Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Dimension: px
Commencer à balayer dès la page:

Download "Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies"

Transcription

1 Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure de notre projet... 1 Détection des paramètres des caméras... 2 Stéréovision... 2 Principe : mesure de disparité = profondeur...2 Coordonnées 3D à partir de la disparité...2 Remarques... 3 Calcul des disparités... 4 L'appariement par corrélation... 4 Post-filtrage médian... 6 Validation par aller-retour... 7 Passage en géométrie épipolaire...8 Propriétés à respecter... 8 Ré-échantillonnage d'une image...9 Résultats Scène initiale Géométrie épipolaire Cartes de disparités et validation Nuage de point obtenu Précision de la reconstruction Code MATLAB Détection de plans dans un nuage de points 3D Reconstruction 3D Structure de notre projet

2 Détection des paramètres des caméras Stéréovision La génération d'une scène 3D à partir des photos est effectuée par stéréovision sur des couples d'images. Ceci suppose un traitement préalable permettant d'estimer les positions des prises de vues, ainsi que les directions de visée et paramètres d'ouvertures. Cette précédente étape n'ayant pas été suffisamment développée ni suffisamment concluante dans notre projet, les images utilisées dans cette partie sont des images de synthèse, générées avec Blender. Cette partie se décompose en quatre points : le principe de la stéréovision : retrouver la position 3D d'un point à partir d'une mesure de disparité ; le calcul des disparités en chaque point, par corrélation entre deux images en géométrie épipolaire ; le passage de deux images quelconques à des images en géométrie épipolaire ; les résultats sur nos images de synthèse. Principe : mesure de disparité = profondeur La stéréovision repose sur le principe suivant : en observant une scène depuis deux points de vue différents (nos deux yeux par exemple) et en comparant la position d'un objet sur chacune des deux images obtenues, on peut en déduire la profondeur à laquelle il se trouve. Coordonnées 3D à partir de la disparité La figure 2.1 illustre ce principe : en déplaçant la caméra latéralement du point au point, le point passe de la position à la position sur l'écran. Ce déplacement relatif d'une distance vers la gauche (matérialisé par le trait horizontal bleu) est appelé disparité, et nous permet de calculer la position du point.

3 Figure 2.1 : positions et d'un point sur les deux images prises depuis et. En effet, dans le cas où le déplacement de l'appareil photo est orthogonal à la direction de visée, les images de la scène sont prises dans un même plan (comme sur la figure 2.1) : on parle alors de géométrie épipolaire. Dans ce cas, les vecteurs (appelé base) et sont donc colinéaires. Le théorème de Thalès nous donne la relation suivante, en utilisant des distances signées (sur ou selon le cas) : En utilisant les relations et (la disparité est ici négative, car se déplace "vers la gauche"), il vient : D'où on en déduit la position du point : Remarques Cette expression donne la position du point en 3D à partir de sa position dans l'image, de la position du plan de l'image, de la base et de la disparité pour ce point. Toutefois, la disparité étant en pratique calculée comme un nombre de pixel (donc un entier), la position du point est échantillonnée selon une séquence de plans parallèles au plan de l'image. Cette conséquence fâcheuse est bien visible sur la figure 2.2 qui en montre un cas pathologique : le mur du fond est échantillonné en 6 plans. Il en est de même pour les objets dans la scène, ainsi que pour le sol qui donne une idée de la position de prise de vue.

4 Figure 2.2 : échantillonnage des profondeurs des points obtenus. La distance entre deux plans d'échantillonnage successifs augmente avec la profondeur, et dépend également de la base (voir l'expression précédente) : plus la base est petite et plus cette distance est élevée (pour la figure 2.2, la base était particulièrement petite). À l'inverse, les plans seront proches pour une base plus élevée, mais l'étape de calcul des disparités sera plus longue (recherche de dans un intervalle plus grand) et donnera moins de points corrects (car les images seront déformées du fait que les caméras sont plus espacées). Calcul des disparités Nous venons donc de calculer la position 3D d'un point en connaissant sa position dans les deux images. Il va maintenant falloir trouver, pour notre couple d'images, les couples de points correspondants : cette étape porte le nom d'appariement de points. Dans toute cette partie, nous travaillons avec des images qui sont déjà en géométrie épipolaire. Le passage d'une géométrie quelconque à une géométrie épipolaire sera détaillé dans la partie suivante. Cette étape d'appariement va se décomposer en trois : l'appariement à proprement parler, par corrélation, qui nous donnera une carte de disparités (la disparité en chaque pixel) ; un post-filtrage, pour diminuer le nombre de points aberrants ; une étape de validation, pour éliminer les points de disparité erronée. L'appariement par corrélation L'étape d'appariement à proprement parler va consister à construire, à partir d'une des deux images, une carte de disparité : cette carte nous donnera la disparité de chaque point de cette image (c'est à dire son décalage par rapport au point correspondant dans l'autre image). En reprenant les notations de la figure 2.1, cela revient à considérer chaque pixel de l'une des images comme un point, de rechercher le point correspondant dans l'autre image, et d'associer au pixel la valeur de ainsi obtenue. Cela nous donne donc une image avec les valeurs de prises en chaque pixel de l'image initiale.

