ups-tlse.fr 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année

Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année Méthodes Mathématiques pour l Ingénieur, Istil 1ère année Corrigé de la feuille 4 1 Méthodes Mathématiques pour l Ingénieur ISTIL 1ère année Corrigé de la feuille 4 1 appel : formule des ésidus Soit F

Plus en détail

Retournement Temporel

Retournement Temporel Retournement Temporel Rédigé par: HENG Sokly Encadrés par: Bernard ROUSSELET & Stéphane JUNCA 2 juin 28 Remerciements Je tiens tout d'abord à remercier mes responsables de mémoire, M.Bernard ROUSSELET

Plus en détail

Annexe D: Les nombres complexes

Annexe D: Les nombres complexes Annexe D: Les nombres complexes L'équation t + 1 = 0 n'a pas de solution dans les nombres réels. Pourtant, vous verrez lors de vos études qu'il est très pratique de pouvoir résoudre des équations de ce

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Chapitre 1.1 Fonctions trigonométriques.

Chapitre 1.1 Fonctions trigonométriques. Chapitre. Fonctions trigonométriques. Exercice. Formules de somme et de différence En remplaçant a et b par des valeurs particulières complèter le tableau suivant avec les résultats donnés ci-après : cos

Plus en détail

Formule du changement de variable

Formule du changement de variable Formule du changement de variable On pose u = f(x) dans l intégrale, et on écrit du = f 0 (x)dx. Remarque Rappelons : I Ne jamais mélanger ancienne et nouvelle variable au sein de l intégrale! I Si l ancienne

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Licence et Master de Mathématiques, Introduction à l'analyse Complexe, Année 2006-2007. Pierre Puiseux, Université de Pau et des Pays de l'adour

Licence et Master de Mathématiques, Introduction à l'analyse Complexe, Année 2006-2007. Pierre Puiseux, Université de Pau et des Pays de l'adour Licence et Master de Mathématiques, Introduction à l'analyse Complexe, Année 26-27 Pierre Puiseux, Université de Pau et des Pays de l'adour E-mail address: pierre.puiseux@univ-pau.fr URL: http ://www.univ-pau.fr/~puiseux

Plus en détail

ANALYSE II, , 2e bachelier ingénieur civil Examen du 07 janvier 2013 Solutions Version : 11 février 2013 (V1 : 05/02/13)

ANALYSE II, , 2e bachelier ingénieur civil Examen du 07 janvier 2013 Solutions Version : 11 février 2013 (V1 : 05/02/13) ANALYSE II, -3, e bachelier ingénieur civil Examen du 7 janvier 3 Solutions Version : février 3 V : 5//3) THEORIE 35 points) Théorie.) Enoncer et démontrer le théorème de Liouville relatif à la caractérisation

Plus en détail

SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1

SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1 SOLUTIONS EXERCICES 7 - Équations différentielles linéaires d ordre 1 Exercice 1. Déterminer les solutions aux problèmes homogènes suivants : (a) y (x) = x y(x) (b) y (x) = 1 x y(x) (c) y (x) = x 2 y(x)

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Corrigé du baccalauréat S Centres étrangers 16 juin 2011

Corrigé du baccalauréat S Centres étrangers 16 juin 2011 Corrigé du baccalauréat S Centres étrangers 6 juin EXERCICE Commun à tous les candidats 4 points. a. A O A A 4 A 6 A 5 A A On a a a a,5, puis a,75, a 4,65 a 5,6875 et a 6,6565 b. c. Puisque le point A

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

SUR CERTAINES ÉQUATIONS FONCTIONNELLES. Ingénieur diplômé de l'école Supérieure d'électricité (Paris), Alexandrie,

SUR CERTAINES ÉQUATIONS FONCTIONNELLES. Ingénieur diplômé de l'école Supérieure d'électricité (Paris), Alexandrie, SUR CERTAINES ÉQUATIONS FONCTIONNELLES PAR M. JACQUES TOUCHARD, Ingénieur diplômé de l'école Supérieure d'électricité (Paris), Alexandrie, Egypte. Je me propose d'indiquer certaines équations fonctionnelles,

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Équations du troisième degré

