Application du réseaux de neurones à l apprentissage supervisé. Ricco RAKOTOMALALA

Dimension: px
Commencer à balayer dès la page:

Download "Application du réseaux de neurones à l apprentissage supervisé. Ricco RAKOTOMALALA"

Transcription

1 Application du réseaux de neurones à l apprentissage supervisé Ricco RAKOTOMALALA Tutoriels Tanagra -

2 Métaphore biologique Fonctionnement du cerveau Transmission de l information et apprentissage Idées maîtresses à retenir Réception d une information (signal) Activation + Traitement (simple) par un neurone Transmission aux autres neurones (si seuil franchi) A la longue : renforcement de certains liens APPRENTISSAGE Tutoriels Tanagra -

3 Modèle de Mc Colluch et Pitts Le perceptron Simple Couche d entrée Couche de sortie Problème à deux classes (positif et négatif) Y ( ), ( ) Biais X = Fonction de transfert Fonction à seuil -- Fonction de Heaviside a X a Entrées Descripteurs X a a 3 X 3 a 3 d(x ) Poids synaptiques Modèle de prédiction et règle d affectation d( X ) a a x a x a x 3 3 Si d( X ) Alors Y Sinon Y Le perceptron simple est un modèle de prédiction linéaire Tutoriels Tanagra - 3

4 Apprentissage du perceptron simple X = X a a Comment calculer les poids synaptiques à partir d un fichier de données (Y ; X, X, X3) X X 3 a a 3 Faire le parallèle avec la régression et les moindres carrés Un réseau de neurones peut être utilisé pour la régression (fonction de transfert avec une sortie linéaire) () Quel critère optimiser? () Comment procéder à () Minimiser l erreur de prédiction () Principe de l incrémentalité l optimisation? Tutoriels Tanagra - 4

5 Exemple Apprentissage de la fonction AND (ET logique) Exemple révélateur Les premières applications proviennent de l informatique.5 X X Y Données Représentation dans le plan Principales étapes :. Mélanger aléatoirement les observations. Initialiser aléatoirement les poids synaptiques 3. Faire passer les observations unes à unes Calculer l erreur de prédiction pour l observation Mettre à jour les poids synaptiques 4. Jusqu à convergence du processus Une observation peut passer plusieurs fois! Tutoriels Tanagra - 5

6 Exemple AND () Initialisation aléatoire des poids : a.; a.; a. 5 Frontière :..x.5x x 4.x 6. Règle de mise à jour des poids Pour chaque individu que l on fait passer (Principe de l incrémentalité) a j a j a j a avec j y yˆ x j Force du signal Constante d apprentissage Détermine l amplitude de l apprentissage Quelle est la bonne valeur? Trop petit lenteur de convergence Trop grand oscillation En général autour de.5 ~.5 (. dans notre exemple) Erreur Détermine s il faut réagir ou non Tutoriels Tanagra - 6

7 Exemple AND () Observation à traiter x x x y Appliquer le modèle...5. yˆ Màj des poids a a a.... Nouvelle frontière :..x.5x x 4.x Tutoriels Tanagra - 7

8 Exemple AND (3) Observation à traiter x x x y Appliquer le modèle...5. yˆ Màj des poids a a a..... Nouvelle frontière :..x.5x x.x Tutoriels Tanagra - 8

9 Exemple AND (4) Définir la convergence Observation à traiter x x x y Appliquer le modèle yˆ Màj des poids a a a... Pas de correction ici? Pourquoi? Voir sa position dans le plan! Nouvelle frontière :..x.5x x.x. 6 4 Remarque : Que se passe-t-il si on repasse l individu (x= ; x=)? Convergence? () Plus aucune correction effectuée en passant tout le monde () L erreur globale ne diminue plus «significativement» (3) Les poids sont stables (4) On fixe un nombre maximum d itérations (5) On fixe une erreur minimale à atteindre Tutoriels Tanagra - 9

10 Évaluation de P(Y/X) Fonction de transfert sigmoïde Le Perceptron propose un classement Y/X Dans certains cas, nous avons besoin de la probabilité P(Y/X) ex. Scoring Fonction de transfert Fonction à seuil -- Fonction de Heaviside Fonction de transfert Fonction sigmoïde Fonction logistique d(x ) d(x ) g ( v ) v e d ( X v ) La régle de décision devient : Si g(v) >.5 Alors Y= Sinon Y= Tutoriels Tanagra -