5 Figure 2.3 : la recherche de associé à se fait sur un segment. La recherche de ne se fait pas dans toute l'image : étant données une profondeur minimale et une profondeur maximale, on en déduit une disparité minimale et une maximale par la formule liant disparité et profondeur (partie précédente). De plus, du fait de la géométrie épipolaire, on sait que le point associé à se trouvera sur la même ligne que ce dernier, comme l'illustre la ligne horizontale sur la figure 2.1. On sait donc que est à chercher dans un petit segment horizontal sur la seconde image, comme l'illustre la figure 2.3. Le point retenu est alors celui qui maximise un critère de ressemblance entre et : nous avons choisi comme critère la classique corrélation (centrée normée) entre les voisinages de ces deux points. En pratique, afin de diminuer le temps de calcul (assez conséquent en Matlab), les images sont au préalable filtrées (passe-bas) et décimées, afin de diminuer le nombre de points à appareiller.

6 Figure 2.4 : un auto-stéréogramme, image respectant par nature la géométrie épipolaire. Post-filtrage médian Une fois la carte de disparité obtenue, nous appliquons un léger filtre médian afin de réduire le nombre de valeurs aberrantes. En effet, la profondeur dans une image (et par conséquent la disparité) varie de manière continue par morceaux : on n'a jamais un point tout seul à une profondeur très différente de tout ses voisins. C'est pourquoi nous appliquons un filtrage médian à la carte de disparité. La figure 2.5 montre le gain apporté par cette méthode : la carte de disparité utilisée est calculée à partir de l'autostéréogramme en figure 2.4 (le choix d'un auto-stéréogramme vient du fait que la géométrie est déjà épipolaire, car une telle image est prévue pour être regardée de face).

7 Figure 2.5 : effet d'un (fort) filtrage médian sur les cartes de disparités. (les images ayant été égalisées différemment, les couleurs ne correspondent pas) Validation par aller-retour Afin d'éliminer les points aberrants restants, une méthode classique consiste à utiliser une validation "par aller-retour". Cette technique fonctionne de la manière qui suit. On part d'un point de la première image, et on recherche le point associé dans la seconde image (association déjà calculée et stockée dans la carte de disparité de la première image). On va ensuite effectuer le "retour" en recherchant dans la première image le point associé à (dans la carte de disparité de la seconde image). Normalement, les associations de points se font par paires valide pas., la paire est donc correcte et on valide l'association. Dans le cas contraire, on ne : si

8 Figure 2.6 : cartes de disparités (en haut) et point valides (en bas, couleur noire) pour les deux images. La figure 2.6 montre cette validation dans le cas de l'auto-stéréogramme en figure 2.4. Sur cet exemple, la plupart des points qui ne sont pas valides sont ceux masqués par l'effet de relief. Passage en géométrie épipolaire Les deux parties précédentes expliquaient comment passer d'un couple d'images en géométrie épipolaire à une carte de disparité, et d'en extraire un nuage de point. L'étape manquante pour généraliser cette méthode est le ré-échantillonnage d'un couple d'images quelconques pour passer en géométrie épipolaire : c'est l'objet de cette partie. Propriétés à respecter La première condition est bien visible sur la figure 2.1 : étant donnés les centres optiques et des caméras, il faut que pour tout point de l'espace, le plan intersecte les plans des images selon deux droites parallèles (les droites épipolaires) : il faut donc re-projeter les images dans un plan parallèle à. Notons qu'on pourrait utiliser une autre forme

9 qu'un plan comme support de projection afin de minimiser certaines déformations, mais par soucis de simplicité, nous nous contenterons d'un plan. De plus, pour simplifier la correspondance, on demande à ce que ces droites soient horizontales dans les images ré-échantillonnées (comme sur la figure 2.3). Cette contrainte nous fixe l'orientation des images dans cette nouvelle géométrie. Les deux paramètres qui restent à déterminer sont : l'orientation du plan de re-projection (qui est libre de tourner autour de ) ; la résolution de l'image ré-échantillonnée. Le premier point pourrait être amélioré en choisissant un critère de déformation à minimiser. Ré-échantillonnage d'une image Une fois le plan de projection fixé, il reste à projeter les deux images initiales sur ce plan et à ré-échantillonner le résultat afin d'obtenir une image exploitable. La figure 2.7 illustre cette projection : elle consiste à calculer la couleur de chaque point du plan de re-projection, connaissant la couleur des points du plan. Figure 2.7 : projection sur le plan respectant la géométrie épipolaire à partir de l'image initiale dans le plan. Partant d'un point sur une grille dans le plan de re-projection, notre but est de trouver la couleur du point correspondant dans le plan initial de l'image. Pour cela, basons-nous sur la figure 2.7 en vue "de dessus", dans laquelle est le vecteur entre le centre de la caméra et le centre de l'écran. Le théorème de Thalès nous donne le rapport de distances suivant : Une projection orthogonale nous donne l'expression du vecteur :

