Date doc LIVRE BLANC. Les Big Data pour les services publics : enjeux, technologies, usages. En partenariat avec

Dimension: px
Commencer à balayer dès la page:

Download "Date doc LIVRE BLANC. Les Big Data pour les services publics : enjeux, technologies, usages. En partenariat avec"

Transcription

1 Date doc LIVRE BLANC Les Big Data pour les services publics : enjeux, technologies, usages En partenariat avec 2015 CXP Page 1/30 Livre Blanc Avril 2015

2 Les Big Data pour les services publics Date doc LES AUTEURS Emmanuel Lartigue Analyste Senior / Consultant BI, le CXP Mathieu Poujol Principal Consultant, Cyber Security, Infrastructures and Middleware, CXP-PAC Nikolai Janoschek Research Analyst, CXP-BARC 2015 CXP Page 2/30 Livre Blanc Avril 2015

3 SOMMAIRE 1. Les ambitions du Secteur Public 2. Les Big Data : apports et enjeux 3. La maîtrise des dispositions juridiques 4. Les technologies liées aux Big Data 5. Applications et usages INTRODUCTION Les systèmes d'information des services publics brassent un nombre important de flux de données concernant tant le fonctionnement de la ville et que les déclarations des citoyens. La croissance exponentielle du volume de données disponible et les corrélations entre ces données présente un véritable enjeu pour le secteur public. Les initiatives autour du Big Data y sont nombreuses et les attentes importantes : un meilleur service rendu aux usagers par une optimisation opérationnelle ou par une offre de services plus large, une réorganisation de la prestation de service grâce aux nouvelles technologies, un meilleur partage des connaissances, ou encore un renforcement du lien social par une meilleure prise en compte des applications digitales : web, blogs, réseaux sociaux, etc. Tout cela avec un enjeu sécuritaire fort : si les Français sont inquiets sur l exploitation de leurs données personnelles, ils accordent leur confiance à l Etat pour les héberger et en garantir la sécurité d accès. De nombreuses initiatives ont été engagées et plusieurs projets lancés par les organismes intéressés. Le secteur privé témoigne régulièrement de cas d usages métiers liés aux Big Data, des applications qui pourraient être reprises dans le secteur public. Nous présenterons dans ce document deux projets Big Data dans le secteur public : un lié à la recherche, un autre lié aux bibliothèques, ainsi qu un éclairage sur la coordination nationale des initiatives sur les données. Toutefois, les responsables projets butent sur l absence de ligne directrice et sur le choix des socles technologiques. Trop d incertitudes demeurent encore quant aux autres choix techniques à mettre en œuvre et sur l effort de conduite du changement à mener. La prise en compte de ces nouveaux canaux de communication exigent une nouvelle architecture technique que nous allons décrire dans les derniers chapitres CXP Page 3/30 Livre Blanc Avril 2015

4 1 - LES ATTENTES DU SECTEUR PUBLIC Le CXP a interrogé les acteurs du Secteur Public dans le but de mieux comprendre les nouvelles attentes et les futurs défis à relever dans la prise en compte des Big Data et d améliorer la performance des services publics. UN MEILLEUR SERVICE FOURNI AUX USAGERS Le service public, dans le cadre de ses missions et pour rendre un meilleur service aux usagers, doit veiller au bon usage de la réutilisation des données. La gouvernance de ces données, et les questions liées à l intégrité, à la neutralité et à la qualité des données, sont un des enjeux de la modernité et de la transparence du service public. Les projets Big Data ont déjà montré leur efficacité dans la relation avec les citoyens en proposant à la population de coparticiper à la gestion de la cité, tout en recherchant de nouvelles économies et une meilleure efficacité. Les données des villes numériques, une fois analysées, permettront d imaginer des services novateurs, qui influeront sur l organisation des villes et le quotidien des individus. DES SOLUTIONS INTÉGRÉES POUR TOUT TYPE DE DONNEES Dans un contexte économique difficile où les services publics sont confrontés aux défis de la rationalisation des coûts et de la maîtrise des dépenses, les solutions informatiques recherchées doivent être optimisées et si possible centralisées. Seules les données structurées sont bien maitrisées aujourd hui (soit 20% des données). Les nouveaux systèmes d informations doivent prendre en compte des formats de données très variés, documents, vidéos, images, et proposer si possible une gestion transparente de ces nouveaux formats. Afin de pouvoir capitaliser sur les compétences déjà maîtrisées, les nouveaux outils doivent si possible être graphiques, ou générer automatiquement les scripts d exécution en SQL, C ou encore R. UN MEILLEUR PARTAGE DE L INFORMATION Les données sont aujourd hui hébergées dans des silos de données. Pour tirer pleinement partie des Big Data, il sera nécessaire de bâtir des ensembles transverses et cohérents de données. Des mécanismes d habilitation et de partage des informations devront être mis en place afin de permettre au plus grand nombre d accéder à l information sans dupliquer cette information. Ces systèmes devront se conformer au cadre fixé par La loi Informatique et Libertés, dans le cas où de nombreuses informations sont susceptibles de porter atteinte aux droits et libertés des personnes, ou à leur vie privée CXP Page 4/30 Livre Blanc Avril 2015

5 2 LES BIG DATA : APPORTS ET ENJEUX POUR LE SECTEUR PUBLIC GENESE Face à l accroissement exponentiel des volumes de données liées à de nouveaux usages (réseaux sociaux, mobiles, forums, Web, blogs, s...), les architectures et outils classiques pour les traiter ne sont plus adaptés. Cet «infodéluge» a ainsi fait naître de nouvelles approches décisionnelles destinées à traiter, analyser et valoriser ces énormes volumes de données de toutes natures, semi-structurées ou non structurées, que l'on peut trouver aujourd'hui dans bon nombre d'organisations, quelle que soit leur taille : c'est cet ensemble de nouvelles technologies que l'on appelle les Big Data. Les premiers utilisateurs à s'intéresser au phénomène ont été les entreprises privées orientées consommateur final, telles que la grande distribution, les télécommunications, le tourisme, le loisir, les médias ou encore le secteur financier. Ces entreprises ont vu dans les Big Data une opportunité économique et un axe de développement pour l entreprise (conquête de marchés, captation de nouveaux client ). Des Big Data, elles attendent la possibilité de mieux connaitre leurs clients, de mieux cibler leurs attentes et, de plus en plus, d anticiper leurs demandes. Le graphique ci-dessous reprend les principales motivations qui ont poussé les entreprises à s équiper de solutions Big Data. Figure 1 - Quels problèmes souhaitez-vous adresser avec les technologies Big Data? (n=431, choix multiple) Source le CXP 2015, n=431 Si ces technologies ont eu un véritable impact sur le marketing et la relation client, qui représentent les principaux revenus des grands acteurs du Web, elles se déclinent maintenant dans d'autres secteurs sur lesquels elles ont désormais un réel impact sur la productivité et l efficacité : les sciences de la vie, les transports, l énergie, les services financiers et la sécurité CXP Page 5/30 Livre Blanc Avril 2015

6 Les objets vont devenir de plus en plus communicants et à terme les cartes SIM machines to machines, seront plus nombreuses que les cartes SIM des milliards d individus détenteurs de téléphones mobiles. L exploitation des données remontées par ces machines (sensors, web logs, smartmeters ) pour mieux comprendre leurs conditions d utilisation, avoir des métriques fiables, faire de la maintenance prédictive pour baisser les coûts de maintenance, améliorer le maintien en conditions opérationnelles et donc la satisfaction des clients, sont autant de domaines qui intéressent de près les services publics. Par exemple, dans le domaine des transports, Maersk a placé des capteurs sur ses conteneurs, permettant de connaitre en temps réel leur emplacement et de surveiller leur température lorsqu ils contiennent des denrées périssables. Ces solutions intéressent aussi les acteurs les acteurs du monde des transports comme la SNCF ou la RATP. Figure 3 Quels vont être vos prochains investissements pour les Big Data? Source: CXP Big Data Analytics Survey 2015, n = 222 Ces nouvelles technologies Big Data sont disruptives pour le système d'information : les précédents systèmes n avaient pas été prévus pour prendre en compte d aussi grands volumes de données dans une aussi grande variété : désormais les vidéos, les documents scannés, les flux temps réel peuvent être stockés et analysés. Afin de valider l architecture ainsi que le bien-fondé de l usage de ces technologies, les entreprises se sont lancées dans une phase d expérimentation (Proof Of Concept), puis elles ont franchi le pas pour s'équiper de solutions Big Data CXP Page 6/30 Livre Blanc Avril 2015