11 Conséquences d une fonction de transfert continue et dérivable Modification du critère à optimiser X = X X a a Sortie du réseau yˆ g( v) f d ( x) a a 3 X 3 Critère à optimiser : critère des moindres carrés E y ( ) yˆ ( ) Mais toujours fidèle au principe d incrémentalité, l optimisation est basé sur la descente du gradient! Tutoriels Tanagra -

12 Descente du gradient Fonction de transfert sigmoïde dérivable g' ( v) g( v)( g( v)) Optimisation : dérivation de la fonction objectif par rapport aux coefficients E a j i [ y( ) yˆ( )] g'[ v( )] x ( ) j Règle de mise à jour des coefficients pour un individu (Règle de Widrow-Hoff ou Règle Delta) a a ( y yˆ ) g ' ( v ) x j j j Gradient : màj des poids dans la direction qui minimise E La convergence vers le minimum est bonne dans la pratique Capacité à traiter des descripteurs corrélés (pas d inversion de matrice) Capacité à traiter des problèmes à très grande dimension (lignes x colonnes) Mise à jour facile si ajout de nouveaux individus dans la base Tutoriels Tanagra -

13 Problème à K classes -- Que faire quand Y possède plus de modalités? X = X ŷ ŷ () Codage disjonctif complet de la sortie avec y ssi y k y k () «Output» pour chaque sortie yˆ k g[ v k ] v k a, k a, kx aj, k x J X ŷ X 3 3 (3) P(Y/X) P Y y / X ) g[ v ] (4) Règle de décision k ( k k yˆ y * ssi k* arg max k yˆ k Minimisation de l erreur quadratique En traitant K réseaux en parallèle E y k ( ) yˆ k ( ) K k Tutoriels Tanagra - 3

14 Pratique du Perceptron (Démo sur les cancers du sein) Évolution erreur Poids Ramener les descripteurs sur la même échelle Standardisation, Normalisation, etc. (Éventuellement) Subdiviser les données en 3 parties : Training + Validation + Test Attention au paramétrage, notamment de la règle d arrêt Tutoriels Tanagra - 4

15 Mort et résurrection du Perceptron Le problème du XOR.5 () X X Y Non séparable linéairement (Minsky & Papert, 969) Données () X = X X = Une combinaison de séparateurs linéaires permet de produire un séparateur global non-linéaire X (Rumelhart, 986) X 3 Perceptron Multi-Couches (PMC) On peut avoir plusieurs couches cachées Couche d entrée Couche cachée Couche de sortie Tutoriels Tanagra - 5

16 PMC Formules et propriétés X = X X X = Passage C.Entrée C.Cachée x b x b x b b v x a x a x a a v Sortie de la C.Cachée ) ( ) ( v v e v g u e v g u Passage C.Cachée C.Sortie Tutoriels Tanagra X X 3 Propriété fondamentale : Le PMC est capable d approximer toute fonction booléenne existante pourvu que l on fixe convenablement le nombre de neurones dans la couche cachée Passage C.Cachée C.Sortie u c u c c z Sortie du réseau z e z g y ) ( ˆ

17 PMC Apprentissage La rétropropagation du gradient Généraliser la règle de Widrow-Hoff La descente du gradient X = X = X X En sortie : Erreur mesurée (pour un individu) X 3 Correction des poids synaptiques menant à la couche de sortie Propagation (en arrière) des corrections dans les couches intermédiaires L algorithme de la rétro-propagation du gradient donne de bons résultats dans la pratique même si le risque de stagnation dans un optimum local n est pas à négliger normaliser ou standardiser impérativement les données et bien choisir la constante d apprentissage Tutoriels Tanagra - 7

18 PMC Un exemple de discrimination non linéaire x X vs. X Control variable : C_Y negatif positif Construisons un réseau avec neurones dans la couche cachée X = X X = X u vs. u Control variable : Y x u negatif positif La sortie des neurones de la couche cachée propose un nouvel espace de représentation où il est possible de discriminer linéairement les exemples! u Tutoriels Tanagra - 8

