Chapitre 11 : L inductance

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 11 : L inductance"

Transcription

1 Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ ,3 A/s E. On donne A πr,5π 4 m. () À prtir de l éqution.4, on trouve ξ ξ,6 3 8µH Selon l exemple., q q µ n A n µ A 8 6 (4π 7 )(,5π 4 )(,5) 9spires/m N n 9 (,5) 47,5 spires (b) On utilise l éqution 9.3 pour un long solénoïde : B µ ni 4π 7 (9) (3) 7,6 4 T E3. () À prtir de l éqution.3, on trouve NΦ B I Φ B I N (, 3 )() 5 4,8 µwb (b) À prtir de l éqution.4, on trouve ξ, 3 (35) 4, mv E4. Dns les trois cs on utilise l éqution.4 : () ξ d I e t τ I τ (b) ξ d t bt (bt ) (c) ξ d (I sin (ωt)) E5. À prtir de l éqution.3, on trouve τ e t τ I I ω cos (ωt) NΦ B I NΦ B I 5(5 6 ) 3,75 4 H À prtir de l éqution.4, on trouve ξ 3,75 4 (5) 9,38 mv E6. À prtir de l éqution.4, on trouve ξ ξ 7, 3 6 4,5 4 H v4 Électricité et mgnétisme, Chpitre : inductnce

2 À prtir de l éqution.3, on trouve NΦ B I Φ B I N (4,5 4 )(4,5) 6 33,8 µwb E7. À prtir de l éqution.4, on trouve ξ ξ 8 93,8 mh E8. À prtir du résultt de l exemple., on trouve µ π ln b (4π 7 )(8) π ln 4 3,3 3 9,3 µh E9. indice est ssocié à l bobine et l indice u solénoïde. Selon l éqution 9.3, le module du chmp mgnétique produit pr le solénoïde est B µ n I µ N I Il s git d une sitution similire à celle de l exemple.3. Toutefois, comme l bobine possède un ryon supérieur à celui du solénoïde, on utilise A, l ire du solénoïde, pour le clcul du flux mgnétique. Selon l éqution., le flux mgnétique trversnt l bobine est Φ BA cos θ µ N I A cos θ µ N I πr cos θ À prtir de l éqution.5, on trouve N Φ MI M N Φ I N I µ N I πr cos θ M µ N N πr cos θ (4π 7 )(5)(36)π(,7 ) cos( ),4 8,43 6 H E. À prtir de l éqution.6, on trouve ξ M 4 3 (5), V E. indice est ssocié à l bobine et l indice u solénoïde. Il s git d une sitution similire à celle de l exemple.3. Toutefois, comme l bobine possède un ryon supérieur à celui du solénoïde, on utilise l éqution obtenue à l exemple.3 vec A, l ire du solénoïde : () M µ n N A 4π 7 () (4) 8 4 8,4 µh (b) En dérivnt I,onobtient d 3t t 3 4t À t s, à prtir de l éqution.6, on trouve ξ M 8,4 6 (3 4()) 4, mv E. () e flux mgnétique qui trverse l bobine B et qui vient du chmp mgnétique de module B A que crée l bobine A est donné pr l éqution. pour θ : Électricité et mgnétisme, Chpitre : inductnce v4

3 Φ BA B A A B 6,5 4 5 Wb À prtir de l éqution.5, on trouve N B Φ BA MI A M N B Φ BA I A (6)(5 ),5 9 H (b) À prtir de l éqution.6, on trouve ξ AB M B,5 9 (4) 6, 8 V E3. indice est ssocié u tore et l indice à l bobine. e tore produit un chmp mgnétiquedontlemoduleb dépend, comme on l démontré dns l exemple 9.8, de l distnce r u centre du tore, B µ N I πr. Comme le chmp mgnétique est nul à l extérieur du tore, le flux mgnétique Φ quitrverselbobineestclculéàprtirdel ire A du tore. () e flux mgnétique à trvers un élément de lrgeur dr comme celui représenté à l figure.9 est dφ B da B hdr µ N I h πr dr e flux totl est donné pr Φ dφ Φ µ N I h π b µ N I h πr dr µ N I h π ln b (b) À prtir de l éqution.5, on trouve N Φ MI M Φ N I b dr r µ N N h π µ N I h π [ln (r) b ln b E4. indice est ssocié à l bobine et l indice u solénoïde. Selon l éqution 9.3, le module du chmp mgnétique produit pr le solénoïde est B µ n I Il s git d une sitution similire à celle de l exemple.3, mis l ngle entre l xe de l bobine et celui du solénoïde est θ 6. Selon l éqution., le flux mgnétique trversnt l bobine est Φ BA cos θ µ n I A cos θ À prtir de l éqution.5 et pour A πr 4π 4 m,ontrouve N Φ MI M N Φ I N I µ n I A cos θ M µ N n A cos θ 4π 7 () () 4π 4 cos (6 ) 8,9 µh E5. () À prtir de l éqution.3, on trouve N Φ I Φ I N ( 3 )(,4) 8,6 mwb v4 Électricité et mgnétisme, Chpitre : inductnce 3