10 On déduit alors de ces expressions la position du point recherché : En notant et les bases respectives des grilles d'échantillonnage des deux plans, on trouve le point associé à un pixel de l'image re-projetée par : Inversement, la position du pixel correspondant au point dans l'image initiale est obtenue par projection orthogonale dans de : La couleur de ce point est alors obtenue par interpolation bilinéaire, les valeurs entières. n'étant pas Ceci nous permet d'obtenir, pour chacune des deux images, un ré-échantillonnage en géométrie épipolaire, et d'appliquer alors la méthode d'appariement précédente. Résultats Voici des images obtenues par notre implémentation de la stéréovision, obtenues sur un cube généré sous Blender. La stéréovision est effectuée sur deux couples de caméras : deux caméras sont situées d'un côté, et les deux autres de l'autre côté du cube, de sorte que toutes les faces soient à peu près visibles. Le cube est centré et ses faces sont positionnées sur les plans dont l'une des composantes est constante égale à. Scène initiale

11 Images initiales : 2 couples d'images, montrant en tout les 6 faces du cube. Image de la scène 3D. L'objet d'intérêt est le cube en noir. Les points de couleur représentent les centres des caméras. Les deux plans de couleur sont les écrans de deux des caméras.

12 Géométrie épipolaire Images en géométrie épipolaires : les lignes horizontales se correspondent dans les images. Cartes de disparités et validation Cartes de disparités des images. Disparités validées par aller-retour (en bleu).

13 Cartes de disparités (points validées uniquement). Nuage de point obtenu Nuage de points 3D obtenu.

14 Précision de la reconstruction Afin de mesurer la précision, j'ai calculé la norme infinie de chacun des points obtenus. Notons que le cube d'origine est l'ensemble des points de norme infinie égale à. Le centre du cube est le point de norme, et les caméras sont à une distance de unités environ. On note la présence de quelques points aberrants restants, peu nombreux. La très grande majorité des points sont bien sur le cube (norme très proche de ). Normes infinies des points. Code MATLAB Histogramme des valeurs des normes infinies. L'imprécision est d'à peine 0.5% de la distance aux caméras. Voici des fichiers de test proposés, présents soit dans le dossier "Stéréovision", soit dans le sous-dossier "Code" : LaunchMe.m : exemple du cube de la partie précédente, avec 4 images (2 couples) ;

15 LaunchExamples.m : le cube (avec 2 images) et la scène de la figure 2.2 (avec 2 images initialement en géométrie épilolaire) ; LaunchAppariement.m : l'auto-stéréogramme de la figure 2.4, avec affichages intermédiaires ; LaunchStereo1.m, puis LaunchStereo2.m : le cube (avec 2 images), avec affichages intermédiaires. Détection de plans dans un nuage de points 3D Reconstruction 3D

VISUALISATION EN TEMPS RÉEL PERSPECTIVES À POINT DE VUE MOBILE

VISUALISATION EN TEMPS RÉEL PERSPECTIVES À POINT DE VUE MOBILE 167 VISUALISATION EN TEMPS RÉEL DE J. SAPALY On sait que l'exploration visuelle consiste en une succession de fixations du regard, séparées par des mouvements oculaires saccadés, chaque fixation amenant

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

TITRE PARTIE TITRE SECTION. Faire des anaglyphes avec CatiaV5

TITRE PARTIE TITRE SECTION. Faire des anaglyphes avec CatiaV5 TITRE PARTIE TITRE SECTION Faire des anaglyphes avec CatiaV5 1 SOMMAIRE SOMMAIRE 1. QU'EST-CE QU'UN ANAGLYPHE? 3 2. LES LOGICIELS A INSTALLER 5 3. CREATION D'UN ANAGLYPHE FIXE 6 4. CREATION D'UN ANAGLYPHE

Plus en détail

GRAPHISME SUR ORDINATEUR

GRAPHISME SUR ORDINATEUR LE GRAPHISME SUR ORDINATEUR UNE HISTOIRE DE POINTS... 1 ) L'information : Sa «dimension» : le pixel Sa profondeur 2 ) La représentation de l'information : Sur écran, sur papier Le dpi 3 ) L'acquisition

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Projet Télédétection. Vidéo Surveillance. Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd. Master 2 Pro SIS - 2005 / 2006