7 Figure 2 - Votre entreprise a-t-elle initié une démarche Big Data? Si oui, où en êtes-vous? Source: CXP Big Data Analytics Survey 2015, n = 526 Les projets Big Data ont un coût technologique, mais aussi organisationnel et stratégique. Les nouvelles possibilités d analyse et de prédiction peuvent avoir une incidence sur la manière dont l entreprise sert ses clients ou réalise son activité. L analyse des grands volumes de données exige par ailleurs de nouvelles compétences à la fois en algorithmique et en statistique. Ces nouveaux profils, les Data Scientists, sont encore rares sur le marché, ce qui complique la mise en place de projets novateurs sur les Big Data. DE LA COLLECTE A LA RESTITUTION Un projet Big Data commence par une collecte des données, de formats et d'origines très variés : données issues de capteurs (compteurs de visites dans un magasin, machine-outil sous surveillance constante, sondes réseaux placés sur un réseau informatique...), données issues de vidéos numériques de surveillance ou encore de documents scannés qu il faudra interpréter, logs de sites web, contenu des mails reçus d un client... Après la collecte vient l analyse des données. Cette opération nécessite de préparer la donnée nécessaire, entre autres extraire les informations importantes des données les moins structurées. Pour des documents scannés, le video-codage ou OCR (Optical Character Recognition), couplé à des outils de sémantiques, permet par exemple de catégoriser les informations des documents. Pour l analyse des voix enregistrées, des outils de type Speach to Text existent sur le marché. Pour l analyse des fichiers binaires, des parseurs (ou analyseurs syntaxiques) se chargent de décomposer les enregistrements en entités manipulables. Les données sont ensuite stockées, organisées voire indexées pour pouvoir être exploitées. Elles doivent généralement aussi être sécurisées : des droits et des habilitations sont posés sur ces données afin d en autoriser l accès uniquement aux personnes habilitées. Enfin, des outils de Data Visualisation permettent de restituer les résultats de l analyse dans un format interprétable et compréhensible par tous et d explorer la donnée, afin de mieux comprendre les comportements CXP Page 7/30 Livre Blanc Avril 2015

8 Figure 4 - Les différentes étapes du traitement des Big Data Extraire Odata, ETL, WebCrawler Data Cleaning, Data Quality Portails, Search, Collaboration Self-Service Partager Suite intégrée Stocker Hadoop, SGBDR, Cloud Restituer Analyser Datamining, R, Analytics, Data Discovery, Machine Learning Reporting Requêtes Ad-Hoc, Tableaux de bord, Data Visualization Source le CXP CXP Page 8/30 Livre Blanc Avril 2015

9 ENJEUX POUR LE SECTEUR PUBLIC La collecte des données provient régulièrement des statistiques nationales, celles de l Insee, Institut National de la Statistique et des Études Économiques, par exemple. Ces données sont issues de recensements, d enquêtes et de toutes les sources administratives numériques disponibles. L analyse des données concerne la quasi-totalité des ministères, de nombreux organismes publics, voire des institutions de droit privé chargées de missions de service public. Les statisticiens du secteur public sont surtout présents dans les services statistiques ministériels : celui de l Agriculture, le plus important, de l Éducation, du Développement Durable, des Douanes, de la Justice, du «Travail, emploi et formation professionnelle» et de la «Santé et solidarités». La Dares (travail et emploi) et la Drees (santé et protection sociale) sont des organismes qui produisent régulièrement des statistiques sur les établissements publics et leur personnel. La gouvernance des données est certainement l un des sujets les plus difficiles à traiter pour le secteur public. La pluralité des missions et la diversité des données rendent très compliquées l harmonisation et la compatibilité des données. Les données peuvent en effet provenir à la fois de l Administration Centrale, des établissements publics, des collectivités territoriales, des Conseils Généraux et des services déconcentrés. L homogénéisation des données et le partage de référentiels qui faciliteraient la consolidation des données ne sont pas toujours systématisés. La mutualisation des données doit être encouragée pour réduire le nombre de silos de données afin de réduire les coûts et favoriser les analyses croisées. La mise en place de référentiels communs à différentes administrations, avec des classes de services en fonction de chaque contributeur et de chaque partie prenante, permettrait de fiabiliser les données et de générer de la valeur à partir de ces données. Les systèmes décisionnels complètent sans remplacer les systèmes transactionnels dont les méthodes de fonctionnement au quotidien ne changent pas. Par contre ils peuvent en améliorer les processus, en leur faisant bénéficier d une information fiable car unique (stockée une seule fois au bon endroit) mais aussi potentiellement enrichie par d autres sources de données et par le fruit de potentielles analyses croisées et avancées. Enfin, une autre difficulté est le partage des informations publiques. L échange peut être réalisé soit entre les administrations, soit entre l administration et le secteur privé et enfin entre l administration et les usagers. Il peut être intéressant de valoriser auprès de tiers les traitements Big Data qui produisent des analyses de tendances, des analyses d écarts ou encore de la prospective. Quant à la restitution de ces données aux usagers, l ouverture des données publiques (Open Data), entreprise depuis maintenant quelques années, a déjà apporté de nouveaux services aux citoyens : la diffusion des horaires de trains, la liste des vélos ou des voitures disponibles en partage, la liste des codes postaux si utiles pour valider la saisie des adresses et sécuriser les livraisons et des éléments plus spécifiques comme par exemple la liste des médicaments commercialisés en France ou encore la liste des établissements d'enseignement supérieur. Autre point crucial pour le secteur public : la sécurisation des données et la maîtrise des risques liés au respect de la vie privée (données à caractère privé ou administratif) et à la protection des libertés individuelles. L utilisation de ces données doit être scrupuleusement contrôlée car elle doit respecter les contraintes juridiques liées à l utilisation ou à la divulgation de données personnelles. Enfin, il existe une contrainte particulière associée au traitement des Big Data dans le secteur public : la maitrise des dispositions juridiques liées aux données. Un point essentiel qui mérite d'être développé CXP Page 9/30 Livre Blanc Avril 2015

10 3 LA MAITRISE DES DISPOSITIONS JURIDIQUES Les technologies Big Data sont nées avec le Web et avec la mondialisation des échanges informatiques. Aussi, le défi juridique soulevé par les Big data est à la fois de portée nationale et internationale. Les usagers français connaissent déjà l existence des outils de reconnaissance faciale ou de lecture de plaques minéralogiques (comme cela se pratique à l entrée de parkings). De plus en plus sollicités par des actions de marketing direct, ils réclament de faire valoir leur droit à l oubli. Aussi attendent-ils du Service Public une exemplarité sur la protection de leurs données personnelles : ils souhaitent que leur droit soit préservé en France comme à l étranger. Ce chapitre présente les principales législations en vigueur aujourd hui ainsi que les dispositions prises dans les pays Européens. DES ORGANISMES ET DES REGLEMENTS FACE A LA MONDIALISATION La France n est pas le seul pays à subir la loi des grands acteurs du Web qui constituent des bases de plus en plus riches sur les internautes du monde entier. En avril 2015, on estime qu un internaute est déjà caractérisé en moyenne par attributs (pays, adresse IP, type de navigateur utilisé, adresse , nom, prénom, etc.). Afin que les États n encouragent pas cette inflation, une coordination européenne a été mise en place, dont le but est de juguler la diffusion de données confidentielles. Régulièrement, des commissions et des organismes tentent de s organiser et de légiférer pour préserver la confidentialité des citoyens. Les différents pays européens ont demandé aux entreprises du privé comme et au secteur public de nommer des responsables à la protection des données. La carte ci-dessous précise la date à laquelle cette décision a été prise, l intitulé de la fonction et le caractère obligatoire ou facultatif de la mesure. Figure 7 Les pays Européens qui ont légiféré la fonction de Délégué à la Protection des Données Source = La CNIL, mars 2015 Les Etats ont intérêt à protéger leurs données. De même que les banques, au travers de mesures internationales comme Bâle 3 ou l'obligation de stress tests, doivent justifier leur robustesse, les Etats devront prouver leur capacité à protéger leurs données CXP Page 10/30 Livre Blanc Avril 2015