4 (b) À prtir de l éqution.5, on trouve N Φ MI Φ MI N (7 3 )(4,5) 8,394 mwb (c) À prtir de l éqution.5, on trouve N Φ MI Φ MI N (7 3 )(,4),4 mwb (d) À prtir de l éqution.4, on trouve ξ 3 (4) 8, mv (e) À prtir de l éqution.6, on trouve ξ M 7 3 (,8),6 mv (f) À prtir de l éqution.6, on trouve ξ M 7 3 (4) 8, mv E6. () On reprend l éqution.7, mis en enlevnt le terme qui contient l résistnce : ξ ξ ξ I t ξ I ξ t (b) Selon l éqution.8, I ξ e t, mis comme, on peut remplcer l expontentielle pr s vleur pproximtive, e t I ξ I t ξ t ξ t ξ t E7. () À prtir de l éqution.8, on trouve I ξ e t à 6 e 6 (5 3 )! t, et l éqution.8 devient,79 A (b) On clcule d bord le tux de chngement du cournt vec l éqution.8 : d ξ e t ξ d e t ξ e t ξ t e Puis, à prtir de l éqution.4, on trouve, à t 5ms, ξ ξ t e ξe t e 6 3 (5 ),3 V (c) À prtir de l éqution.8, on trouve I,8I I e t,8 e t e t, t ln(,) t ln (,) 6 ln (,) 536 ms E8. () En combinnt l éqution 6. et l éqution., on trouve V I ξ e t V ξe t,5ξ ξe t,5 e t t ln(,5) t ln (,5) 6 ln (,5) 693 ms (b) On clcule d bord le tux de chngement du cournt vec l éqution. : 4 Électricité et mgnétisme, Chpitre : inductnce v4

5 d ξ t e ξ d e t ξ t e ξ t e Puis, à prtir de l éqution.4, on trouve, à t 693 ms, ξ ξ t e ξe t e 6 3 (693 ),5 V E9. () On clcule d bord le tux de chngement du cournt vec l éqution.8 : d ξ e t ξ d e t ξ e t ξ t e À t, (b)onveutque ξ t e t ξ 6, A/s,5 t ξ t e,5 ξ e t,5 t ln(,5) t ln (,5) 6 ln (,5) 3 ms (c) vleur finle du cournt est I ξ 6 A. Pour le clcul demndé, l éqution s écrit I t t t I ( ) t ξ ξ ms vleur trouvée correspond à l constnte de temps du circuit. E. () vleur initile du cournt est I ξ. À prtir de l éqution., on trouve I,5I I e t,5 e t t ln(,5) 6 3 t ln (,5),5 ln (,5),66 Ω (b) vleur finle du cournt est I ξ. À prtir de l éqution.8, on trouve I,4I I e t,4 e t e t,6 t ln(,6) t ln(,6) (,) ln(,6),39 H E. () chute de potentiel ux bornes de l bobine qui vient de s résistnce est donnée pr l éqution 6. : V I (6) V f.é.m. induite ux bornes de l bobine est donnée pr l éqution.4 : ξ 4 3 (5), V différence de potentiel totle ux bornes de l bobine est V V + ξ 3, V de sorte que V 3, V (b) Seule l f.é.m. induite chnge de signe : ξ 4 3 ( 5), V de sorte que v4 Électricité et mgnétisme, Chpitre : inductnce 5

6 V V + ξ +, V V, V Dns les deux cs, le potentiel chute à trvers l bobine. E. () À prtir de l éqution.8, schnt que I,4I à t 4ms, on clcule l constnte de temps : I,4I I e t τ,4 e t τ e t τ,6 t τ t ln(,6) τ ln(,6) 4 3 ln(,6) 78,3 ms On reprend l éqution.8 et on cherche t pour que I,8I : I,8I I e t τ,8 e t τ e t τ, t τ ln(,) t τ ln (,) 78,3 3 ln (,) 6 ms (b) À prtir de l éqution.9, on trouve τ τ 78,3 3,94 H E3. () vleur finle du cournt est I ξ. À prtir de l éqution.8, on trouve I,5I I e t,5 e t e t,5 t ln(,5) t 3 ln (,5) 5 ln (,5) 5,55 ms (b) À prtir de l éqution.8 et à t 5τ, ontrouve I I e 5τ τ I e 5,993 I I 99,3 % E4. () À l instnt initil, lorsqu on ferme l interrupteur, I 3 et le circuit se comporte comme si l brnche qui contient l bobine étit bsente. es deux résistnces sont en série et I I ξ + (b) Après un temps très long, l brnche qui contient l bobine se comporte comme un courtcircuit et I. e cournt dns les utres brnches prend l vleur finle donnée pr le risonnement qui conduit à l éqution., I I 3 ξ (c) Il n y plus de cournt dns l brnche qui contient l f.é.m., I,etlecournt dns le reste du circuit prend l vleur initile donnée pr le risonnement qui conduit à l éqution.8, I I 3 ξ (d) Directement, à prtir de l éqution 6., on trouve V I ξ E5. Chque spire mesure, mm de lrge. Sur,8 m, il y N,8 8spires 3 et insi n N,8 8 spires/m. Avec A πr 4π 4 m et le résultt de l exemple., on clcule 6 Électricité et mgnétisme, Chpitre : inductnce v4