Projet Télédétection. Vidéo Surveillance. Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd. Master 2 Pro SIS - 2005 / 2006 Projet Télédétection Vidéo Surveillance Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd Master 2 Pro SIS - 2005 / 2006 Plan Introduction Lecture des images Détection des objets mouvants Détection des anomalies

Plus en détail

Traitement numérique de l'image. Raphaël Isdant - 2009

Traitement numérique de l'image. Raphaël Isdant - 2009 Traitement numérique de l'image 1/ L'IMAGE NUMÉRIQUE : COMPOSITION ET CARACTÉRISTIQUES 1.1 - Le pixel: Une image numérique est constituée d'un ensemble de points appelés pixels (abréviation de PICture

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Laboratoire Vision & Robotique Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Emilie KOENIG, Benjamin ALBOUY, Sylvie TREUILLET, Yves Lucas Contact : Sylvie Treuillet Polytech'Orléans

Plus en détail

3.5.1 Introduction: image bitmap versus image vectorielle

3.5.1 Introduction: image bitmap versus image vectorielle 3.5.1 Introduction 3.5.2 Principe 3.5.3 Avantages et Inconvénients 3.5.4 Applications 3.5.5 Logiciels sur Internet PLAN 3.5.1 Introduction: image bitmap versus image vectorielle Lorsque l'on affiche une

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

OPERATEURS MORPHOLOGIQUES

OPERATEURS MORPHOLOGIQUES OPERATEURS MORPHOLOGIQUES Ensembles caractéristiques et éléments structurants Érosion et dilatation Ouverture et fermeture Application au filtrage Extraction de contours, remplissage de régions Épaississement,

Plus en détail

Réussir et traiter ses photos sous UV avec Photoshop

Réussir et traiter ses photos sous UV avec Photoshop Réussir et traiter ses photos sous UV avec Photoshop par Rémi BORNET le 29/12/2009 Beaucoup de personnes n'arrivent pas à obtenir de bons résultats en photos sous UV et ne trouvent pas de conseils. Cet

Plus en détail

Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo

Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Dans ce projet, nous allons réaliser le code qui permet d'insérer sur une image, un logo sur un

Plus en détail

Windows XP Souris et clavier

Windows XP Souris et clavier Windows XP Souris et clavier La souris est un périphérique indispensable de l'ordinateur : on la déplace sur un tapis. Si elle est 'optique' (plutôt qu'à boule), son confort d'utilisation est encore plus

Plus en détail

Windows XP. Souris et clavier

Windows XP. Souris et clavier Windows XP Souris et clavier 1 La souris est un périphérique indispensable de l'ordinateur : on la déplace sur un tapis. Si elle est 'optique' (plutôt qu'à boule), son confort d'utilisation est encore

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Propriétés des images numériques Contraintes sur l interprétation

Propriétés des images numériques Contraintes sur l interprétation Propriétés des images numériques Contraintes sur l interprétation M.LOUYS, Traitement d images et problèmes inverses Master Astrophysique, Observatoire de Strasbourg, 2013 Propriétés générales d une image

Plus en détail

Escalier : Mosaïque de photos montage de composition les outils de GIMP

Escalier : Mosaïque de photos montage de composition les outils de GIMP Escalier : Mosaïque de photos montage de composition les outils de GIMP Un art : l'incrustation est l'art d'incruster un élément extérieur dans une scène existante. Le montage de composition crée une image

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

UN OUTIL POUR ILLUSTRER LE COURS D'ANALYSE : GEOPLAN

UN OUTIL POUR ILLUSTRER LE COURS D'ANALYSE : GEOPLAN 8 UN OUTIL POUR ILLUSTRER LE COURS D'ANALYSE : GEOPLAN Fin 9, la Direction des Lycées et Collèges adressait à tous les lycées d'enseignement général et technique des imagiciels pour les classes de premières

Plus en détail

Faire de la déformation interactive avec GIMP

Faire de la déformation interactive avec GIMP Faire de la déformation interactive avec GIMP 1 - Option "Fichier", puis cliquer sur "Ouvrir" Nous allons créer un clin d'œil 2 - Choisir l'image à modifier en navigant dans les dossiers de l'ordinateur

Plus en détail

A. Allumer et éteindre l équipement, ouvrir et fermer une session

A. Allumer et éteindre l équipement, ouvrir et fermer une session Page 1 / 12 A. Allumer et éteindre l équipement, ouvrir et fermer une session ALLUMER Pour allumer l ordinateur, regardez en face de l unité centrale et localisez un gros bouton marque du symbole Enfoncez-le

Plus en détail

Manuel d utilisation email NETexcom

Manuel d utilisation email NETexcom Manuel d utilisation email NETexcom Table des matières Vos emails avec NETexcom... 3 Présentation... 3 GroupWare... 3 WebMail emails sur internet... 4 Se connecter au Webmail... 4 Menu principal... 5 La