11 LA REGLEMENTATION FRANÇAISE : LE LABEL CNIL Un projet de loi numérique français est attendu pour Afin de sensibiliser les organismes publics et privés et de leur permettre de se préparer à leurs nouvelles obligations, la CNIL a créé un nouveau label portant sur la gouvernance informatique et libertés par une délibération. Publié le 15 janvier 2015 au Journal Officiel, ce label de la CNIL permet aux entreprises de se distinguer par la qualité de leurs services. C'est un indicateur de confiance pour les utilisateurs de produits ou de services, car il leur offre la possibilité d identifier et de privilégier ceux qui garantissent un haut niveau de protection de leurs données personnelles. C est enfin la reconnaissance par la CNIL qu un produit ou une procédure est conforme aux dispositions de la loi "Informatique & libertés". Chaque label est délivré pour une durée de trois ans et se décline selon quatre référentiels : "Audit de traitements" : l objectif de ce label est de faire contrôler et de valider les projets en cours ou les solutions mises en œuvre pour anticiper tout risque de plainte. Il peut s'agir de traitements informatiques mais aussi de systèmes de vidéosurveillance et de vidéo protection devant respecter le cadre juridique encadrant leur usage ; "Coffre-fort numérique" : ce label valide la bonne mise en œuvre de l accès aux données, de la conservation des données, de l information des personnes, de la gestion des risques et des mécanismes cryptographiques ; "Gouvernance Informatique et Libertés" : ce label validation des exigences relatives à l'organisation liée à la protection des données, à la méthode de vérification de la conformité des traitements et à la gestion des réclamations et incidents (EG) ; "Formations Informatique et Libertés " : ce label certifie que le contenu pédagogique et le programme ont été validés par la CNIL. Le candidat au label CNIL doit obligatoirement disposer d un correspondant Informatique et libertés (CIL). Il peut en désigner un en interne ou faire appel à un prestataire externe qui pourra l accompagner dans ses démarches d obtention du label. Il doit aussi justifier que son CIL bénéficie d un budget annuel dédié et de moyens lui permettant d assurer ses missions. Ce label donne aux entreprises l opportunité de communiquer leur engagement sur la protection des données personnelles et de la vie privée et d en faire un avantage concurrentiel, y compris sur un plan européen, alors que se prépare l harmonisation de la réglementation sur la protection des données personnelles. Un prochain règlement européen va promouvoir le principe d «accountability». Il désigne et rend obligatoire la documentation de l ensemble des mesures internes définies et prises par un responsable de traitement ou ses sous-traitants afin d'attester de son niveau de conformité. Afin de se préparer à cette labellisation et de se conformer à ce principe européen, les entreprises et les services publics doivent dès à présent nommer un responsable de leurs données et répertorier et documenter leurs mesures de sécurité pour que celles-ci puissent être facilement auditées CXP Page 11/30 Livre Blanc Avril 2015

12 4 LES TECHNOLOGIES LIEES AUX BIG DATA LA CONSOLIDATION DES DONNEES Le volume de données grandissant, il devient de plus en plus contraignant de répliquer les données. Les nouveaux systèmes, s ils doivent consolider les données réparties dans plusieurs silos d information, devront limiter la réplication de l information et éviter la prolifération des Datamarts. L objectif d une solution centralisée est de conserver dans un réservoir de données unique une seule version de la donnée, servant de multiples usages, dans le but de simplifier les architectures, limiter les désynchronisations de données et gagner en performance. En factorisant les systèmes, les coûts d infrastructures, les coûts logiciels et les coûts de supervision sont réduits d autant. L administration centralisée des règles de sécurité et des règles d accès aux données permet de réduire les coûts d administration de la plateforme. La centralisation des informations facilite aussi la mise en place des règles de confidentialité ainsi que des procédures d anonymisation des données conformes aux préconisations des législateurs. Cette concentration des fonctions d administration et des données concoure aussi à la performance globale des systèmes concernés. LA RECHERCHE DE PERFORMANCE L immense volume des Big Data a une incidence sur les performances des solutions. Plusieurs approches ont été tentées ces dernières années pour exploiter au mieux ces grands volumes de données. Voici les principes qui peuvent être retenus aujourd hui au regard des principaux retours d expérience des projets. Le premier constat, concernant l organisation des larges entrepôts de données structurées, est de privilégier les modèles logiques normalisés, comme peuvent le faire les progiciels de gestion. Plutôt que de chercher à modifier les modèles de données en schémas en étoile ou en flocons afin d accélérer les restitutions, il est préférable d utiliser, sur une plateforme SQL performante, des modèles de données conçus pour faciliter la mise à jour de la donnée, éviter toute duplication source d erreur et être capable d évoluer simplement pour accueillir de nouvelles informations. La non-duplication des données devient désormais la nouvelle règle et seules des contraintes très fortes, comme par exemple l éloignement géographique ou des besoins de site de secours, peuvent justifier la recopie d une donnée d un Datacenter Européen sur un Datacenter Australien par exemple. Lors du transport de données massif entre un système opérationnel et un système décisionnel de type Big Data, le principe de base à privilégier sera un fonctionnement de type E L T (Extraction, Loading, Transformation) plutôt qu E T L (la phase de transformation réalisée pendant le transport). Les transformations de données - mises en forme, lookups, règles de gestion - seront en priorité réalisées sur la base de données cible plutôt que sur le serveur applicatif de l outil de transfert, même si cela ne permet pas de tirer parti de toutes les fonctionnalités proposées par l ETL. Le traitement parallèle est désormais incontournable. Les traitements longs s exécutent en parallèle sur des sous-ensembles de données distribués, puis restituent un résultat consolidé. Ce traitement parallèle est aujourd hui la seule réponse trouvée pour garantir des temps de réponses acceptables face à l inflation des données. Le parallélisme doit pouvoir être réalisé de bout en bout, sur toutes les étapes d un traitement 2015 CXP Page 12/30 Livre Blanc Avril 2015

13 (lectures, croisements, calculs, tris ) afin d éviter tout point de contention qui pénaliserait toute la chaîne de traitement. Ce parallélisme ne doit pas être le fait de l expertise de l utilisateur mais réalisé de manière automatique et transparente par la plateforme. La stratégie d'allocation des ressources d un système Big Data est primordiale pour assurer la performance. Les outils de gestion de charge, connus sous le nom de Workload Manager ou encore de Kernel Resource Management, sont à la fois des planificateurs de la charge de travail, des gestionnaires des ressources et des moteurs de workflow. Leur rôle est d optimiser l allocation des ressources machine et de faire cohabiter des usages très différents sur la même plateforme, permettant à chaque tâche de pouvoir s exécuter dans les meilleures conditions, selon son niveau de priorité et ses caractéristiques : Des utilisateurs avancés, comme les statisticiens, les Data Scientists, les Data Miners, qui souhaitent réaliser des requêtes complexes avec beaucoup de croissements de données, Des centaines d utilisateurs concurrents qui lancent leurs éditions et génèrent leur reporting, Des traitements batchs ou temps réel qui alimentent le système en nouvelles informations. Pour gagner en réactivité, les traitements parallèles en base de données (in-database) peuvent être complétés par des traitements en mémoire (in-memory). Sans aller jusque monter en mémoire l intégralité des données, il est intéressant d y placer les données les plus importantes, les plus récentes ou les plus accédées (données dites très chaudes). L accès et le traitement de ces données est alors fortement accéléré. Les autres données pourront rester sur des supports de stockage moins couteux, le système se chargeant de monter automatiquement en mémoire les données nécessaires. Pour les outils de restitutions et d analyses il faudra aussi privilégier le traitement en mémoire (In-Memory). LE ROLE DE L'OPEN SOURCE Avant l avènement des Big Data, le coût des bases de données augmentait en fonction du volume de données à gérer. Plus le serveur de données était puissant, plus la base de données coûtait cher. Gérer les Big Data au sein d une base de données payante était alors prohibitif. Le Framework Hadoop est une réponse au problème. Il s'agit d un ensemble de programmes Java qui permettent de paralléliser un très grand nombre d opérations informatiques sur de larges clusters de serveurs accueillant des données. La distribution gratuite d Hadoop et son fonctionnement sur des serveurs d'entrée de gamme ont permis de faire baisser les coûts, permettant la gestion d un grand volume de données à des prix attractifs. Un très grand nombre d entreprises a pu se lancer dans le stockage des données Big Data et inventer de nouveaux modèles économiques. Parmi les sociétés les plus connues qui utilisent le framework Hadoop, on trouve Amazon Web Services, AOL, Facebook (un cluster de serveurs), Linkedln pour alimenter la rubrique «Les connaissez-vous?» ou encore Twitter pour le stockage des tweets et des fichiers logs. Les limites d une solution entièrement Open source : le Framework Hadoop est distribué gratuitement par la fondation Apache. Hadoop est un système complexe à utiliser et est constitué d un ensemble de modules qui évoluent rapidement : Sqoop, Flume, Hive, Oozie, Pig, Mahout, Spark Une entreprise qui réaliserait elle-même l intégration de ces modules devrait constituer un centre de compétences dédié afin de rester à un bon niveau de performance, ce qui ne fait pas forcement partie la stratégie de l entreprise. Aussi, de nombreux acteurs proposent des installations pré-assemblées et pré-testées d Hadoop, avec des modules d administration et des fonctionnalités additionnels. Ces distributions d Hadoop - Map R, Hortonworks, Cloudera, etc ainsi que la 2015 CXP Page 13/30 Livre Blanc Avril 2015