Équations du troisième degré par Z, auctore L objet de cet article est d exposer deux méthodes pour trouver des solutions à une équation du troisième degré : la recherche de racines évidentes d une part, et la formule de Cardan d

Plus en détail

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y )

COR TD 2. Exercice 1. Déterminer si les applications f i suivantes sont linéaires : x + x, y + y ) COR TD 2 Année 21 Exercice 1. Déterminer si les applications f i suivantes sont linéaires : f 1 : R 2 R 2 f 1 x, y = 2x + y, x y f 2 : R R f 2 x, y, z = xy, x, y f : R R f x, y, z = 2x + y + z, y z, x

Plus en détail

Construction de solutions proches de solitons instables. d'équations dispersives non-linéaires surcritiques. Vianney Combet. Orsay, 9 janvier 2009

Construction de solutions proches de solitons instables. d'équations dispersives non-linéaires surcritiques. Vianney Combet. Orsay, 9 janvier 2009 Solitons gkdv Rapport d'activité Construction de solutions proches des solitons d'équations dispersives non-linéaires surcritiques Orsay, 9 janvier 2009 Thèse sous la direction de Luc Robbiano et Yvan

Plus en détail

Dynamique et fractals

Dynamique et fractals Dynamique et fractals Arnaud Chéritat Toulouse III Dynamique et fractals p.1/25 Dynamiques Dynamique discrète, continue. Champs de vecteurs, dynamique hamiltonienne. Dynamique réelle, dynamique complexe

Plus en détail

Fonctions analytiques

Fonctions analytiques CHAPITRE Fonctions analytiques Les principaux résultats à retenir : soit U un ouvert de C et f : U C. f est analytique sur U si et seulement si f est développable en série entière au voisinage de chaque

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES

RAPPELS DE MATHEMATIQUES. ORTHOPHONIE Première année. Dr MF DAURES RAPPELS DE MATHEMATIQUES ORTHOPHONIE Première année 27 28 Dr MF DAURES 1 RAPPELS DE MATHEMATIQUES I - LES FONCTIONS A - Caractéristiques générales des fonctions B - La fonction dérivée C - La fonction

Plus en détail

Exo7. Formes différentielles

Exo7. Formes différentielles Exo7 Formes différentielles Fiche de A. Gammella-Mathieu (IUT de Mesures Physiques de Metz Université de Lorraine) Exercice 1 éterminer si les formes différentielles suivantes sont exactes et dans ce cas,

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan

Systèmes linéaires. 1. Introduction aux systèmes d équations linéaires. Exo7. 1.1. Exemple : deux droites dans le plan Exo7 Systèmes linéaires Vidéo partie 1. Introduction aux systèmes d'équations linéaires Vidéo partie 2. Théorie des systèmes linéaires Vidéo partie 3. Résolution par la méthode du pivot de Gauss 1. Introduction

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Fonctions modulaires. Caroline Dumoulin. Université de Fribourg (Suisse) 25.10.2007

Fonctions modulaires. Caroline Dumoulin. Université de Fribourg (Suisse) 25.10.2007 Fonctions modulaires Caroline Dumoulin Université de Fribourg (Suisse) 25.0.2007 Table des matières Introduction 2 La fonction modulaire 3 La fonction modulaire J de Klein 6 Introduction Dans ce proséminaire,

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Introduction. 1. 1 Justication historique. La résolution de l'équation du degré (par la méthode de Cardan) amena les mathématiciens italiens du seizième 3ème siècle

Plus en détail

Fonctions Analytiques

Fonctions Analytiques 5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,

Plus en détail

Les équations différentielles

Les équations différentielles Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre

Plus en détail

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE Exercice Longueur de l arc de spirale logarithmique défini par r = e t pour t a, puis limite quand a tend vers + Exercice Longueur de l astroïde

Plus en détail

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES. CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires

Plus en détail

FONCTIONS TRIGONOMÉTRIQUES

FONCTIONS TRIGONOMÉTRIQUES FONCTIONS TRIGONOMÉTRIQUES Définition ( voir animation ) On dit qu'un repère orthonormé (O; i, j) est direct lorsque ( i ; j ) = + []. Dans le plan rapporté à un repère orthonormé direct, si M est le point