7 µ n A 4π 7 () 4π 4 (,8),84 4 H longueur totle de fil du solénoïde est fil N (πr),6 m. section A fil du fil dépend du ryon du fil, qui est r fil,5 mm; donc A fil πr fil 7,85 7 m.on clcule l résistnce du solénoïde vec l éqution 6.6 : ρ fi l A fi l (,7 8 )(,6),489 Ω 7,85 7 Avec l éqution.9, on trouve τ,84 4,489,58 ms E6. () À prtir de l éqution., on trouve U I (,5) () 3 J (b) À prtir de l éqution.3, on trouve NΦ B I NΦ B I (4 5 ),5 3, mh À prtir de l éqution., on trouve U I 3, 3 (,5) 3,6 mj E7. () On donne B 4 T, si G 4 T. À prtir de l éqution.3, on trouve u B B µ ( 4 ) (4π 7 ) 3,98 mj/m3 (b) Soit V A πr π 5 m 3, le volume du solénoïde. On clcule d bord l énergie emmgsinée dns le chmp mgnétique : u B U V U u B V 3,98 3 π 5,5 7 J Avec A πr π 4 m, n N, spires/m et le résultt de l exemple., on clcule µ n A 4π 7 () π 4 (,) 39,5 6 H Finlement, à prtir de l éqution., on trouve q q U I U I (,5 7 ) 39,5 79,6 ma 6 E8. On combine l éqution. et le résultt de l exemple. pour un câble coxil : U I µ π ln b I µ I 4π ln b (4π 7 )()() 4π ln 3,5 3 U 5,55 7 J E9. () À prtir des équtions 6.,.8 et I ξ,ontrouve P I I e t τ ξ e t τ (i) À t τ, l éqution (i) devient P ξ e () 6 (,63) 9,59 W v4 Électricité et mgnétisme, Chpitre : inductnce 7

8 (b) e résultt de l prtie (c) de l exemple.4 est P I e t τ e t τ e t τ e t τ (ii) ξ À t τ, l éqution (ii) devient P ξ e e () 6 (,33) 5,58 W (c) e résultt de l prtie (e) de l exemple.4 est P ξ I e t τ e t τ (iii) ξ À t τ, l éqution (iii) devient P ξ ξ e () 6 (,63) 5, W E3. () On clcule d bord le tux de chngement du cournt vec l éqution.8 : d ξ e t ξ d e t ξ t e ξ t e À t ms, l f.é.m. induite ux bornes de l bobine est ensuite donnée pr l éqution.4 : ξ ξ t e ξe t 4e 6 3 ( ) 5 3 3,63 V (b) À prtir des équtions 6.,.8 et pour I ξ,ontrouve P I I e t ξ e t À t ms, l puissnce dissipée dns l résistnce est Ã! P (4) 6 e 6( 3 ) 5 3, W (c) e résultt de l prtie (c) de l exemple.4 est P ξ e t e t À t ms, Ãl puissnce fournie à l bobine! est P (4) 6 e 6( 3 ) 5 3 e (6) 3 ( ) 5 3, W (d) e résultt de l prtie (e) de l exemple.4 est P ξ ξ e t À t ms, Ã l puissnce fournie! pr l pile est P ξ ξ e 6( 3 ) 5 3 4,3 W E3. On veut que P P. Selon l exercice 3b, P ξ e t Selon l prtie (c) de l exemple.4, P ξ e t e t ξ e t e t Donc, 8 Électricité et mgnétisme, Chpitre : inductnce v4

9 ξ e t t ln ξ e t t ln e t e t e t ln 5,55 ms Puisque τ, on peut ussi exprimer le résultt comme t,693τ E3. À prtir de l éqution., on trouve U I U I (,) 4,5 H E33. À prtir de l éqution.3, on trouve e t u B B µ B µ u B p (4π 7 )(8 3 ),48 4 T Avec n N 3, 5 spires/m et l éqution 9.3, on trouve B µ ni I B µ n,48 4 (4π 7 )(5) 75, ma E34. () On insère les vleurs dns l éqution.8 : I ξ e t e t e t,55 6( 3 ) ln(,55) 6( 3 ) ln(,55), H (b) Avec I ξ et l éqution., on trouve U mx I ξ (,) 4 6,6 J E35. () On combine les équtions 9.3 et.3 et on trouve u B B µ (µ ni) µ µ n I (b) e volume intérieur du solénoïde est V A. énergie ccumulée dns le solénoïde est U u B V µ n I (A ) (i) Si on fit ppel à l éqution., l éqution (i) devient I µ n I (A ) µ n A ce qui correspond u résultt de l exemple.. E36. () On donne I,5 sin (5t); donc d (,5 sin (5t)),5 (5) cos (5t) À t, 3 s, vec l éqution.4, on trouve CQFD ξ 6 3 (,5) (5) cos 5, 3 (b) On dérive l éqution. et on trouve, à t, 3 s, 59, V du I du 6 3 (,5) sin 5, 3 (,5) (5) cos 5, 3 du 6 3 (,5) (5) sin 5, 3 cos 5, 3 6,4 W E37. () Avec l éqution.4 et en schnt que f ω π, on trouve v4 Électricité et mgnétisme, Chpitre : inductnce 9