14 souscription payante au support sont à privilégier car les équipes de ces éditeurs, basées dans la Silicon Valley, participent au développement des nouvelles versions des composants du Framework Hadoop. De même, Hadoop ne remplace pas un système décisionnel existant basé une base de données relationnelle mais vient le compléter. De nombreuses solutions unifiées proposent un écosystème simplifié (base de données relationnelle et stockage de données polystructurées) afin de simplifier et de rationaliser les plateformes. La meilleure approche de l Open Source : afin de bénéficier pleinement des apports de la solution Hadoop, qui est incontestablement un constituant important de la stratégie Big Data, il convient de chercher à intégrer la solution Hadoop au mieux au système d information existant. Du point de vue opérationnel, il est nécessaire de rechercher des solutions intégrées avec une administration graphique du cluster Hadoop et une console commune avec le système information existant. Il faut aussi pouvoir utiliser le langage SQL, connu des équipes et des logiciels actuels et rechercher des outils qui génèrent automatiquement des scripts MapReduce ou R pour pouvoir exploiter les données contenues dans Hadoop sans trop investir dans le conseil ou la formation. Comme tout outil informatique qui est choisi en fonction de besoins métiers, il est très important, avant de commencer un projet Big Data, de s assurer de l existence d un véritable cas d usage métier, de vérifier qu une solution en mode Cloud locatif (par exemple : suivi des campagnes marketing, analyse de la fraude, analyse e- réputation, etc ) n existe pas sur le marché pour ce besoin et que l investissement sur la plateforme et les formations donneront bien lieu à un retour sur investissement assez rapide. L AGILITE Les systèmes décisionnels historiques ont montré leur capacité à produire un reporting automatisé, désormais indispensable aux entreprises, mais leur manque d agilité leur est souvent reproché. L agilité d une solution Big Data doit être envisagée avant sa mise en œuvre. Elle s appuie sur les principes suivants : une simplification de l administration et une mise à disposition de fonctions Self-Service pour les utilisateurs. La simplification de l administration s appuie sur une plateforme commune entre l opérationnel et l analytique permettant de simplifier l infrastructure, réduire le nombre de matériels, d applications et de logiciels d administration et de supervision. Certaines solutions, disponibles sous forme d Appliance, proposent des matériels et des logiciels optimisés et préinstallés pour la gestion des Big Data. Dans ce cas, le client bénéficie d un seul interlocuteur pour l ensemble de la solution, avec lequel il peut contracter un engagement de service pour l ensemble de la solution (SLA, Service Level Agrement). L efficacité opérationnelle ainsi dégagée vient contrebalancer l achat d une plateforme intégrée. Des fonctions simplifiées pour l utilisateur. La Business Intelligence a beaucoup fait pour simplifier l accès des utilisateurs à l information structurée de l entreprise. Les utilisateurs souhaitent désormais pouvoir exploiter les données poly-structurées, des algorithmes de la théorie des graphes, de la recherche des chemins, des fonctions de classification (clustering) ou encore de Data Discovery. Une plateforme agile permettra de mettre à disposition de l utilisateur un espace de travail (du stockage, de la puissance de calcul) le temps de son travail. Ces capacités d'autoprovisionning (allocation automatique de ressources) autorisées et supervisées par l administrateur du système, offrent une grande souplesse d administration et permettent des scénarios d expérimentation et de Fail-Fast Découverte de tendances, d Insight Recherche de tentatives de fraude, hypothèses de défaillance client, recherche de corrélation Expérimentation de concepts avant remise en main aux équipes informatiques pour industrialisation CXP Page 14/30 Livre Blanc Avril 2015

15 Une plateforme intégrée, proposant des fonctions Plug & Play et une administration simplifiée, permettra de couvrir économiquement les nombreux usages attendus d une plateforme moderne de Big Data CXP Page 15/30 Livre Blanc Avril 2015

16 5 APPLICATIONS ET USAGES UN ENORME CAPITAL INFORMATIONNEL L État possède incontestablement un immense capital informationnel. Sans compter les ministères, de nombreux organismes disposent de bases d informations très riches : citons, entre autres, la Coface, la Bibliothèque publique d information (BPI), l Agence Française pour le développement international des entreprises (UBIFRANCE), ou encore l Institut National de la Propriété Industrielle (INPI). Les usagers souhaitent pouvoir accéder à toutes ces informations et pouvoir interroger des annuaires de données qui recensent, ordonnent, aident à comprendre les données, qu elles soient traitées et mises à disposition du public par l Etat (data.gouv.fr), par les collectivités locales (data.nantes.fr) ou par le privé (datapublica.fr). Ces données publiques représentent une opportunité pour les individus (simples citoyens, militants et journalistes), les entreprises (grandes et petites) et l Etat. DE NOMBREUSES INITIATIVES L état français a pris la mesure du sujet et a lancé un vaste programme d investissement dans le domaine du numérique. Plus de 150 millions d d aides à la recherche et au développement ont été alloués dans les domaines suivants : Le logiciel embarqué et objets connectés (l internet des objets, les capteurs), Le calcul intensif et la simulation numérique, Le cloud computing et technologies d'exploitation massive des données ("Big Data"), La sécurité des systèmes d'information. L École Polytechnique vient de créer une chaire «Data Scientist» et plusieurs écoles et Universités ont lancé leur cursus «Big Data». Enfin des formations en ligne sur ce sujet, disponibles sur le Web, des MOOC, Massive Online Open Courses, sont diffusés depuis les Etats Unis. Parmi les dernières initiatives en date, le programme VITAM (Valeurs immatérielles transmises aux archives pour mémoire), lancé le 10 mars 2015, est chargé de collecter, conserver et communiquer au public les documents numériques produits par les ministères et administrations centrales de l Etat. CAS D USAGE Le Cloud et la mobilité sont entrés dans le quotidien du citoyen. Un citoyen qui souhaite pouvoir accéder partout à des informations toujours plus nombreuses pour améliorer ses conditions de circulation, identifier le meilleur trajet, obtenir des informations sur la société. Tout en souhaitant préserver son identité, échapper aux caméras de surveillance et bénéficier d'une vraie transparence sur l accès aux informations et sur l usage qui est fait de ses données. Nous avons recueillis des témoignages dans plusieurs domaines différents : la recherche et les biblothèques nationales. Des projets Big Data qui illustrent bien les différents engagements de l État dans les projets Big Data. Enfin nous terminerons sur la coordination des différents projets et la sur la gouvernance des données CXP Page 16/30 Livre Blanc Avril 2015

17 Applications et usages >>>>> 2015 CXP Page 17/30 Livre Blanc Avril 2015

18 INTERVIEW - Jean-Michel ALIMI, Directeur de Recherche au LUT «Les limites des simulations numériques repoussées grâce aux Big Data» Jean-Michel Alimi, Directeur de Recherche au CNRS, nous présente une partie des travaux réalisés par son équipe sur la simulation numérique en cosmologie au Laboratoire Univers et Théories, Observatoire de Meudon, des calculs qui ont nécessité plus de 150 pétaoctets de données. A l Observatoire de Paris, avec votre équipe, vous avez entrepris de modéliser l'univers du Big Bang. Pouvez-vous nous présenter les grandes étapes de ce projet? Jean-Michel Alimi. Le projet DEUS, Dark Energy Universe Simulation, dont j ai la responsabilité a débuté il y a dix ans, son objectif est de comprendre l origine de la structuration et la nature du contenu de notre univers et spécialement la nature de l énergie noire. Plus récemment, en 2012 nos efforts ont permis de réaliser la première simulation mondiale de structuration de TOUT l Univers observable du Big Bang jusqu à aujourd hui. C est la taille gigantesque des volumes manipulés qui en fait un projet Big Data remarquable, voire hors norme : alors que 150 Po de données sont générés durant les calculs, 2 Po de données ont été finalement conservés après un processus de sélection très optimisé. Pour ce faire, l équipe scientifique s est appuyée sur le supercalculateur Curie qui après 30 millions d heures sur cœurs de calcul, plus de 300 To de mémoire et un débit disque de plus de 50Go/sec aura permis d expulser vers un système de fichiers parallèle les données produites par le calcul. Quelles sont les précautions à prendre lorsque l on se lance dans un projet Big Data de cette nature? J-M.A. Malgré la puissance de calcul et la capacité de stockage dont nous disposions, nous avons dû optimiser de façon extrême l ensemble des opérations. Toutes les facettes de la simulation haute performance ont été sollicitées : le temps de calcul, l usage de la mémoire, les schémas de communication, la gestion des entrées/sorties. Tout devait être optimisé au même instant en exploitant toutes les ressources disponibles. La sélection des données et leur analyse sont deux phases critiques qu il faut savoir préparer. Il est indispensable de retenir les données essentielles au calcul, mais aussi garder à disposition des informations qui pourraient intervenir dans la modélisation ou être corrélées avec d autres résultats. Si la plupart des données concerne le projet Dark Energy qui vise à étudier la dynamique de l'expansion de l'univers et la croissance de structure à grande échelle, de très nombreuses données sont conservées à des fins exploratoires pour de nombreuses autres questions de cosmologie. Chaque année de nouveaux calculs, de nouvelles analyses nous conduisent encore à générer près de 200 téraoctets de nouvelles données et la gestion de ce volume de données est un souci quotidien. Comme nous partageons le résultat de nos recherches avec d autres laboratoires répartis sur l ensemble de la planète, nous sommes régulièrement confrontés à la latence des réseaux transcontinentaux, qui nous limite dans la recopie et la mise à disposition de données CXP Page 18/30 Livre Blanc Avril 2015