Plus en détail

6.4. Les Ombres Raytracées (Raytraced Shadows) Shading Lamp Shadow and Spot Hemi Spot Sun Sun Scene F10 Shadow Render Ray Ray Shadow Shadow and Spot

6.4. Les Ombres Raytracées (Raytraced Shadows) Shading Lamp Shadow and Spot Hemi Spot Sun Sun Scene F10 Shadow Render Ray Ray Shadow Shadow and Spot 6.4. Les Ombres Raytracées (Raytraced Shadows) Mode : tous les modes Panneau : contexte Shading / sous-contexte Lamp > Shadow and Spot Raccourci : F5. Les ombres raytracées produisent des ombres très précises

Plus en détail

NOTIONS DE PROBABILITÉS

NOTIONS DE PROBABILITÉS NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...

Plus en détail

Utilisation du visualiseur Avermedia

Utilisation du visualiseur Avermedia Collèges Numériques Utilisation du visualiseur Avermedia Un visualiseur est aussi appelé caméra de table et ce nom rend mieux compte de sa fonction première à savoir filmer un document (revue,carte, dissection,

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

Réaliser un diaporama sonorisé ou un film d'animation. avec windows Movie Maker

Réaliser un diaporama sonorisé ou un film d'animation. avec windows Movie Maker Réaliser un diaporama sonorisé ou un film d'animation avec windows Movie Maker Ce logiciel est disponible sur tous les ordinateurs installés avec windows XP, vista... Le logiciel est livré avec. Pour windows

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Reaper : utilisations avancées

Reaper : utilisations avancées Reaper : utilisations avancées Reaper dispose de ressources qui, sans être cachées, ne sont pas toujours faciles à trouver, d'autant plus que souvent on n'imagine même pas que ces choses soient possible!...

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le

Plus en détail

Windows 8 : Éléments de l'écran Bureau

Windows 8 : Éléments de l'écran Bureau Windows 8 : Éléments de l'écran Bureau Le Bureau est la partie «classique» de Windows 8 càd utilisée sur un pc ou un ordinateur de bureau. On peut l'utiliser avec une tablette tactile, mais il n'est vraiment

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Exercices de dénombrement

Exercices de dénombrement Exercices de dénombrement Exercice En turbo Pascal, un entier relatif (type integer) est codé sur 6 bits. Cela signifie que l'on réserve 6 cases mémoires contenant des "0" ou des "" pour écrire un entier.

Plus en détail

PRODIGE V3. Manuel utilisateurs. Consultation des métadonnées

PRODIGE V3. Manuel utilisateurs. Consultation des métadonnées PRODIGE V3 Manuel utilisateurs Consultation des métadonnées Pour plus d'information sur le dispositif : à remplir par chaque site éventuellement 2 PRODIGE V3 : Consultation des métadonnées SOMMAIRE 1.

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Vision 3D (deuxième partie) Alain Boucher IFI Mise en correspondance (appariement) Approche basée sur la corrélation 2 Approche basée sur la corrélation Il faut des régions texturées

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Utilisation de XnView

Utilisation de XnView http://www.rakforgeron.fr 27/02/2015 Utilisation de XnView Les photos d'actes généalogiques, les scans de documents réalisés par vous, ou vos saisies d'écran de documents téléchargés sur Internet, au-delà

Plus en détail

Immersion - Vision 3D dans la RV.

Immersion - Vision 3D dans la RV. Cours RVS Master II IVA Immersion - Vision 3D dans la RV. Cours de Réalité Virtuelle et Simulation Master II - IVA A. Mebarki - Maître de Conférences Département d'informatique Faculté des Mathématiques

Plus en détail

S.P.S.N. Lac du Der 2008

S.P.S.N. Lac du Der 2008 S.P.S.N. Lac du Der 2008 Qu'est-ce qu'un histogramme? C'est un graphique qui montre la répartition des pixels de l'image en fonction de leur luminosité. Chaque type d'image (normale, surexposée, sous exposée,

Plus en détail

Géométrie discrète Chapitre V

Géométrie discrète Chapitre V Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets

Plus en détail

Recadrer une image dans un format non-standard et l'imprimer

Recadrer une image dans un format non-standard et l'imprimer Recadrer une image dans un format non-standard et l'imprimer Vous possédez un pêle-mele photos dont les cadres ne sont pas aux formats standards. Pour utiliser ces cadres, vous devez donc recadrer vos

Plus en détail

1 AU DEMARRAGE...2 2 LE MENU DEMARRER...3

1 AU DEMARRAGE...2 2 LE MENU DEMARRER...3 Sommaire 1 AU DEMARRAGE...2 2 LE MENU DEMARRER...3 3 POUR DEMARRER UN PROGRAMME...4 4 POSITION ET DIMENSION DES FENETRES...5 POSITION...5 DIMENSION...5 UTILISER LES BARRES DE DEFILEMENT...7 POUR AFFICHER

Plus en détail

Choisir entre le détourage plume et le détourage par les couches.