10 f ω π π C π (8 3 )( 6 ) 563 Hz (b) Selon l éqution.6, l vleur mximle du cournt est I ω Q Q C 6 6 (8 3 )( 6 ), A (c)onveutqueu C U et on sit que l énergie totle du circuit correspond à Q C qu on l démontré à l section.4. Si les énergies sont églement réprties, lors U C Q C Q C Q C Q Q (i) Selon l éqution.5b, l chrge sur le condensteur est décrite pr insi Q Q cos (ω t) (ii) Si on combine les équtions (i) et (ii), Q cos (ω t) Q cos (ω t) q ω t rccos Comme on cherche le premier instnt où l condition est respectée, on conserve le résultt pour l ngle ω t qui est dns le premier cdrn. Si cet ngle est en rdins, q ω t,785 t C (,785) p (8 3 )( 6 )(,785), 4 s (d) énergie dns le condensteur et dns l bobine est donnée pr les équtions 5.9 et., soit U C Q C et U I. Dns le logiciel Mple, on donne une vleur à C et à. Ensuite, on définit l expression de l chrge, du cournt et des deux formes d énergie. Finlement, on trce le grphe demndé : > restrt; > C:e-6; :8e-3; Q:6e-6; > omeg:/sqrt(*c); > Q:Q*cos(omeg*t); > i:-diff(q,t); > UC:Q^/(*C); > U:(/)**i^; > plot([uc,u],t..*pi/omeg,color[blue,red]); e grphe confirme le résultt de l question (c). E38. () À prtir de l figure., on constte que le déli fourni correspond u qurt de l période d oscilltion. Schnt que T ω π et à prtir de l éqution.4, on trouve 4 s T 4 π 4 ω π C 4 π (5 9 ) µ ( 4 ) 5 9 π,6 H (b)onsitqueu mx U C mx Q C, donc U mx ( 6 ) (5 9 ) 8, 3 J Électricité et mgnétisme, Chpitre : inductnce v4

11 E39. Schnt que πf ω, on clcule les fréquences ngulires correspondnt ux bornes de l intervlle : ω πf π ,46 6 rd/s ω πf π 6 3, 7 rd/s À prtir de l éqution.4, qui permet d écrire que C ω, on trouve les deux vleurs de cpcité : C ω (3,46 6 ) (5 3 ),67 F C ω (, 7 ) (5 3 ),98 F intervlle des vleurs de cpcité est donc,98 pf C 6,7 pf E4. () À prtir de l éqution., on trouve q ω ω q C 4 r ω (4 3 )( 6 ) (),5 3 rd/s 4(4 3 ) (b) Comme on l vu dns le prgrphe qui suit l éqution., l mortissement critique débute lorsque q q ω C C 4 3 8,3 Ω 6 E4. Selon l éqution.9, l chrge sur le condensteur est donnée pr Q Q e t sin(ω t + δ) Mis, comme 4 C,onpeutffirmer que ω ω et que Q Q e t sin(ω t + δ) On clcule l expression du cournt à tout instnt : I dq d Q e t sin(ω t + δ) I Q hsin(ω t + δ) d e t i + e t d (sin(ω t + δ)) e t + e t (ω )cos(ω t + δ) I Q hsin(ω t + δ) I Q e t ω cos(ω t + δ) sin(ω t + δ) i Encore une fois, si 4 C, lors 4 C C ω, et on peut négliger le deuxième terme de l expression pour le cournt : I Q e t ω cos(ω t + δ) À tout instnt, l énergie totle dns le circuit correspond à U U C + U Q C + I U C Q t e sin (ω t + δ)+ Q t e ω cos (ω t + δ) v4 Électricité et mgnétisme, Chpitre : inductnce

12 U Q t e C sin (ω t + δ)+ω cos (ω t + δ) U Q t e C sin (ω t + δ)+ C cos (ω t + δ) Si on utilise l identité sin θ +cos θ, lors U C Q t e E4. () À prtir de l éqution.4, on trouve sin (ω t + δ)+cos (ω t + δ) U C Q t e CQFD ω C (4 3 )(, 6 ) 5, 4 rd/s (b) À prtir de l éqution., on pose l éqution de l contrinte : q ω ω q,999ω ω,999ω 4 ω (,999) ω 4 (,999) ω 4 ω q (,999) 4 3 5, 4 q (,999),79 Ω (c) Dns le logiciel Mple, on définit l expression de l fréquence ngulire des oscilltions morties et on trce le grphe demndé : > restrt; > :4e-3; C:e-8; w:/sqrt(*c); > wp:sqrt(w^-(/(*))^); > plot(wp,..); (d) Dns le logiciel Mple, on définit l vleur critique de fréquence ngulire et on résout l éqution : > T:864; > wc:*pi/t; > solve(wpwc,); On ne conserve que le résultt positif, 4, 3 Ω Problèmes P. () Comme elles sont en série, les deux bobines sont trversées pr le même cournt I, et l différence de potentiel entre les deux extrémités correspond à l somme des f.é.m. induites. Pour chque bobine, on utilise l éqution.4 : ξ ξ + ξ ( + ) Si on compre à ξ éq, on peut ffirmer que l uto-inductnce équivlente est éq + (b) Si elles sont en prllèle, l même différence de potentiel ser mesurée ux bornes des deux bobines. e cournt totl qui trverse l bobine équivlente I éq correspond à l Électricité et mgnétisme, Chpitre : inductnce v4