19 Comment sont partagés ces résultats? Y-a-t-il une exploitation commerciale des analyses réalisées? J-M.A. Du fait de leur complexité, les calculs scientifiques ne sont directement utilisés que par des chercheurs très spécialisés dans le monde. Aussi, pour rendre les résultats accessibles à une plus large population, nous avons réalisé par exemple des animations vidéo permettant de retracer toute l'histoire de l'univers du Big Bang jusqu'à aujourd'hui. La fabrication de ces animations n est possible que grâce aux technologies Big Data. Ces vidéos ont été par exemple diffusées aux journaux du 20h00, gracieusement offertes. Ces travaux sont rarement commercialisés car la connaissance de notre l univers n a pas de prix! Vous le savez, comme le disait Albert Einstein, «tout ce qui compte ne se compte pas et tout ce qui se compte ne compte pas!» Dans ce domaine, la philosophie qui prédomine chez les chercheurs du monde entier est un état d esprit ouvert et une tradition de partage. Nous travaillons en partenariat avec de très nombreux centres de calculs, de nombreuses équipes avec qui nous échangeons beaucoup de données : des données issues de simulations numériques mais également des données réelles issues d observation que nous confrontons à nos prévisions. Nous interagissons également avec de nombreuses équipes de recherches spécialisées dans les simulations numériques au-delà de notre discipline scientifique : avec des équipes de sismologie, de physique des particules, ou encore de mécanique des fluides. Ces données ont donc une vocation publique. La question de la sécurité porte donc plus sur la préservation des données? J-M.A. En effet, les difficultés de la gouvernance de ces données concernent davantage la mise à disposition des données et leur sauvegarde que la sécurisation de l accès. Les énormes volumes de données limitent les possibilités de recopies et exigent une grande rigueur quant à leur diffusion afin de ne pas risquer une multiplication des volumes. Nous sommes hébergés par de grands centres de données qui prennent en compte le risque d incendie et de perte des données, mais nous devons sans cesse arbitrer sur les volumes et sur les conditions de mise à disposition de ces données CXP Page 19/30 Livre Blanc Avril 2015

20 INTERVIEW Emmanuelle Bermes, BnF «Le volume d informations numériques a largement dépassé la production littéraire.» Emmanuelle Bermes est adjointe pour les questions scientifiques et techniques auprès du Directeur des services et des réseaux Bibliothèque nationale de France. Elle dresse un panorama du rôle des données dans la gestion des Bibliothèques et de l apport des nouvelles technologies dans la gestion des Big Data. La gestion des grands volumes de données dans les bibliothèques nationales a-t-elle évoluée ces dernières années depuis l apparition du phénomène Big Data? Emmanuelle Bernes. Les bibliothèques nationales sont confrontées aux grands volumes de données depuis les années 90, lorsque les premiers chantiers de numérisation des ouvrages ont commencé. Nous disposons actuellement de plus de 3 millions de documents numérisés, nous avons appris à les gérer. Les bibliothécaires ont une grande tradition de normalisation, de création de métadonnées et d échange de données structurées. Un format international d échange de données documentaire existe depuis les années 1960 MARC pour MAchine- Readable Cataloging avec sa déclinaison INTERMARC pour la Bibliothèque nationale de France. Nous utilisons de nombreux référentiels internationaux pour coder nos métadonnées (code langues ISO, code pays ISO, identifiants comme l ISBN pour les livres ou l ISNI pour les auteurs, etc..) : ce formalisme nous permet d échanger des données à la fois entre bibliothèques mais aussi entre pays. Après cette première phase d acquisition et de numérisation, l avènement de Google en 2005 et de ses capacités de recherche plein texte, le travail d interprétation des documents numérisés s'est accéléré. Nous avons de plus en plus utilisé l OCR (Optical Character Recognition) pour transformer les documents numérisés en éléments interrogeables et nous nous sommes mis à l'usage d'algorithmes de recherche. Le troisième phénomène a été la production massive de documents numériques. Avec la généralisation des ordinateurs individuels et des caméras numériques, les documents, les blogs, les vidéos ont proliféré sur le Web. Les documents étaient désormais au format numérique natif, et il fallait les prendre ainsi en compte dans nos bases documentaires. Quelles ont été les conséquences de cette prolifération d informations disponibles sur le Web? E.B. Depuis 2006, le dépôt légal a été étendu aux sites internet : toute information publiée en ligne doit être conservée. C est un travail que nous partageons avec l INA, l Institut national de l'audiovisuel, qui est en charge des sites internet de la radio et de la télévision. De notre côté nous collectons chaque année 4 millions de sites internet français, dont 23 titres de presse quotidienne nationale et régionale (Ouest France, Le Républicain Lorrain, Médiapart ) qui entrent chaque jour dans nos collections de manière automatique. Le volume d information est gigantesque : plus de 567 To de données, et ce volume croît chaque jour CXP Page 20/30 Livre Blanc Avril 2015

Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION

Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Sciences de Gestion Spécialité : SYSTÈMES D INFORMATION DE GESTION Classe de terminale de la série Sciences et Technologie du Management et de la Gestion Préambule Présentation Les technologies de l information

Plus en détail

Vision prospective et obstacles à surmonter pour les assureurs

Vision prospective et obstacles à surmonter pour les assureurs smart solutions for smart leaders Le «Big Data» assurément Rédigé par Pascal STERN Architecte d Entreprise Vision prospective et obstacles à surmonter pour les assureurs Un avis rendu par la cour de justice

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE

THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE THE NEW STYLE OF SERVICE DESK, ANYTIME, ANYWHERE MARDI 11 FÉVRIER, DOMINIQUE DUPUIS, DIRECTRICE DE LA RECHERCHE SOMMAIRE Les enquêtes du CXP SaaS / Cloud Mobilité Big Data Conclusion 2 SOMMAIRE Les enquêtes

Plus en détail

Garantir une meilleure prestation de services et une expérience utilisateur optimale

Garantir une meilleure prestation de services et une expérience utilisateur optimale LIVRE BLANC Garantir une meilleure prestation de services et une expérience utilisateur optimale Mai 2010 Garantir une meilleure prestation de services et une expérience utilisateur optimale CA Service

Plus en détail

Tirez plus vite profit du cloud computing avec IBM

Tirez plus vite profit du cloud computing avec IBM Tirez plus vite profit du cloud computing avec IBM Trouvez des solutions de type cloud éprouvées qui répondent à vos priorités principales Points clés Découvrez les avantages de quatre déploiements en

Plus en détail

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM

DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM DÉPLOIEMENT DE QLIKVIEW POUR DES ANALYSES BIG DATA CHEZ KING.COM Étude de cas technique QlikView : Big Data Juin 2012 qlikview.com Introduction La présente étude de cas technique QlikView se consacre au

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Introduction Big Data

Introduction Big Data Introduction Big Data SOMMAIRE Rédacteurs : Réf.: SH. Lazare / F. Barthélemy AXIO_BD_V1 QU'EST-CE QUE LE BIG DATA? ENJEUX TECHNOLOGIQUES ENJEUX STRATÉGIQUES BIG DATA ET RH ANNEXE Ce document constitue

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER

CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER CONNECTEUR QLIKVIEW POUR INFORMATICA POWERCENTER Tirer pleinement profit de l ETL d Informatica à l aide d une plate-forme de Business Discovery rapide et flexible De plus en plus d entreprises exploitent

Plus en détail

À PROPOS DE TALEND...

À PROPOS DE TALEND... WHITE PAPER Table des matières Résultats de l enquête... 4 Stratégie d entreprise Big Data... 5 Intégration des Big Data... 8 Les défis liés à la mise en œuvre des Big Data... 10 Les technologies pour

Plus en détail

Catalogue de conférences v1

Catalogue de conférences v1 Programme de s Catalogue de s v1 1 sur 9 Planning type des deux jours Programme de s Mercredi 23 mars 2011 (salon ouvert de 9h00 à 18h30) 9h30-10h15 : 10h30-11h15 : 11h30-13h00 : 13H30-14h15 : 14H30-15h15

Plus en détail

La gestion des données de référence ou comment exploiter toutes vos informations

La gestion des données de référence ou comment exploiter toutes vos informations La gestion des données de référence ou comment exploiter toutes vos informations La tour de Babel numérique La gestion des données de référence (appelée MDM pour Master Data Management) se veut la réponse

Plus en détail

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox

Des données à la connaissance client. A la découverte de la plateforme de connaissance client knowlbox Des données à la connaissance client A la découverte de la plateforme de connaissance client knowlbox Livre blanc mai 2013 A l heure du Big Data, les entreprises s interrogent davantage sur leurs données.