19 PMC Avantages et inconvénients Classifieur très précis (si bien paramétré) Incrémentalité Scalabilité (capacité à être mis en œuvre sur de grandes bases) Modèle boîte noire (causalité descripteur variable à prédire) Difficulté de paramétrage (nombre de neurones dans la couche cachée) Problème de convergence (optimum local) Danger de sur-apprentissage (utiliser impérativement un fichier de validation) Tutoriels Tanagra - 9

20 Références «Neural network» Tutorial slides of Andrew Morre «Apprentissage à partir d exemples» Notes de cours F. Denis & R. Gilleron Lille 3 «Machine Learning» Tom Mitchell, Ed. Mc Graw-Hill International, 997. «Réseaux de neurones» sur WIKIPEDIA «Réseaux de neurones Méthodologie et Applications» Sous la direction de Gérard Dreyfus, Ed. Eyrolles, 4. Tutoriels Tanagra -

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Optimisation de la compression fractale D images basée sur les réseaux de neurones

Optimisation de la compression fractale D images basée sur les réseaux de neurones Optimisation de la compression fractale D images basée sur les réseaux de neurones D r BOUKELIF Aoued Communication Networks,Architectures and Mutimedia laboratory University of S.B.A aoued@hotmail.com

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones

Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Abdeljelil Farhat Unité de recherche EAS-Mahdia Faculté des sciences économiques

Plus en détail

Créer et modifier un fichier d'import des coordonnées approximatives avec Excel

Créer et modifier un fichier d'import des coordonnées approximatives avec Excel Créer et modifier un fichier d'import des coordonnées approximatives avec Excel Manuel d'utilisation Date: 26.03.2015 Version: 1.0 Auteur: Christoph Rüfenacht Statut: En cours Libéré Classification: publique

Plus en détail

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique

Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Chapitre 3. Mesures stationnaires. et théorèmes de convergence Chapitre 3 Mesures stationnaires et théorèmes de convergence Christiane Cocozza-Thivent, Université de Marne-la-Vallée p.1 I. Mesures stationnaires Christiane Cocozza-Thivent, Université de Marne-la-Vallée

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Fonctions de deux variables. Mai 2011

Fonctions de deux variables. Mai 2011 Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Chapitre 6 Apprentissage des réseaux de neurones et régularisation

Chapitre 6 Apprentissage des réseaux de neurones et régularisation Chapitre 6 : Apprentissage des réseaux de neurones et régularisation 77 Chapitre 6 Apprentissage des réseaux de neurones et régularisation Après une introduction rapide aux réseaux de neurones et à la

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application.

Sommaire. Introduction.2. 1. Définition..2. 2. Historique.2. 3. Domaine d application.2. 4.Les Travaux réalisés sur les domaines d application. Sommaire Introduction.2 1. Définition..2 2. Historique.2 3. Domaine d application.2 4.Les Travaux réalisés sur les domaines d application.3 5.Algorithme 4 6.Exemple d application 5 7. Avantage et inconvénient..6

Plus en détail

Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail.

Remerciements : Avant tout, louange à Dieu le tout puissant de m avoir aidé et permis d achever ce modeste travail. العالي التعلیم وزارة والبحث العلمي BADJI MOKHTAR ANNABA UNIVERSITY UNIVERSITE BADJI MOKHTAR ANNABA جامعة باجي مختار عنابة Faculté: Sciences de l'ingénieur Année : 2010 Département: Electronique MEMOIRE

Plus en détail

de calibration Master 2: Calibration de modèles: présentation et simulation d

de calibration Master 2: Calibration de modèles: présentation et simulation d Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe

Plus en détail

OPTIMISATION À UNE VARIABLE

OPTIMISATION À UNE VARIABLE OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables Fausto Errico Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2012 Table des matières

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Une comparaison de méthodes de discrimination des masses de véhicules automobiles

Une comparaison de méthodes de discrimination des masses de véhicules automobiles p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans

Plus en détail

Analyse de grandes bases de données en santé

Analyse de grandes bases de données en santé .. Analyse de grandes bases de données en santé Alain Duhamel Michaël Genin Mohamed Lemdani EA 2694 / CERIM Master 2 Recherche Biologie et Santé Journée Thématique Fouille de Données Plan. 1 Problématique.