13 somme des cournts trversnt chcune des bobines; donc I éq I + I éq + Dns chque brnche, le tux de chngement du cournt est lié à l différence de potentiel pr l éqution.4, ξ et ξ. On réécrit l éqution.4 pour l brnche unique contennt l bobine équivlente : ξ ξ ξ éq éq éq + + éq ξ ξ + ξ ξ P. Comme elles sont en série, les deux bobines sont trversées pr le même cournt I, et l différence de potentiel entre les deux extrémités correspond à l somme des f.é.m. induites. On doit cependnt inclure l f.é.m. induite sur chque bobine pr suite de l inductnce mutuelle. On utilise les équtions.4 et.6 : ξ ξ + ξ + ξ + ξ ± M + M ( + ± M) e signe ± devnt le terme d induction mutuelle vient de ce que l f.é.m. ssociée à l inductnce s dditionne ou se soustrit à l uto-induction selon le sens des enroulements pour chque bobine. Si on compre à ξ éq, on peut ffirmer que l inductnce équivlente à ce système de deux bobines est éq + ± M P3. figure qui suit montre une portion de longueur des deux fils. e centre des deux fils est à une distnce d : Entre les deux fils, le chmp mgnétique de chcun des deux fils est dns le même sens. e module du chmp mgnétique résultnt est, selon l éqution 9., B B + B µ I π(d r) + µ I πr e flux mgnétique à trvers un élément de lrgeur dr est, selon l éqution. et pour θ, dφ B BdA B dr µ I π(d r) + µ I πr dr µ I π d r + r dr v4 Électricité et mgnétisme, Chpitre : inductnce 3

14 Dns tout l espce qui sépre les deux fils, le flux totl correspond à Φ B dφ B d µ I π d r + r dr µ I d π d r + r dr Φ B µ I π Φ B µ I π [ ln (d r)+ln(r) d µ I π ( ln (d ) ln()) µ I π ( ln ()+ln(d )+ln(d ) ln ()) ln d Si on utilise ce résultt dns l éqution.3 vec N et m, on trouve Φ B I µ I π ln d I µ π ln d µ π ln d CQFD P4. On reprend le résultt de l prtie (b) de l exemple 9.6, qui donne le module du chmp mgnétique à l intérieur d un fil de ryon : B µ Ir π En un point donné à l intérieur du fil (r <), l densité d énergie ssociée u chmp mgnétique correspond à u B B µ µ Ir µ π µ I r 8π 4 énergie contenue dns une mince coquille cylindrique d épisseur dr et de longueur est du B u B dv, dns lquelle dv πr dr. énergie totle contenue dns tout le fil est U B du B u B dv µ I r 8π 4 (πr ) dr µ I 4π 4 Si on compre ce résultt vec l éqution., r 3 dr µ I 4 4π 4 4 µ I 6π U B I µ I 6π I µ 8π P5. e flux mgnétique à trvers le cdre ssocié u cournt I dns le fil rectiligne déjà été clculé u problème 7 du chpitre : Φ B µ Ic π ln +b Si on utilise ce résultt dns l éqution.5 pour N,ontrouve Φ B MI µ Ic π ln +b MI M µ c π ln +b P6. e flux mgnétique totl à trvers l section du tore déjà été clculé à l prtie () de l exercice 3 : Φ B µ NIh π ln b Si on utilise ce résultt dns l éqution.3, on trouve NΦ B I NΦ B I µ N h π ln b P7. () Soit U, l énergie totle dns le circuit, et U C, l énergie ccumulée dns le condensteur. 4 Électricité et mgnétisme, Chpitre : inductnce v4

15 On fit l hypothèse que l frction d énergie perdue pr cycle dns le condensteur est l même que celle qui est perdue dns tout le circuit, de sorte que U U U C U C. chrge ccumulée à tout instnt sur le condensteur est donnée pr l éqution.9, et l énergie ccumulée sur le condensteur à l instnt t est U C Q C C Q e t sin(ω t + δ) C Q t e sin (ω t + δ) Au bout d une période, t t + T et, si sin (θ +π) sinθ, U C C Q e (t+t ) sin (ω (t + T )+δ) C Q e (t+t ) sin (ω t + δ) différence entre les deux vleurs d énergie est U C U C UC C Q t e sin (ω t + δ) U C C Q t e sin (ω t + δ) de sorte que U U U C U C e T µ t C Q e sin (ω t+δ) e T t C Q e sin (ω t+δ) C Q e (t+t ) e T sin (ω t + δ) On suppose que le système est fortement sous-morti, ce qui implique que devnt ω et que ω ω. Si c est le cs, ω 4π T T ; donc utiliser l pproximtion suggérée et poser que e T U U (b) Si U U T T π ω π ω,, lors Q C π, 34 T (c) Si le système est sous-morti, lors ω ω C ; donc Q C ω 34 C P8. () À prtir de l éqution.8, on trouve I,5I I e t,5 e t (i) est petit 4π. On peut lors dns l éqution (i) : U U π Q C CQFD C C (34) 8 3 (34) (,5),73 µf e t,5 t ln(,5) t 3 ln (,5) 9 ln (,5),54 3 s (b) vleur mximle de l puissnce dissipée dns l résistnce est P mx I. Si on utilise le résultt de l prtie (b) de l exercice 3, P I e t,5p mx I e t,5 e t e t,5i,5 e t,99 t ln(,99) t 3 ln (,99) 9 ln (,99),73 3 s (c) énergie ccumulée dns l bobine à tout moment est U I et s vleur mximle est U mx I. On veut que U U mx I 4 I I,5I (i) v4 Électricité et mgnétisme, Chpitre : inductnce 5