Plus en détail

IBM Content Analytics Libérer l Information

IBM Content Analytics Libérer l Information IBM Content Analytics Libérer l Information Patrick HOFLEITNER patrick_hofleitner@fr.ibm.com Août 2011 TABLE DES MATIERES RESUME...3 INTRODUCTION...4 LA PROBLEMATIQUE...5 1 L EXPLOSION DU CONTENU NON-STRUCTURE...5

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

ISTEX, vers des services innovants d accès à la connaissance

ISTEX, vers des services innovants d accès à la connaissance ISTEX, vers des services innovants d accès à la connaissance Synthèse rédigée par Raymond Bérard, directeur de l ABES, à partir du dossier de candidature d ISTEX aux Initiatives d excellence et des réunions

Plus en détail

Déjeuner EIM 360 - Enterprise Information Management. Mardi 16 novembre 2010 Restaurant l Amourette Montreuil Thomas Dechilly CTO Sollan

Déjeuner EIM 360 - Enterprise Information Management. Mardi 16 novembre 2010 Restaurant l Amourette Montreuil Thomas Dechilly CTO Sollan Déjeuner EIM 360 - Enterprise Information Management Mardi 16 novembre 2010 Restaurant l Amourette Montreuil Thomas Dechilly CTO Sollan (Extract du livre blanc) Introduction... 2 Continuité des pratiques

Plus en détail

#BigData Dossier de presse Mai 2014

#BigData Dossier de presse Mai 2014 #BigData Dossier de presse Mai 2014 La valeur du Big Data pour l entreprise Comment permettre l avènement d une culture de la donnée pour tous? Dans un monde porté par la mobilité et le Cloud, non seulement

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Impartition réussie du soutien d entrepôts de données

Impartition réussie du soutien d entrepôts de données La force de l engagement MD POINT DE VUE Impartition réussie du soutien d entrepôts de données Adopter une approche globale pour la gestion des TI, accroître la valeur commerciale et réduire le coût des

Plus en détail

Portail collaboratif Intranet documentaire Dématérialisation de processus

Portail collaboratif Intranet documentaire Dématérialisation de processus Portail collaboratif Intranet documentaire Dématérialisation de processus 2 Le groupe Divalto, Solutions de gestion Catalyseur de performance Créé en 1982, le groupe Divalto propose des solutions de gestion

Plus en détail

Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le

Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le Partie I BI 2.0 Cette première partie pose les enjeux de la BI 2.0 et son intégration dans le SI de l entreprise. De manière progressive, notre approche situera le SI classique avec l intégration de la

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

Présentation générale du projet data.bnf.fr

Présentation générale du projet data.bnf.fr Présentation générale du projet data.bnf.fr La Bibliothèque nationale a mis en œuvre un nouveau projet, qui a pour but de rendre ses données plus utiles sur le web. Ceci nécessite de transformer données

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Avec Sage HR Management, transformez votre gestion du capital humain en atout stratégique

Avec Sage HR Management, transformez votre gestion du capital humain en atout stratégique Sage HR Management Avec Sage HR Management, transformez votre gestion du capital humain en atout stratégique Face à un marché instable et une concurrence accrue, la Direction Générale a pris conscience

Plus en détail

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE GUIDE COMPARATIF BUSINESS INTELLIGENCE www.viseo.com Table des matières Business Intelligence :... 2 Contexte et objectifs... 2 Une architecture spécifique... 2 Les outils de Business intelligence... 3

Plus en détail

Forum panafricain sur le leadership et le management de l action gouvernementale. Forum des secrétaires généraux de gouvernement

Forum panafricain sur le leadership et le management de l action gouvernementale. Forum des secrétaires généraux de gouvernement Centre Africain de Formation et de Recherche Administratives pour le développement Fondation pour le Renforcement des Capacités en Afrique (ACBF) Forum panafricain sur le leadership et le management de

Plus en détail

C ) Détail volets A, B, C, D et E. Hypothèses (facteurs externes au projet) Sources de vérification. Actions Objectifs Méthode, résultats

C ) Détail volets A, B, C, D et E. Hypothèses (facteurs externes au projet) Sources de vérification. Actions Objectifs Méthode, résultats C ) Détail volets A, B, C, D et E Actions Objectifs Méthode, résultats VOLET A : JUMELAGE DE 18 MOIS Rapports d avancement du projet. Réorganisation de l administration fiscale Rapports des voyages d étude.

Plus en détail

INDUSTRIALISATION ET RATIONALISATION

INDUSTRIALISATION ET RATIONALISATION INDUSTRIALISATION ET RATIONALISATION A. LA PROBLEMATIQUE La mission de toute production informatique est de délivrer le service attendu par les utilisateurs. Ce service se compose de résultats de traitements

Plus en détail

Guide de référence pour l achat de Business Analytics

Guide de référence pour l achat de Business Analytics Guide de référence pour l achat de Business Analytics Comment évaluer une solution de décisionnel pour votre petite ou moyenne entreprise : Quelles sont les questions à se poser et que faut-il rechercher?

Plus en détail

Introduction Que s est-il passé en 2014? Qu attendre de 2015?

Introduction Que s est-il passé en 2014? Qu attendre de 2015? Les grandes tendances Data & Analytics 2015 L épreuve de la réalité janvier 2015 Introduction Que s est-il passé en 2014? Qu attendre de 2015? 2014 a confirmé l intérêt croissant pour la donnée au sein

Plus en détail

MESURE DE L ÉNERGIE ET DES FLUIDES

MESURE DE L ÉNERGIE ET DES FLUIDES MESURE DE L ÉNERGIE ET DES FLUIDES MESURER EN CONTINU TOUTES VOS CONSOMMATIONS D ÉNERGIE ET DE FLUIDES POUR PERMETTRE UNE OPTIMISATION DE VOS PERFORMANCES ENVIRONNEMENTALES Instrumenter vos immeubles à

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

www.premier-ministre.gouv.fr

www.premier-ministre.gouv.fr Portail du Gouvernement Site du Premier ministre Les Chantiers EN PERSPECTIVE Projets pour la France Tableau de bord du Gouvernement LES THÈMES Garantir la sécurité routière Les derniers titres Les dossiers

Plus en détail

Atteindre la flexibilité métier grâce au data center agile

Atteindre la flexibilité métier grâce au data center agile Atteindre la flexibilité métier grâce au data center agile Aperçu : Permettre l agilité du data-center La flexibilité métier est votre objectif primordial Dans le monde d aujourd hui, les clients attendent

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Big Data et l avenir du décisionnel

Big Data et l avenir du décisionnel Big Data et l avenir du décisionnel Arjan Heijmenberg, Jaspersoft 1 Le nouveau monde des TI L entreprise en réseau de McKinsey McKinsey sur le Web 2.0 McKinsey Global Institute, décembre 2010 Emergence

Plus en détail

Position du CIGREF sur le Cloud computing

Position du CIGREF sur le Cloud computing Position du CIGREF sur le Cloud computing Septembre 2010 Cette position est le fruit d un groupe de réflexion ayant rassemblé les Directeurs des Systèmes d Information de grandes entreprises, au premier

Plus en détail

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress

transformer en avantage compétitif en temps réel vos données Your business technologists. Powering progress transformer en temps réel vos données en avantage compétitif Your business technologists. Powering progress Transformer les données en savoir Les données sont au cœur de toute activité, mais seules elles

Plus en détail

Le Workflow comme moteur des projets de conformité

Le Workflow comme moteur des projets de conformité White Paper Le Workflow comme moteur des projets de conformité Présentation Les entreprises sont aujourd'hui soumises aux nouvelles régulations, lois et standards de gouvernance les obligeant à mettre

Plus en détail

Ministère de la Culture et de la Communication

Ministère de la Culture et de la Communication Paris, le 11 juin 2014 Secrétariat général Service de la coordination des politiques culturelles et de l innovation Département de la Recherche, de l Enseignement supérieur et de la Technologie Appel à

Plus en détail

En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille moyenne

En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille moyenne Présentation du produit SAP s SAP pour les PME SAP BusinessObjects Business Intelligence, édition Edge Objectifs En route vers le succès avec une solution de BI intuitive destinée aux entreprises de taille