Plus en détail

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance»

Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Masters Spécialisés «Actuariat et Prévoyance» et «Actuariat et Finance» Introduction au Data Mining K. EL HIMDI elhimdi@menara.ma 1 Sommaire du MODULE Partie 1 : Introduction au Data Mining Partie 2 :

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

IFT1215 Introduction aux systèmes informatiques

IFT1215 Introduction aux systèmes informatiques Introduction aux circuits logiques de base IFT25 Architecture en couches Niveau 5 Niveau 4 Niveau 3 Niveau 2 Niveau Niveau Couche des langages d application Traduction (compilateur) Couche du langage d

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Système de sécurité de périmètre INTREPID

Système de sécurité de périmètre INTREPID TM Système de sécurité de périmètre INTREPID La nouvelle génération de systèmes de sécurité de périmètre MicroPoint Cable combine la technologie brevetée de Southwest Microwave, la puissance d un micro

Plus en détail

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto.

Data Mining. Vincent Augusto 2012-2013. École Nationale Supérieure des Mines de Saint-Étienne. Data Mining. V. Augusto. des des Data Mining Vincent Augusto École Nationale Supérieure des Mines de Saint-Étienne 2012-2013 1/65 des des 1 2 des des 3 4 Post-traitement 5 représentation : 6 2/65 des des Définition générale Le

Plus en détail

COMMENT EVALUER UN RISQUE

COMMENT EVALUER UN RISQUE COMMENT EVALUER UN RISQUE Rappel : danger et risque Le danger est la propriété ou capacité intrinsèque d un équipement, d une substance, d une méthode de travail, d un environnement à causer un dommage

Plus en détail

L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion

L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion L utilisation des réseaux de neurones artificiels en finance Philippe PAQUET Professeur de Gestion 2 Résumé Depuis le début de la décennie 1990, les réseaux de neurones artificiels habituellement utilisés

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones

Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones Outrepasser les limites des techniques classiques de Prise d'empreintes grâce aux Réseaux de Neurones Javier Burroni - Carlos Sarraute { javier, carlos } @ coresecurity.com Core Security Technologies SSTIC

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Bandes Critiques et Masquage

Bandes Critiques et Masquage Bandes Critiques et Masquage A. Almeida Licence Pro Acoustique et Vibrations Octobre 2012 Au Menu Au programme 1 Observations du masquage 5 Application du masquage 2 Conséquences du Masquage 3 Interprétation

Plus en détail

Druais Cédric École Polytechnique de Montréal. Résumé

Druais Cédric École Polytechnique de Montréal. Résumé Étude de load balancing par un réseau de neurones de types HME (Hierarchical Mixture of s). Druais Cédric École Polytechnique de Montréal Résumé Cet article tente d introduire le principe de load balancing

Plus en détail

Antoine Masse. To cite this version: HAL Id: tel-00921853 https://tel.archives-ouvertes.fr/tel-00921853v2

Antoine Masse. To cite this version: HAL Id: tel-00921853 https://tel.archives-ouvertes.fr/tel-00921853v2 Développement et automatisation de méthodes de classification à partir de séries temporelles d images de télédétection - Application aux changements d occupation des sols et à l estimation du bilan carbone

Plus en détail

SEANCE 2 : éléments de programmation

SEANCE 2 : éléments de programmation NETLOGO Étude et modélisation de phénomènes collectifs à l aide d un logiciel de développement dédié Netlogo SEANCE 2 : éléments de programmation 1 «Agents» Tortues Création de tortues : par l observateur,

Plus en détail

ÉTUDE ET DÉVELOPPEMENT D UN SYSTÈME EXPERT BASÉ SUR LES RÉSEAUX DE NEURONES POUR LE DIAGNOSTIC DES DÉFAUTS DE ROULEMENTS

ÉTUDE ET DÉVELOPPEMENT D UN SYSTÈME EXPERT BASÉ SUR LES RÉSEAUX DE NEURONES POUR LE DIAGNOSTIC DES DÉFAUTS DE ROULEMENTS ÉTUDE ET DÉVELOPPEMENT D UN SYSTÈME EXPERT BASÉ SUR LES RÉSEAUX DE NEURONES POUR LE DIAGNOSTIC DES DÉFAUTS DE ROULEMENTS B. Badri 1 ; M. Thomas 1 ; S. Sassi 2 (1) Department of Mechanical Engineering,