16 Avec l éqution.8, l éqution (i) devient I e t,5i e t,5 Ils gitdelmêmeéqutionqu àlprtie (b), pour lquelle on trouvé t,73 3 s P9. Selon l éqution 9.3, le module du chmp mgnétique dns le solénoïde est B µ ni µ N I Mis l longueur du solénoïde correspond à N () si est le ryon du fil dontest constitué le solénoïde; donc B µ N N() I µ I e flux mgnétique à trvers l section du solénoïde est donné pr l éqution. pour θ : Φ B BA µ I πr µ πr I À prtir de l éqution.3, on trouve l vleur de l inductnce du solénoïde : NΦ B I NΦ B I Nµ πr Et finlement, on clcule l constnte de temps vec l éqution.9 : τ Nµ πr Si N fi l πr, lors fil πrn. Puis ρ fi l π ; donc πρrn π ρrn et τ Nµ πr ρrn τ µ πr 4ρ CQFD P. À l instnt initil, I 3. Après un temps très long, l brnche qui contient l bobine n engendre plus ucune f.é.m. et elle devient un court-circuit. brnche qui contient devient inutile, de sorte que I I 3 ξ. Dns l intervlle qui sépre ces deux étts, on utilise les lois de Kirchhoff. On pplique l loi des noeuds u point qui se trouve en hut de l brnche où coule I 3 : I I + I 3 (i) On pplique l loi des milles à l mille de guche : ξ I 3 (ii) On pplique l loi des milles à l mille de droite : 3 I I 3 (iii) On combine les équtions (i) et (ii) et on remplce ensuite I pr s vleur dns l éqution (iii) : 6 Électricité et mgnétisme, Chpitre : inductnce v4

17 ξ (I + I 3 ) 3 ξ I I 3 3 ξ 3 I 3 3 ξ I Cette éqution exctement l même forme que l éqution.7 si on pose que +. En dmettnt que l suite de l solution est l même, on rrive à une solution équivlente à l éqution.8 pour le cournt I 3 : I 3 ξ e t τ dns lquelle l constnte de temps prend l vleur τ + τ + CQFD P. Après un temps très long, le cournt tteint l vleur I ξ et l énergie emmgsinée dns l bobine est U mx I. À tout moment, l puissnce dissipée dns l résistnce est donnée pr P I, dns lquelle, selon l éqution., I I e t τ. De l instnt initil jusqu à ce que t, l énergie qui ser dissipée dns l résistnce est U P I I e h t τ I e t τ I τ e t τ U I τ I τ (i) Toutefois, comme τ, l éqution (i) donne U I CQFD P. Avec Q Q e t cos(ω t), on clcule l expression du cournt à tout instnt : I dq d Q e t cos(ω t) i I Q hcos(ω t) d e t + e t d (cos(ω t)) I Q hcos(ω t) i e t e t (ω )sin(ω t) I Q e t ω sin(ω t) cos(ω t) ω Q e t sin(ω t) ω cos(ω t) (i) On pose que ω tnδ. Toutefois, comme ω, lors ω. Cel implique que δ est petit, donc que tn δ sin δ et que cos δ. Ces deux reltions permettent de trnsformer l églité (i) : I ω Q e t [sin(ω t)cosδ sin δ cos(ω t)] ω Q e t sin (ω t + δ) Ou encore I A (t)sin(ω t + δ) pour A (t) ω Q e t P3. À prtir de l exemple., on énonce l uto-inductnce de chcun des deux solénoïdes, soit µ n A et µ n A. On remrque que q µ n A µ n A µ n n A A Schnt que B µ n I, Φ B A et N n, on trouve une première expression de l inductnce mutuelle des deux solénoïdes à prtir de l éqution.5 : v4 Électricité et mgnétisme, Chpitre : inductnce 7

18 N Φ MI M Φ N I B A N I µ n I A N I µ n A (n )µ n n A À cuse de l symétrie, on peut ffirmer qu une utre vleur de l inductnce mutuelle serit donnée pr M µ n n A. Ces deux vleurs sont nécessirement égles et leur produit donne M M M (µ n n A )(µ n n A )µ n n A A Etilestfciledevoirque M CQFD P4. À l exercice 4, on développé une expression pour le cournt dns un circuit sousmorti : I Q e t ω cos(ω t + δ) À tout moment, l puissnce dissipée dns l résistnce est P I Q e t ω cos(ω t + δ) ω Q t e cos (ω t + δ) vleur moyenne de cos θ sur un cycle est cos θ π π cos θdθ sin θ cos θ π + θ π π (π ) de sorte que P moy P ω Q t e cos (ω t + δ) P moy ω Q e t CQFD P5. éqution.9 donne l vrition de l chrge sur le condensteur : Q Q e t sin(ω t + δ) (i) Si on dérive cette expression, comme à l exercice 4, on obtient l expression du tux de chngement de l chrge à tout moment : dq Q e t ω cos(ωt + δ) sin(ωt + δ) (ii) On doit dériver une nouvelle fois pour obtenir d Q. On lisse le soin à l élève de montrer que d Q h i Q e t (ω 4 ) sin(ωt + δ) ω cos(ωt + δ) On insère les vleurs pour Q, dq l éqution différentielle.7 : d Q + dq Q e t Q e t + Q C h (ω 4 ) +Q e t et d Q données pr les équtions (i), (ii) et (iii) dns i sin(ωt + δ) ω cos(ωt + δ) ω cos(ωt + δ) sin(ωt + δ) + Q t C e sin(ω t + δ) h 4 (ω ) sin(ωt + δ) ω cos(ωt + δ) +ω cos(ωt + δ) sin(ωt + δ)+ C sin(ω t + δ) i 8 Électricité et mgnétisme, Chpitre : inductnce v4