Plus en détail

Principaux enjeux des directeurs financiers en 2014

Principaux enjeux des directeurs financiers en 2014 Principaux enjeux des directeurs financiers en 2014 Cela n a rien de nouveau : depuis longtemps, vous cherchez à améliorer les performances de l entreprise en collectant des données, en les recoupant et

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012

Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012 Livre blanc Solution Hadoop d entreprise d EMC Stockage NAS scale-out Isilon et Greenplum HD Par Julie Lockner et Terri McClure, Analystes seniors Février 2012 Ce livre blanc d ESG, qui a été commandé

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

MICROSOFT DYNAMICS CRM 3.0

MICROSOFT DYNAMICS CRM 3.0 MICROSOFT DYNAMICS CRM 3.0 Face à l évolution rapide des marchés, les entreprises doivent continuellement reconsidérer leurs axes de développement et leurs stratégies commerciales. Les sollicitations permanentes

Plus en détail

OpenScribe L ECM Sagem. Pour maîtriser simplement tous les flux d informations

OpenScribe L ECM Sagem. Pour maîtriser simplement tous les flux d informations OpenScribe L ECM Sagem. Pour maîtriser simplement tous les flux d informations Solution complète clé en main pour la gestion des flux d informations Gestion du cycle de vie du document actif Partage et

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

1 L adéquation des systèmes d information actuels

1 L adéquation des systèmes d information actuels 1 L adéquation des systèmes d information actuels 1.1 Le contexte de la question 1.1.1 La tendance à l omniprésence informatique LG : Les «objets communicants» vont générer énormément d informations de

Plus en détail

Management de l Innovation

Management de l Innovation Management de l Innovation Mention du Master Sciences et Technologies de l Université Pierre et Marie Curie Directeur du Département de Formation : Patrick Brézillon Contact secrétariat : 01 44 39 08 69

Plus en détail

Mesurer le succès Service Desk Guide d évaluation pour les moyennes entreprises :

Mesurer le succès Service Desk Guide d évaluation pour les moyennes entreprises : LIVRE BLANC SUR LES MEILLEURES PRATIQUES Mesurer le succès Service Desk Guide d évaluation pour les moyennes entreprises : Choisir la meilleure solution de support technique et améliorer le retour sur

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

La feuille de route du Gouvernement en matière d ouverture et de partage des données publiques

La feuille de route du Gouvernement en matière d ouverture et de partage des données publiques La feuille de route du Gouvernement en matière d ouverture et de partage des données publiques L ouverture des données publiques, liberté publique et levier d innovation L ouverture des données publiques

Plus en détail

Le Concept Dynamics Nav. B.I.Conseil

Le Concept Dynamics Nav. B.I.Conseil Développement Croissance Développement Productivité Investissement Environnement Ouverture B.I.Conseil Nous sommes Microsoft Business Solutions Partner, ce qui nous permet de travailler en étroite collaboration

Plus en détail

«Identifier et définir le besoin en recrutement»

«Identifier et définir le besoin en recrutement» «Identifier et définir le besoin en recrutement» LES ETAPES DU RECRUTEMENT Le recrutement est une démarche structurée qui comporte plusieurs étapes aux quelles il faut attacher de l importance. La majorité

Plus en détail

Maximiser la performance de vos projets immobilier de bureaux

Maximiser la performance de vos projets immobilier de bureaux Make the most of your energy* Maximiser la performance de vos projets immobilier de bureaux * Tirez le meilleur de votre énergie www.schneider-electric.fr Schneider Electric France Direction Communication

Plus en détail

La dernière base de données de Teradata franchit le cap du big data grâce à sa technologie avancée

La dernière base de données de Teradata franchit le cap du big data grâce à sa technologie avancée Communiqué de presse Charles-Yves Baudet Twitter: Les clients de Teradata Teradata Corporation peuvent dan.conway@teradata.com tirer parti de plusieurs + 33 1 64 86 76 14 + 33 (0) 1 55 21 01 48/49 systèmes,

Plus en détail

Campagne de Communication Prévisionnelle. Web Intelligence & Réputation Internet

Campagne de Communication Prévisionnelle. Web Intelligence & Réputation Internet Campagne de Communication Prévisionnelle Web Intelligence & Réputation Internet 1 Sommaire 1. Introduction... 3 2. Détail de la prestation de gestion de réputation online... 5 2.1 Sélection des mots, thématiques

Plus en détail

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier?

DOSSIER SOLUTION CA ERwin Modeling. Comment gérer la complexité des données et améliorer l agilité métier? DOSSIER SOLUTION CA ERwin Modeling Comment gérer la complexité des données et améliorer l agilité métier? CA ERwin Modeling fournit une vue centralisée des définitions de données clés afin de mieux comprendre

Plus en détail

CATALOGUE DE LA GAMME EASYFOLDER OFFRE GESTION DE CONTENUS NUMERIQUES

CATALOGUE DE LA GAMME EASYFOLDER OFFRE GESTION DE CONTENUS NUMERIQUES CATALOGUE DE LA GAMME EASYFOLDER OFFRE GESTION DE CONTENUS NUMERIQUES Gestion Electronique de Documents (GED) Système d Archivage Electronique (SAE) Coffre Fort Numérique (CFN) et modules complémentaires

Plus en détail

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs.

1 Actuate Corporation 2012. + de données. + d analyses. + d utilisateurs. 1 Actuate Corporation 2012 + de données. + d analyses. + d utilisateurs. Actuate et BIRT Actuate est l Editeur spécialiste de la Business Intelligence et le Reporting qui a créé le projet Open Source BIRT

Plus en détail

Services informatiques aux organisations

Services informatiques aux organisations I. APPELLATION DU DIPLÔME II. CHAMP D'ACTIVITÉ Services informatiques aux organisations Spécialité «Solutions logicielles et applications métiers» Spécialité «Solutions d infrastructure, systèmes et réseaux»

Plus en détail

ABILIAN SICS-PC. Abilian SYSTÈME D INFORMATION COLLABORATIF ET SÉCURISÉ POUR LES PÔLES DE COMPÉTITIVITÉ

ABILIAN SICS-PC. Abilian SYSTÈME D INFORMATION COLLABORATIF ET SÉCURISÉ POUR LES PÔLES DE COMPÉTITIVITÉ SOLUTIONS 2.0 POUR LA COMPÉTITIVITÉ ET L INNOVATION ABILIAN SICS-PC SYSTÈME D INFORMATION COLLABORATIF ET SÉCURISÉ POUR LES PÔLES DE COMPÉTITIVITÉ Abilian Quels outils pour la compétitivité des acteurs

Plus en détail

Plan d actions 2011/2014

Plan d actions 2011/2014 Plan d actions 2011/2014 Le présent plan d actions s organise en fiches actions, qui précisent les objectifs opérationnels des actions et explicite les modalités de mise en œuvre. Ces fiches répondent

Plus en détail

Fonctions Informatiques et Supports Opérationnels

Fonctions Informatiques et Supports Opérationnels Fonctions Informatiques et Supports Opérationnels Nos métiers par activité Nos métiers de l informatique comprennent d une part un volet études et d autre part la gestion des infrastructures ; les fonctions

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

Transformez vos données en opportunités. avec Microsoft Big Data

Transformez vos données en opportunités. avec Microsoft Big Data Transformez vos données en opportunités avec Microsoft Big Data 1 VOLUME Augmentation du volume de données tous les cinq ans Vélocité x10 4,3 Nombre d appareils connectés par adulte VARIÉTÉ 85% Part des

Plus en détail

IBM Social Media Analytics

IBM Social Media Analytics IBM Social Media Analytics Analysez les données des média sociaux afin d améliorer vos résultats commerciaux Les points clés Développez votre activité en comprenant le sentiment des consommateurs et en

Plus en détail

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics.

Analytics Platform. MicroStrategy. Business Intelligence d entreprise. Self-service analytics. Big Data analytics. Business Intelligence d entreprise MicroStrategy Analytics Platform Self-service analytics Big Data analytics Mobile analytics Disponible en Cloud Donner l autonomie aux utilisateurs. Des tableaux de bord

Plus en détail

ERP5. Gestion des Services Techniques des Collectivités Locales

ERP5. Gestion des Services Techniques des Collectivités Locales Gestion des Services Techniques des Collectivités Locales Cte 1 2 P 3 s tio T 4 m ilg h trc c n p.o 5 re u fe ro a le tio c M S tw u aa c e O 2 Relation Citoyen Interventions Patrimoine Core Ressources

Plus en détail

La fonction d audit interne garantit la correcte application des procédures en vigueur et la fiabilité des informations remontées par les filiales.