Plus en détail

MANUEL L I A I S O N B A N C A I R E C O D A D O M I C I L I A T I O N S I S A B E L 6

MANUEL L I A I S O N B A N C A I R E C O D A D O M I C I L I A T I O N S I S A B E L 6 MANUEL L I A I S O N B A N C A I R E C O D A D O M I C I L I A T I O N S I S A B E L 6 1 Fonctionnement général Un certain nombre d opérations bancaires peuvent être automatisées de façon aisée. L introduction

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Introduction à l analyse numérique : exemple du cloud computing

Introduction à l analyse numérique : exemple du cloud computing Introduction à l analyse numérique : exemple du cloud computing Tony FEVRIER Aujourd hui! Table des matières 1 Equations aux dérivées partielles et modélisation Equation différentielle et modélisation

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

FedISA Congrès 2013 Table ronde du 17 mai "Certification d'un SAE*, normes et référentiels"

FedISA Congrès 2013 Table ronde du 17 mai Certification d'un SAE*, normes et référentiels FedISA Congrès 2013 Table ronde du 17 mai "Certification d'un SAE*, normes et référentiels" Compte-Rendu Date publication : 19/07/2013 *SAE = Système d Archivage Electronique 1 1 Introduction Le présent

Plus en détail

Optimisation des fonctions de plusieurs variables

Optimisation des fonctions de plusieurs variables Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables

Plus en détail

Les algorithmes de fouille de données

Les algorithmes de fouille de données Février 2005 Les algorithmes de fouille de données DATAMINING Techniques appliquées à la vente, aux services client, interdictions. Cycle C Informatique Remerciements Je remercie les personnes, les universités

Plus en détail

Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014

Plan du cours 2014-2015. Cours théoriques. 29 septembre 2014 numériques et Institut d Astrophysique et de Géophysique (Bât. B5c) Bureau 0/13 email:.@ulg.ac.be Tél.: 04-3669771 29 septembre 2014 Plan du cours 2014-2015 Cours théoriques 16-09-2014 numériques pour

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 27/01/2009 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 27/01/2009 Stéphane Tufféry - Data Mining - http://data.mining.free.fr Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 1 Présentation de l auteur En charge de la statistique et du data mining dans un grand groupe bancaire Enseigne le data mining en Master 2 à l Université

Plus en détail

Créer et modifier un fichier d'importation SAU avec Excel

Créer et modifier un fichier d'importation SAU avec Excel Créer et modifier un fichier d'importation SAU avec Excel Manuel d'utilisation Date : 26.03.2015 Version: 1.0 Collaborateur /-trice : Urs Matti Statut : en cours d élaboration validé Classification : public

Plus en détail

Externaliser le système d information : un gain d efficacité et de moyens. Frédéric ELIEN

Externaliser le système d information : un gain d efficacité et de moyens. Frédéric ELIEN Externaliser le système d information : un gain d efficacité et de moyens Frédéric ELIEN SEPTEMBRE 2011 Sommaire Externaliser le système d information : un gain d efficacité et de moyens... 3 «Pourquoi?»...

Plus en détail

Sujet 4: Programmation stochastique propriétés de fonction de recours

Sujet 4: Programmation stochastique propriétés de fonction de recours Sujet 4: Programmation stochastique propriétés de fonction de recours MSE3313: Optimisation Stochastiqe Andrew J. Miller Dernière mise au jour: October 19, 2011 Dans ce sujet... 1 Propriétés de la fonction

Plus en détail

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC

Spécifications, Développement et Promotion. Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Spécifications, Développement et Promotion Ricco RAKOTOMALALA Université Lumière Lyon 2 Laboratoire ERIC Ricco? Enseignant chercheur (CNU.27) En poste à l Université Lyon 2 Faculté de Sciences Eco. Recherche

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Enregistrement et transformation du son. S. Natkin Novembre 2001