19 Q e t 4 (ω ) + C sin(ωt + δ) Pour que cette dernière églité soit toujours vrie, le terme entre prenthèses doit toujours être nul : 4 (ω ) + C C ω 4 (ω ) (ω ) q ω CQFD (ω ) 4 + C C q 4 ω C 4 v4 Électricité et mgnétisme, Chpitre : inductnce 9

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

Choix binaires avec influences sociales : mode d emploi et conséquences économiques

Choix binaires avec influences sociales : mode d emploi et conséquences économiques Choix binires vec influences sociles : mode d emploi et conséquences économiques Denis Phn * * CREM UMR CNRS 6, Université de Rennes /3/5 Résumé : Cette note propose une synthèse de quelques trvux conscrés

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

Portes coupe feu EI 2 30 pour tout type de construction

Portes coupe feu EI 2 30 pour tout type de construction L nouvelle génértion de portes coupe feu élégntes Portes coupe feu EI 30 pour tout type de construction L nouvelle génértion de portes métlliques NovoPort Premio devient l référence dns l protection incendie

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Paul Horowitz & Winfield HiIl

Paul Horowitz & Winfield HiIl m m Pul Horowitz & Winfield HiIl I l, m VOLUME 1 TECHNIQUES ANALOGIQUES m m m m m m / l E LE KTO R m m m m TABLE DES MATIÈREiS PRÉFACE XVII 1 LES BASES INTRODUCTION 1 TENSION. COURANT ET RÉSISTANCE 1.1

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Compt Avec EBP Compt, vous ssurez le suivi de l ensemble de vos opértions et exploitez les données les plus complexes en toute sécurité. Toutes les fonctionnlités essentielles

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

VN-8700PC VN-8600PC VN-8500PC

VN-8700PC VN-8600PC VN-8500PC ENREGISTREUR VOCAL NUMÉRIQUE VN-8700PC VN-8600PC VN-8500PC FR MODE D EMPLOI Merci d voir porté votre choix sur cet enregistreur vocl numérique. Lisez ce mode d emploi pour les informtions concernnt l emploi

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Conseils et astuces pour les structures de base de la Ligne D30

Conseils et astuces pour les structures de base de la Ligne D30 Conseils et stuces pour les structures de bse de l Ligne D30 Conseils et stuces pour l Ligne D30 Ligne D30 - l solution élégnte pour votre production. Rentbilité optimle et méliortion continue des séquences

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf.

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf. Tleu d extension de mise en sécurité pour CMSI type B modulle Réf. : 00 Module deux lignes de mise en sécurité Réf. : 00 DE MISE EN MISE EN 5 7 8 8 PROGRAM. SYSTEME Fus. F, 5H50V MANUEL DE MISE EN ŒUVRE

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages Modifiction simultnée de plusieurs crctéristiques d un bien hédonique : une nouvelle méthode de clcul de l vrition de bien-être des ménges Trvers Muriel * Version provisoire Résumé : De nombreuses situtions

Plus en détail

TP Cours Ferromagnétisme - Transformateur

TP Cours Ferromagnétisme - Transformateur TP Cours Ferromagnétisme - Transformateur 1. PROPRIETES DES MILIEUX FERROMAGNETIQUES La réalisation de transformateurs nécessite l utilisation de matériaux fortement aimantables. Ce sont les ferromagnétiques.

Plus en détail

Statuts ASF Association Suisse Feldenkrais

Statuts ASF Association Suisse Feldenkrais Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion

Plus en détail

Adaptation spatio-temporelle et hypermédia de documents multimédia

Adaptation spatio-temporelle et hypermédia de documents multimédia Adpttion sptio-temporelle et hypermédi de documents multimédi Séstien Lorie Jérôme Euzent Nil Lyïd INRIA Rhône-Alpes - LIG 655 Avenue de l Europe Montonnot - Sint Mrtin 38334 Sint Ismier Cedex {Sestien.Lorie,Jerome.Euzent,Nil.Lyid}@inrilpes.fr

Plus en détail

CHAPITRE XII : L'induction électromagnétique et les inducteurs

CHAPITRE XII : L'induction électromagnétique et les inducteurs CHAPITRE XII : L'induction électromagnétique et les inducteurs XII. 1 Nous avons vu dans le chapitre XI qu'un courant produisait un champ magnétique. A la suite de cette observation, les scientifiques

Plus en détail

Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11

Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11 Electrovnne double Dimension nominle 3/8 - DMV-D/11 DMV-DLE/11 7.30 M Edition 11.13 Nr. 223 926 1 6 Technique L électrovnne double DUNGS DMV intère deux électrovnnes dns un même bloc compct : - vnnes d

Plus en détail

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

FSAB1201 Physique 1, Electricité Questions posées à l examen

FSAB1201 Physique 1, Electricité Questions posées à l examen FS0 Physique, Electricité Questions posées à l examen vertissement au lecteur est dans le dossier de travail des modules 5 et 6 qu on définit la matière de l examen concernant la partie électricité, pas

Plus en détail

Guide des bonnes pratiques

Guide des bonnes pratiques Livret 3 MINISTÈRE DE LA RÉFORME DE L'ÉTAT, DE LA DÉCENTRALISATION ET DE LA FONCTION PUBLIQUE 3 Guide des bonnes prtiques OUTILS DE LA GRH Guide des bonnes prtiques Tble des mtières 1. Introduction p.