La fonction d audit interne garantit la correcte application des procédures en vigueur et la fiabilité des informations remontées par les filiales. Chapitre 11 LA FONCTION CONTRÔLE DE GESTION REPORTING AUDIT INTERNE Un système de reporting homogène dans toutes les filiales permet un contrôle de gestion efficace et la production d un tableau de bord

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Les datas = le fuel du 21ième sicècle

Les datas = le fuel du 21ième sicècle Les datas = le fuel du 21ième sicècle D énormes gisements de création de valeurs http://www.your networkmarketin g.com/facebooktwitter-youtubestats-in-realtime-simulation/ Xavier Dalloz Le Plan Définition

Plus en détail

Urbanisme du Système d Information et EAI

Urbanisme du Système d Information et EAI Urbanisme du Système d Information et EAI 1 Sommaire Les besoins des entreprises Élément de solution : l urbanisme EAI : des outils au service de l urbanisme 2 Les besoins des entreprises 3 Le constat

Plus en détail

Pourquoi intégrer le Big Data à son organisa3on?

Pourquoi intégrer le Big Data à son organisa3on? Pourquoi intégrer le Big Data à son organisa3on? Yvan Robert, VP Affaires Stratégiques Emmanuel Faug, Resp. pra>que BI Colloque 2014 Big Data Agenda Qui sommes nous? L importance de l information Méthodes

Plus en détail

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON

Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON Transformation IT de l entreprise ANALYTIQUE: L ÈRE WATSON L analytique joue un rôle désormais primordial dans la réussite d une entreprise. Les pouvoirs qu elle délivre sont incontestables, cependant

Plus en détail

18 SEPTEMBRE 2014. E-réputation : une image positive pour une stratégie de conquête!

18 SEPTEMBRE 2014. E-réputation : une image positive pour une stratégie de conquête! 18 SEPTEMBRE 2014 E-réputation : une image positive pour une stratégie de conquête! Réputation : de quoi parle-t-on? «Ce que les gens disent ou pensent de moi» car ils l ont vu dans le journal, à

Plus en détail

des Produits et des Solutions

des Produits et des Solutions des Produits et des Solutions Le groupe Econocom Notre mission Accompagner nos clients dans la maîtrise et la transformation des infrastructures IT et télécoms pour en garantir l accès en tout lieu et

Plus en détail

Talents. Ressources Humaines

Talents. Ressources Humaines Talents Ressources Humaines 1 Yourcegid Ressources Humaines Talents : Entretiens et suivi de la performance Développement du personnel Référentiels des emplois et des compétences 4 MILLIONS DE BULLETINS/MOIS

Plus en détail

Comment activer un accès pratique et sécurisé à Microsoft SharePoint?

Comment activer un accès pratique et sécurisé à Microsoft SharePoint? DOSSIER SOLUTIONS SharePoint Security Solution de CA Technologies Comment activer un accès pratique et sécurisé à Microsoft SharePoint? agility made possible La solution de sécurité SharePoint proposée

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

avec Etude exclusive Le Club des Annonceurs & l Institut QualiQuanti «Le Brand Content : au cœur du pilotage de la marque»

avec Etude exclusive Le Club des Annonceurs & l Institut QualiQuanti «Le Brand Content : au cœur du pilotage de la marque» avec Communiqué de presse Paris, le 22 octobre 2014 Etude exclusive Le Club des Annonceurs & l Institut QualiQuanti «Le Brand Content : au cœur du pilotage de la marque» «A l heure où la marque devient

Plus en détail

COMMENT CONDUIRE SON PROJET DE SITE WEB?

COMMENT CONDUIRE SON PROJET DE SITE WEB? COMMENT CONDUIRE SON PROJET DE SITE WEB? Lorraine Pour être efficace, un site web doit être réfléchi et en adéquation avec la stratégie de l entreprise. Cette notice présente les différentes possibilités

Plus en détail

Africa Smart Grid Forum Session B2. Le Projet de compteurs Linky en France. Marc Delandre marc.delandre@erdf.fr

Africa Smart Grid Forum Session B2. Le Projet de compteurs Linky en France. Marc Delandre marc.delandre@erdf.fr Africa Smart Grid Forum Session B2 Le Projet de compteurs Linky en France Marc Delandre marc.delandre@erdf.fr Chiffres clés d ERDF Production & trading Transport Distribution Commercialisation 35 millions

Plus en détail

Naturellement SaaS. trésorier du futur. Livre blanc. Le futur des trésoriers d entreprise peut-il se concevoir sans le SaaS?

Naturellement SaaS. trésorier du futur. Livre blanc. Le futur des trésoriers d entreprise peut-il se concevoir sans le SaaS? trésorier du futur Le futur des trésoriers d entreprise peut-il se concevoir sans le SaaS? Le futur des trésoriers d entreprise peut-il se concevoir sans le SaaS? Sommaire 1 Le SaaS : du service avant

Plus en détail

Alphonse Carlier, Intelligence Économique et Knowledge Management, AFNOR Éditions, 2012.

Alphonse Carlier, Intelligence Économique et Knowledge Management, AFNOR Éditions, 2012. 1 Du même auteur chez le même éditeur Alphonse Carlier, Intelligence Économique et Knowledge Management, AFNOR Éditions, 2012. AFNOR 2013 Couverture : création AFNOR Éditions Crédit photo 2011 Fotolia

Plus en détail

Le Cloud Computing et le SI : Offre et différentiateurs Microsoft

Le Cloud Computing et le SI : Offre et différentiateurs Microsoft Le Cloud Computing désigne ces giga-ressources matérielles et logicielles situées «dans les nuages» dans le sens où elles sont accessibles via Internet. Alors pourquoi recourir à ces centres serveurs en

Plus en détail

GÉREZ VOTRE RELATION CLIENT SANS QUITTER MICRO SOFT OUTLOOK

GÉREZ VOTRE RELATION CLIENT SANS QUITTER MICRO SOFT OUTLOOK Face à l évolution rapide des marchés, les entreprises doivent continuellement reconsidérer leurs axes de développement et leurs stratégies commerciales. Les sollicitations permanentes des concurrents

Plus en détail

PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN

PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN 1. DÉVELOPPEMENT D'APPLICATION (CONCEPTEUR ANALYSTE) 1.1 ARCHITECTURE MATÉRIELLE DU SYSTÈME INFORMATIQUE 1.1.1 Architecture d'un ordinateur Processeur,

Plus en détail

Le nouveau marketing urbain à l heure du numérique

Le nouveau marketing urbain à l heure du numérique Le nouveau marketing urbain à l heure du numérique Liège, 10 / 10 / 2014 Joël Gayet Chercheur associé à Sciences Po Aix Directeur de la Chaire «Attractivité & Nouveau Marketing Territorial» Attractivité

Plus en détail

Surmonter les 5 défis opérationnels du Big Data

Surmonter les 5 défis opérationnels du Big Data Surmonter les 5 défis opérationnels du Big Data Jean-Michel Franco Talend Connect 9 octobre 2014 Talend 2014 1 Agenda Agenda Le Big Data depuis la découverte jusqu au temps réel en passant par les applications

Plus en détail

«Mieux communiquer. avec internet» Rentrée 2010. Intervenants. Jeudi 16 septembre 2010

«Mieux communiquer. avec internet» Rentrée 2010. Intervenants. Jeudi 16 septembre 2010 Jeudi 16 septembre 2010 Rentrée 2010 «Mieux communiquer avec internet» Intervenants Olivier Cartieri, Animateur, Conseil Technologies de l Information et de la Communication Maître Frédéric Bourguet, Cabinet

Plus en détail

Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE. Contact : Mme Lapedra, stage@isoft.fr

Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE. Contact : Mme Lapedra, stage@isoft.fr Stages 2014-2015 ISOFT : UNE SOCIETE INNOVANTE Contact : Mme Lapedra, stage@isoft.fr ISoft, éditeur de logiciels, est spécialisé dans l informatique décisionnelle et l analyse de données. Son expertise

Plus en détail

De la captation de données à la Datavisualisation

De la captation de données à la Datavisualisation De la captation de données à la Datavisualisation [Synopsis de l événement] Objets connectés : générateurs de données à visualiser! «En fait de calculs et de proportion, le plus sûr moyen de frapper l

Plus en détail

Systèmes et réseaux d information et de communication

Systèmes et réseaux d information et de communication 233 DIRECTEUR DES SYSTÈMES ET RÉSEAUX D INFORMATION ET DE COMMUNICATION Code : SIC01A Responsable des systèmes et réseaux d information FPESIC01 Il conduit la mise en œuvre des orientations stratégiques

Plus en détail

Conception d une infrastructure «Cloud» pertinente

Conception d une infrastructure «Cloud» pertinente Conception d une infrastructure «Cloud» pertinente Livre blanc d ENTERPRISE MANAGEMENT ASSOCIATES (EMA ) préparé pour Avocent Juillet 2010 RECHERCHE EN GESTION INFORMATIQUE, Sommaire Résumé........................................................

Plus en détail