Enregistrement et transformation du son. S. Natkin Novembre 2001 Enregistrement et transformation du son S. Natkin Novembre 2001 1 Éléments d acoustique 2 Dynamique de la puissance sonore 3 Acoustique géométrique: effets de diffusion et de diffraction des ondes sonores

Plus en détail

Projet : Recalage par maximisation de l information mutuelle

Projet : Recalage par maximisation de l information mutuelle École Polytechnique de Montréal Automne 25, 12 décembre 25 Projet : Recalage par maximisation de l information mutuelle GBM613, Application médicales de l informatique Nom Matricule Groupe Herve Lombaert

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

Apprentissage Statistique

Apprentissage Statistique Apprentissage Statistique Master DAC - Université Paris 6, patrick.gallinari@lip6.fr, http://www-connex.lip6.fr/~gallinar/ Année 2014-2015 Partie 1 Introduction Apprentissage Automatique Problématique

Plus en détail

TRACER LE GRAPHE D'UNE FONCTION

TRACER LE GRAPHE D'UNE FONCTION TRACER LE GRAPHE D'UNE FONCTION Sommaire 1. Méthodologie : comment tracer le graphe d'une fonction... 1 En combinant les concepts de dérivée première et seconde, il est maintenant possible de tracer le

Plus en détail

Application 1- VBA : Test de comportements d'investissements

Application 1- VBA : Test de comportements d'investissements Application 1- VBA : Test de comportements d'investissements Notions mobilisées Chapitres 1 à 5 du cours - Exemple de récupération de cours en ligne 1ère approche des objets (feuilles et classeurs). Corps

Plus en détail

Comparatif entre Matrox RT.X2 et Adobe Premiere Pro CS3 (logiciel seul)

Comparatif entre Matrox RT.X2 et Adobe Premiere Pro CS3 (logiciel seul) Comparatif entre et Adobe Premiere Pro CS3 (logiciel seul) offre la puissance de montage en temps réel et les outils de productivité supplémentaires dont vous avez besoin pour tirer pleinement parti d'adobe

Plus en détail

Que faire lorsqu on considère plusieurs variables en même temps?

Que faire lorsqu on considère plusieurs variables en même temps? Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites

Plus en détail

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques

Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques Université Mohammed V, Faculté des Sciences de Rabat Laboratoire de Recherche Mathématiques, Informatique et Applications Cours des Méthodes de Résolution Exactes Heuristiques et Métaheuristiques MASTER

Plus en détail

FOSMOR Fooo Optical Sheet Music Recognition

FOSMOR Fooo Optical Sheet Music Recognition Fooo Optical Sheet Music Recognition Rapport de Projet Soutenance nale, le 26 Mai 2009 Félix Flx Abecassis (abecas_e) Christopher Vjeux Chedeau (chedea_c) Vladimir Vizigrou Nachbaur (nachba_v ) Alban Banban

Plus en détail

La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs

La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs La programmation à mémoire adaptative ou l évolution des algorithmes évolutifs Éric D. Taillard 1 Luca M. Gambardella 1 Michel Gendreau 2 Jean-Yves Potvin 2 1 IDSIA, Corso Elvezia 36, CH-6900 Lugano. E-mail

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Une application des algorithmes génétiques à l ordonnancement d atelier

Une application des algorithmes génétiques à l ordonnancement d atelier Une application des algorithmes génétiques à l ordonnancement d atelier VACHER Jean-Philippe - GALINHO Thierry - MAMMERI Zoubir Laboratoire d Informatique du Havre Université du Havre 25, Rue Philippe

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Plan. Data mining (partie 2) Data Mining : Utilisateur ou Statisticien? Data Mining : Cocktail de techniques. Master MIAGE - ENITE.