Choisir entre le détourage plume et le détourage par les couches. Choisir entre le détourage plume et le détourage par les couches. QUEL CHOIX D OUTILS ET QUELLE METHODE, POUR QUEL OBJECTIF? Il existe différentes techniques de détourage. De la plus simple à la plus délicate,

Plus en détail

pcon.planner 6 Préparer et présenter une implantation en toute simplicité

pcon.planner 6 Préparer et présenter une implantation en toute simplicité pcon.planner 6 Préparer et présenter une implantation en toute simplicité Sommaire 1. Installation :... 3 2. Démarrer le logiciel :... 3 3. Interface :... 3 4. Naviguer :... 4 5. Réaliser une implantation

Plus en détail

Utilisation du logiciel ImageJ gratuit

Utilisation du logiciel ImageJ gratuit Utilisation du logiciel ImageJ gratuit on peut récupérer sur le lien suivant : http://rsbweb.nih.gov/ij/ à partir duquel ce résumé très bref (!!) a été élaboré Lancer ImageJ Vous avez une fenêtre qui s'ouvre

Plus en détail

Guide de création d anaglyphes à partir de photographies aériennes. Direction des inventaires forestiers

Guide de création d anaglyphes à partir de photographies aériennes. Direction des inventaires forestiers Guide de création d anaglyphes à partir de photographies aériennes Direction des inventaires forestiers Ministère des Ressources naturelles Secteur des forêts Août 2013 ÉQUIPE DE RÉDACTION Antoine Lebœuf,

Plus en détail

5.1.1 Histogrammes : définition et utilité

5.1.1 Histogrammes : définition et utilité PLAN 5.1.1 Histogrammes : définition et utilité 5.1.2 Histogrammes des images en niveaux de gris 5.1.3 Histogramme des images couleurs 5.1.4 Courbes de modification des histogrammes 5.1.5 Applications

Plus en détail

ERGONOMIE ET OPTIMISATION DU TAUX DE CONVERSION D UN SITE INTERNET Partie 1/2

ERGONOMIE ET OPTIMISATION DU TAUX DE CONVERSION D UN SITE INTERNET Partie 1/2 Lorraine ERGONOMIE ET OPTIMISATION DU TAUX DE CONVERSION D UN SITE INTERNET Partie 1/2 Attirer des visiteurs sur un site internet, c est bien ; les transformer en clients, c est mieux! Cette phrase semble

Plus en détail

Technique forex. J'ai donc 1 problème a résoudre : trouver une technique gagnante avec un bonne probabilité.

Technique forex. J'ai donc 1 problème a résoudre : trouver une technique gagnante avec un bonne probabilité. 27/12/2013 Technique forex voilà ma méthode personnel: je mise une somme au départ et je calcul pour gagner le double,ensuite il me reste a trouver une combine pour gagner avec un taux de probabilité assez

Plus en détail

Dossier table tactile - 11/04/2010

Dossier table tactile - 11/04/2010 Dossier table tactile - 11/04/2010 Intro Je vais brièvement exposer dans ce document: Ce que j'ai fait, comment je l'ai fait, combien ça m'a couté, et combien de temps j'ai mis à fabriquer, dans le cadre

Plus en détail

Tutorat 2 de Mathématiques (1ère année)

Tutorat 2 de Mathématiques (1ère année) Tutorat 2 de Mathématiques (ère année) 9//200 Transformée de Radon et Tomographie par Rayons X Compte-rendu à déposer svp le casier de mon bureau. N hésitez pas à me contacter en cas de difficultés majeures

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Gérer le poids d'un document PDF scanné

Gérer le poids d'un document PDF scanné Deux méthodes Gérer le poids d'un document PDF scanné Scanner des revues ou articles permet de libérer de la place sur les étagères, et de rendre accessible des documents sur un espace du réseau ; mais

Plus en détail

Les bases théoriques du numérique

Les bases théoriques du numérique Les bases théoriques du numérique 1. Différences entre signaux analogiques et signaux numériques L analogique et le numérique sont deux procédés pour transporter et stocker des données. (de type audio,

Plus en détail

Systèmes Binaires. V. Langlet

Systèmes Binaires. V. Langlet Systèmes Binaires V. Langlet Niveau : De la Terminale aux Maths du supérieur Diculté : De plus en plus dur au l des exercices. Durée : Environ deux heures, suivant la compréhension du sujet. Rubrique(s)

Plus en détail

numérique Votre rendez-vous mensuel Ergonomie et optimisation du taux de conversion du site internet (partie 1/2) Le gabarit > Les blocs

numérique Votre rendez-vous mensuel Ergonomie et optimisation du taux de conversion du site internet (partie 1/2) Le gabarit > Les blocs Performance numérique Votre rendez-vous mensuel Ergonomie et optimisation du taux de conversion du site internet (partie 1/2) Attirer des visiteurs sur un site internet, c est bien ; les transformer en

Plus en détail

Traitement par lot redimensionner des images

Traitement par lot redimensionner des images Traitement par lot redimensionner des images Demande Je souhaite réduire la taille de plusieurs images RAW (NEF) et les convertir en format JPEG, toutes en même temps, pour les utiliser sur une page Web.