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

Couche réseau. Circuits virtuels. Modèle de service de la couche réseau. Circuits virtuels : protocoles de signalisation

Couche réseau. Circuits virtuels. Modèle de service de la couche réseau. Circuits virtuels : protocoles de signalisation ouche réseu Fonctionnlités de l couche réseu Objectifs : omprendre les principes sous-jcents de l couche réseu : routge (choix du chemin) Pssge à l échelle omment fonctionne un routeur escription du routge

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2 CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les

Plus en détail

WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE

WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE FORMULAIRE À RENVOYER PAR RECOMMANDÉ À : ACERTA CAS, BP 24000, 1000 Bruxelles (Centre de Monnie) Cse destinée à Acert Dte de

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds Φ (Chpitre 4) 3 L bourse ou l vie ou Comment fire des ronds Imginez que vous possédez un portefeuille de vleurs boursières. Voici le grphe de ses fluctutions en fonction du temps (bscisse, x) et de l rgent

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

Clapets coupe-feu. The art of handling air. Type FKA-EU Testé conforme à la norme EN 1366-2. FKA-EU/DE/BE/fr

Clapets coupe-feu. The art of handling air. Type FKA-EU Testé conforme à la norme EN 1366-2. FKA-EU/DE/BE/fr FKA-EU/DE/BE/fr Clpets coupe-feu Type FKA-EU Testé conforme à l norme EN 1366-2 conformément à l Déclrtion de performnce DoP / FKA-EU / DE / 2013 / 001 The rt of hndling ir Contenu Description Description

Plus en détail

Chaudière gaz murale à condensation. THISION S 1,0 48,7 kw. SMARTRON 2-25 kw. THISION L 10,1-142,3 kw

Chaudière gaz murale à condensation. THISION S 1,0 48,7 kw. SMARTRON 2-25 kw. THISION L 10,1-142,3 kw Chudière gz murle à condenstion THISION S 1,0 48,7 kw 3.2 Description du produit 3.3 Références de commnde 3.4 Schém de principe 3.15 Accessoires 3.18 Crctéristiques techniques 3.24 Pln coté 3.27 Circulteurs

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

Optimisation non linéaire

Optimisation non linéaire 8-1-003 Optimistio o liéire Nio Silerio Support e cours proisoire pour l uité e leur Mthémtiques et sttistiques estié ux clsses u BTS Comptbilité-Gestio e l ECG. Itrouctio Au lycée, ue gre prtie u cours

Plus en détail

EnsEignEmEnt supérieur PRÉPAS / BTS 2015

EnsEignEmEnt supérieur PRÉPAS / BTS 2015 Enseignement supérieur PRÉPAS / BTS 2015 Stnisls pour mbition de former les étudints à l réussite d exmens et de concours des grndes écoles de mngement ou d ingénieurs. Notre objectif est d ccompgner chque

Plus en détail

CHAPITRE 13 : CIRCUIT ELECTRIQUE & ALLUMAGE

CHAPITRE 13 : CIRCUIT ELECTRIQUE & ALLUMAGE CHAPITRE : CIRCUIT ELECTRIQUE CIRCUIT ELECTRIQUE LOCALISATIS DES PIECES ROADSTER CHAPITRE : CIRCUIT ELECTRIQUE 0. Boines et ougies. Démrreur. Alternteur. Relis, mxifusile 0 A. Contcteur point mort, mnocontct

Plus en détail

Le canal étroit du crédit : une analyse critique des fondements théoriques

Le canal étroit du crédit : une analyse critique des fondements théoriques Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

EY-BU 292 : interface Ethernet novanet, modunet292

EY-BU 292 : interface Ethernet novanet, modunet292 Fiche technique 96.015 EY-BU 292 : interfce, Votre tout en mtière d'efficcité énergétique SAUTER EY-modulo 2 intégré dns l technologie IP connue Crctéristiques Produit de l fmille de systèmes SAUTER EY-modulo

Plus en détail

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement.

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement. Fibilité, sécurité et enfichge intégrl éprouvés Tous les connecteurs sont équipés de dispositifs de verrouillge ntirrchement. 100% stekerbr Qu est-ce qu une instlltion 100 % enfichble? Mtériel fourni en

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

VIBRATIONS COUPLEES AVEC LE VENT

VIBRATIONS COUPLEES AVEC LE VENT VIBRATIONS OPLEES AVE LE VENT Pscl Hémon Lbortoire d Hydrodynmique, LdHyX Ecole Polytechnique, Pliseu Octobre 00 Vibrtions couplées vec le vent Si vous pense que j i révélé des secrets, je m en ecuse.

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

ROBOTUNITS - THE MODULAR AUTOMATION SYSTEM. 16x40 40x40 40x80 80x80 40x40 40x80 50x50 50x100 50x200 100x100 100x200 25x200 lean lean

ROBOTUNITS - THE MODULAR AUTOMATION SYSTEM. 16x40 40x40 40x80 80x80 40x40 40x80 50x50 50x100 50x200 100x100 100x200 25x200 lean lean ROBOTUNITS - THE MODULAR AUTOMATI SYSTEM Prox Technologies is the uthorized distriutor of Rootunits in Cnd, providing wide rnge of extrusions, technicl support nd design engineering. We hve the tem expertise

Plus en détail

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.

16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C. 16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2 Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques

Plus en détail