Plus en détail

Exo7. Equations différentielles

Exo7. Equations différentielles Exo7 Equations différentielles Exercice 1 On se propose d intégrer sur l intervalle le plus grand possible contenu dans ]0, [ l équation différentielle : (E) y (x) y(x) x y(x)2 = 9x 2. 1. Déterminer a

Plus en détail

Intégrales curvilignes et de surfaces

Intégrales curvilignes et de surfaces Intégrales curvilignes et de surfaces Fabrice Dodu FORMATION CONTINUE : DUT+3 DÉPARTEMENT DE MATHÉMATIQUES : INSA TOULOUSE 2-21 Version 1. Sommaire I Le cours 6 1 Intégrales curvilignes 8 1.1 Notions sur

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

Exercices du chapitre IX avec corrigé succinct

Exercices du chapitre IX avec corrigé succinct Exercices du chapitre IX avec corrigé succinct Exercice IX.1 Ch9-Exercice1 L équation différentielle du premier ordre admet comme solution x IR, y (x) = y(x) x 2, ϕ(x) = Ce x + x 2 + 2x + 2, C IR. A quoi

Plus en détail

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0)

Laurent Garcin MPSI Lycée Jean-Baptiste Corot. (a, b) + (c, d) = (a + c, b + d) (a, b) (c, d) = (ac bd, ad + bc) (a, 0) (b, 0) = (ab, 0) NOMBRES COMPLEXES 1 Corps C des nombres complexes 1.1 Construction de C Construction de C On munit R de deux lois internes + et de la manière suivante. Pour (a, b, c, d) R 4, on pose (a, b) + (c, d) =

Plus en détail

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 11/03/2003 MATHEMATIQUES Devoir N 6 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES1 Le 11/03/003 MATHEMATIQUES Devoir N 6 Calculatrice et ormulaire autorisés Durée : 3h Exercice 1 : (5 points) (correction) Un magasin de distribution vend deux types de téléphones portables

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

figure 6.1. page 230. Il existe deux grandes classes de projections : les projections perspectives et les projections parallèles.

figure 6.1. page 230. Il existe deux grandes classes de projections : les projections perspectives et les projections parallèles. Informatique Graphique Cours 12 - Projections Introduction En général, une projection est une fonction qui permet de transformer un point dans système de coordonnées à N dimensions, en un point dans un

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

1 Dérivée des fonctions d une variable

1 Dérivée des fonctions d une variable Dérivée des fonctions d une variable La notion de dérivée d une fonction d une variable est essentielle pour le cours puisque nous allons la généraliser aux fonctions de plusieurs variables. L objectif

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Terminale S3 Année 2009-2010 Table des matières I Les fonctions. 4 1 Les limites (suite du cours) 5 IV Limites par comparaison....................................... 5 V Fonctions

Plus en détail

Équations aux Dérivées Partielles. Pedro Ferreira et Sylvie Mas-Gallic

Équations aux Dérivées Partielles. Pedro Ferreira et Sylvie Mas-Gallic Équations aux Dérivées Partielles Pedro Ferreira et Sylvie Mas-Gallic 11 décembre 21 Table des matières 1 Introduction 3 1.1 Exemple d une équation aux dérivées partielles........... 3 1.2 Rappels sur

Plus en détail

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008

Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre 2008 Corrigé du BTS, groupement A, Nouvelle-Calédonie, novembre EXERCICE 1 séries de FOURIER 1 si t α ft) = si α < t < α avec < α < 1 si α t et f paire et périodique de période 1 Représentation de f sur ; lorsque

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

1.1.1.1 La construction algébrique de C et correspondance géométrique

1.1.1.1 La construction algébrique de C et correspondance géométrique Chapitre 1 Nombres Complexes 1.1 Le Corps C des complexes 1.1.1 Ecriture algébrique et correspondance Géométrique 1.1.1.1 La construction algébrique de C et correspondance géométrique Il y a plusieurs

Plus en détail

Chap. 6 : Problèmes de Sturm-Liouville

Chap. 6 : Problèmes de Sturm-Liouville Chap. 6 : Problèmes de Sturm-Liouville Jean-Philippe Lessard Dépt. de mathématiques et de statistique Université Laval, Québec, Canada 4 novembre 2014 Introduction Espaces de fonctions et produits scalaires

Plus en détail