Plus en détail

Temps d'exposition de la caméra Watec LCL902K

Temps d'exposition de la caméra Watec LCL902K Temps d'exposition de la caméra Watec LCL902K Lors de WETO 2006 * une discussion s'est engagée sur la possibilité de connaître le début du temps d'exposition du senseur de la caméra. Il n'y a pas eu de

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF

Territoires, Environnement, Télédétection et Information Spatiale. Unité mixte de recherche Cemagref - CIRAD - ENGREF Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche Cemagref - CIRAD - ENGREF Master ère année Analyse spatiale, analyse géographique, spatialité des sociétés Master

Plus en détail

Les mesures à l'inclinomètre

Les mesures à l'inclinomètre NOTES TECHNIQUES Les mesures à l'inclinomètre Gérard BIGOT Secrétaire de la commission de Normalisation sols : reconnaissance et essais (CNSRE) Laboratoire régional des Ponts et Chaussées de l'est parisien

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

DÉCOUVERTE DE CAPTURE ONE

DÉCOUVERTE DE CAPTURE ONE Page 1/12 DÉCOUVERTE DE CAPTURE ONE PREMIERS PAS Lorsqu'on a l'habitude ce logiciel on effectue toutes les opérations ( ou presque avec lui ), y compris le transfert des fichiers depuis l'apn vers le disque

Plus en détail

Chapitre 4 : Guide de Mouvement et Masque

Chapitre 4 : Guide de Mouvement et Masque Cours Flash Chapitre 4 : Guide de Mouvement et Masque Rappel : les fichiers fla et swf sont dans le fichier «4_Guide de mouvement et masque.zip». SOMMAIRE 1 OBJECTIFS DU CHAPITRE... 1 2 INTRODUCTION...

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

PRODIGE V3. Manuel utilisateurs. Consultation des métadonnées

PRODIGE V3. Manuel utilisateurs. Consultation des métadonnées PRODIGE V3 Manuel utilisateurs Consultation des métadonnées Pour plus d'information sur le dispositif : à remplir par chaque site éventuellement 2 PRODIGE V3 : Consultation des métadonnées SOMMAIRE 1.

Plus en détail

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES

LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES LES DIFFÉRENTS FORMATS AUDIO NUMÉRIQUES Compétences mises en jeu durant l'activité : Compétences générales : S'impliquer, être autonome. Compétence(s) spécifique(s) : Reconnaître des signaux de nature

Plus en détail

Mathématiques pour l Informatique Relations binaires Jérôme Gensel

Mathématiques pour l Informatique Relations binaires Jérôme Gensel Master ICA Spécialité IHS Année 2007/2008 Mathématiques pour l Informatique Relations binaires Jérôme Gensel I) Relations binaires 1. Généralités Définition 1 : Une relation binaire d un ensemble E vers

Plus en détail

III Caractérisation d'image binaire

III Caractérisation d'image binaire III Caractérisation d'image binaire 1. Généralités Les images binaires codent l'information sur deux valeurs. Rarement le résultat direct d'un capteur, mais facilement obtenues par seuillage dans certains

Plus en détail

CENTRE DES ETUDES DOCTORALES IBN ZOHR. Formation doctorale : Sciences, Techniques et Ingénierie Faculté des Sciences - Agadir THESE.

CENTRE DES ETUDES DOCTORALES IBN ZOHR. Formation doctorale : Sciences, Techniques et Ingénierie Faculté des Sciences - Agadir THESE. Université Ibn Zohr faculté des sciences Agadir جامعة ابن زهر كلية العلوم اكادير CENTRE DES ETUDES DOCTORALES IBN ZOHR Formation doctorale : Sciences, Techniques et Ingénierie Faculté des Sciences - Agadir

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

Jeu de taquin : résolution automatique sur ordinateur

Jeu de taquin : résolution automatique sur ordinateur 1 Jeu de taquin : résolution automatique sur ordinateur Sous sa forme la plus générale, le jeu de taquin est constitué d un rectangle rempli par des blocs carrés accolés, chacun portant un numéro, avec

Plus en détail

2 Grad Info Soir Langage C++ Juin 2007. Projet BANQUE

2 Grad Info Soir Langage C++ Juin 2007. Projet BANQUE 2 Grad Info Soir Langage C++ Juin 2007 Projet BANQUE 1. Explications L'examen comprend un projet à réaliser à domicile et à documenter : - structure des données, - objets utilisés, - relations de dépendance