Plan. Data mining (partie 2) Data Mining : Utilisateur ou Statisticien? Data Mining : Cocktail de techniques. Master MIAGE - ENITE. Plan Data mining (partie 2) Introduction 1. Les tâches du data mining 2. Le processus de data mining Master MIAGE - ENITE Spécialité ACSI 3. Les bases de l'analyse de données 4. Les modèles du data mining

Plus en détail

RO04/TI07 - Optimisation non-linéaire

RO04/TI07 - Optimisation non-linéaire RO04/TI07 - Optimisation non-linéaire Stéphane Mottelet Université de Technologie de Compiègne Printemps 2003 I Motivations et notions fondamentales 4 I1 Motivations 5 I2 Formes quadratiques 13 I3 Rappels

Plus en détail

Méthodes d apprentissage statistique «Machine Learning»

Méthodes d apprentissage statistique «Machine Learning» Méthodes d apprentissage statistique «Machine Learning» Fabrice TAILLIEU, Sébastien DELUCINGE, Rémi BELLINA Le marché de l assurance a rarement été marqué par un environnement aussi difficile qu au cours

Plus en détail

Inégalités de salaires et de revenus, la stabilité dans l hétérogénéité

Inégalités de salaires et de revenus, la stabilité dans l hétérogénéité Inégalités de salaires et de revenus, la stabilité dans l hétérogénéité Gérard Cornilleau Des inégalités contenues, des classes moyennes fragiles Le débat sur les salaires n est plus aujourd hui dominé

Plus en détail

PRIX DE VENTE À L EXPORTATION GESTION ET STRATÉGIES

PRIX DE VENTE À L EXPORTATION GESTION ET STRATÉGIES PRIX DE VENTE À L EXPORTATION GESTION ET STRATÉGIES Direction du développement des entreprises et des affaires Préparé par Jacques Villeneuve, c.a. Conseiller en gestion Publié par la Direction des communications

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5.

Deuxième partie es jeux non-coopératifs avec information complète 3. É quilibre de Nash (1951) 4. D ynamique et rétroduction 5. Deuxième partie Les jeux non-coopératifs avec information complète 3. Équilibre de Nash (1951) 35 4. Dynamique et rétroduction 61 5. Jeux répétés 85 3. Équilibre de Nash (1951) John Nash a généralisé

Plus en détail

Les Réseaux sans fils : IEEE 802.11. F. Nolot

Les Réseaux sans fils : IEEE 802.11. F. Nolot Les Réseaux sans fils : IEEE 802.11 F. Nolot 1 Les Réseaux sans fils : IEEE 802.11 Historique F. Nolot 2 Historique 1er norme publiée en 1997 Débit jusque 2 Mb/s En 1998, norme 802.11b, commercialement

Plus en détail

CRYPTOGRAPHIE. Chiffrement par flot. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Chiffrement par flot. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Chiffrement par flot E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr CHIFFREMENT PAR FLOT Chiffrement par flot Chiffrement RC4 Sécurité du Wi-fi Chiffrement

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

CAISSE ENREGISTREUSE ELECTRONIQUE SE-G1

CAISSE ENREGISTREUSE ELECTRONIQUE SE-G1 AISSE ENREGISTREUSE ELETRONIQUE SE-G PROGRAMMATION SIMPLIFIEE 20/0/204 SOMMAIRE PROGRAMMATION SIMPLIFIEE.... Introduction... 2. Programmation... 4 Initialisation de la caisse :... 4 Programmation de base

Plus en détail

Algorithmique des Systèmes Répartis Protocoles de Communications

Algorithmique des Systèmes Répartis Protocoles de Communications Algorithmique des Systèmes Répartis Protocoles de Communications Master Informatique Dominique Méry Université de Lorraine 1 er avril 2014 1 / 70 Plan Communications entre processus Observation et modélisation

Plus en détail

Optimisation Discrète

Optimisation Discrète Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et

Plus en détail

IRBMS. Institut Régional de Biologie et de Médecine du Sport N ORD PAS- DE-CALAIS WWW. IRBMS. COM. Titre : «DECALAGE HORAIRE ET SPORT»

IRBMS. Institut Régional de Biologie et de Médecine du Sport N ORD PAS- DE-CALAIS WWW. IRBMS. COM. Titre : «DECALAGE HORAIRE ET SPORT» IRBMS http://www.irbms.com Institut Régional de Biologie et de Médecine du Sport N ORD PAS- DE-CALAIS WWW. IRBMS. COM Titre : «DECALAGE HORAIRE ET SPORT» Auteur(s) : J.-D. Guieu Catégorie : Sport Santé

Plus en détail