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon

Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon Version 4.10 PDF-CIT-D-Rev1_FR Copyright 2011 Avigilon. Tous droits réservés. Les informations présentées sont sujettes à modification

Plus en détail

A B C D. Wireless Mobile Utility (ios) Manuel d utilisation D600, D7100, D5200 0 2 21 D3200, COOLPIX A 0 22 41. Nikon 1 : V2, J3, S1 0 42 59

A B C D. Wireless Mobile Utility (ios) Manuel d utilisation D600, D7100, D5200 0 2 21 D3200, COOLPIX A 0 22 41. Nikon 1 : V2, J3, S1 0 42 59 Wireless Mobile Utility (ios) Manuel d utilisation Installez l'application Wireless Mobile Utility sur votre périphérique ios (iphone, ipad ou ipod) pour télécharger des images depuis un appareil photo

Plus en détail

A- Observez la vidéo A présentant le fonctionnement de deux objets techniques que nous

A- Observez la vidéo A présentant le fonctionnement de deux objets techniques que nous Nous savons qu'un système d'alarme permet de protéger une habitation en détectant et en signalant une ouverture de porte, de fenêtre ou un mouvement dans une pièce. Mais comment détecter et existe il un

Plus en détail

1 La visualisation des logs au CNES

1 La visualisation des logs au CNES 1 La visualisation des logs au CNES 1.1 Historique Depuis près de 2 ans maintenant, le CNES a mis en place une «cellule d analyse de logs». Son rôle est multiple : Cette cellule est chargée d analyser

Plus en détail

La recherche du Score maximal en testant les 50 symboles de référence, permet de déterminer quel symbole Chappe est filmé.

La recherche du Score maximal en testant les 50 symboles de référence, permet de déterminer quel symbole Chappe est filmé. 3- Reconnaissance optique Le schéma ci-dessous décrit le processus complet de décision lors de la reconnaissance optique basée sur le calcul de la corrélation d'images décrite dans la section précédente.

Plus en détail

Windows 7 : les bases

Windows 7 : les bases Fiche Logiciel Ordinateur Niveau FL01011 09/12 Windows 7 : les bases L'utilisation d'un ordinateur suppose la découverte d'un environnement nouveau, qui a son propre vocabulaire et ses propres concepts

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07

DU BINAIRE AU MICROPROCESSEUR - D ANGELIS LOGIQUE COMBINATOIRE. SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 07 DU BINAIRE AU MICROPROCESSEUR - D ANGELIS 43 SIMPLIFICATION DES EQUATIONS BOOLEENNES Leçon 7 Le rôle de la logique combinatoire est de faciliter la simplification des circuits électriques. La simplification

Plus en détail

Classer et partager ses photographies numériques

Classer et partager ses photographies numériques Classer et partager ses photographies numériques Ce tutoriel a pour objectif de vous donner les bases nécessaires au classement de vos photographies numériques, et de vous donner des moyens simples de

Plus en détail

TP SIN Traitement d image

TP SIN Traitement d image TP SIN Traitement d image Pré requis (l élève doit savoir): - Utiliser un ordinateur Objectif terminale : L élève doit être capable de reconnaître un format d image et d expliquer les différents types

Plus en détail

LO12. Chap 1 1. 1. Introduction UTC A2006. 1.1 Présentation de l'uv. Bases de l infographie et Images de synthèse. Objectifs

LO12. Chap 1 1. 1. Introduction UTC A2006. 1.1 Présentation de l'uv. Bases de l infographie et Images de synthèse. Objectifs UTC A2006 1. Introduction 1.1 Présentation de l'uv Objectifs Bases de l infographie et Images de synthèse savoir se repérer dans l espace, comprendre les principaux algorithmes d infographie (leur puissance

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Calcul rapide des puissances

Calcul rapide des puissances Calcul rapide des puissances Par Mathtous Il s'agit de puissances à exposant entier naturel (avec la convention a 0 = 1, et a 1 = a). Si on applique la dénition pour calculer a n, on calcule de proche

Plus en détail

Génération d'images paires et impaires à partir d'une vidéo

Génération d'images paires et impaires à partir d'une vidéo Génération d'images paires et impaires à partir d'une vidéo Une image vidéo est constituée de deux trames entrelacées dont les prises de vues ont eu lieu à des instants différents. Nous utilisons la vidéo

Plus en détail

UTILISATION D'UN RADIOCHRONOMETRE POUR DATER DES GRANITES

UTILISATION D'UN RADIOCHRONOMETRE POUR DATER DES GRANITES Fiche sujet-candidat Les géologues s interrogent sur la chronologie de mise en place de deux granites du Massif Central. On cherche à savoir si une méthode de radiochronologie permettrait de déterminer

Plus en détail