Géométrie Algorithmique Plan du cours

Dimension: px
Commencer à balayer dès la page:

Download "Géométrie Algorithmique Plan du cours"

Transcription

1 Plan du cours Introduction Triangulation de polygones Recherche/localisation Diagrammes de Voronoï Triangulation de Delaunay Arbres de partition binaire 1

2 Intersection de segments de droite Intersection de zones polygonales Balayage du plan / DCEL. 2

3 Problème classique en GIS/géomatique Exemple : On dispose de : Une carte avec les zones forestières Une carte avec les zones d'occupation par les animaux sauvages etc... On veut connaître toutes les zones «homogènes» pour chacune des caractéristiques eg. zone de feuillus et population de chevreuils zone d'épineux et population de chevreuils zone d'épineux et population d'ours etc... 3

4 Types d'information portée par une carte : Villes (points ou polygones) Rivières, routes (réseaux, graphes) Zones boisées, de précipitations (polygones) On doit combiner 2 ou plus de ces «cartes» et calculer les intersections Deux cartes de réseaux points (ponts?) Deux cartes de zones nouveaux polygones Toute combinaison... Une opération élémentaire est l'intersection entre «paquets» de segments de droites. 4

5 Calcul des intersections dans un ensemble de segments 5

6 Intersection de segments Données en entrée : Deux ensembles de segments En sortie : Toutes les intersections entre ces deux ensembles On peut sans perte de généralité rassembler les deux ensembles et calculer les intersections à l'intérieur d'un seul ensemble. Il est possible de trouver des intersection au sein du même ensemble d'origine mais cela peut être filtré par la suite. 6

7 Algorithme 1 Force brute : prendre chaque paire de segments et vérifier si ils s'intersectent O(n²)!!! En un sens, c'est optimal si un grand nombre de segments s'intersectent (aussi en O(n²) ) Les algorithmes calculant ces intersections prennent nécessairement un temps en n 2 exemple : 2n segments n² intersections 7

8 En pratique, le nombre d'intersections n'est généralement pas en O(n²). L'algorithme n'est alors plus optimal On doit établir un algorithme plus efficace Idéalement O(f(n,I))) avec f(n,i) meilleur que O(n²) quand I est O(n) Ici, la complexité attendue est fonction des données d'entrée (nombre de segments n) mais aussi des données de sortie (ici le nombre d'intersections I ) On parle d'algorithme sensible aux données de sortie ce n'était pas le cas pour certains algorithmes calculant l'enveloppe convexe. Comment ne pas tester toutes les paires de segments quand ce n'est pas nécessaire? Utilisation de la géométrie... 8

9 Soit S ={s 1, s 2, s 3,..., s n } l'ensemble des segments. Ne testons les segments que si leur intervalle sur x (projection orthogonale sur l'axe x) est non disjoint y x 9

10 Pour détecter les paire de segments dont la projection sur x est non disjointe, utilisation d'une ligne imaginaire l balayant de gauche à droite le domaine l Point événement Le statut de la ligne l est l'ensemble des segments qui l'intersectent Il change au fur et à mesure du déplacement de la ligne À chaque événement ; le statut est mis à jour C'est le seul moment ou l'on «fait» quelque chose : ajouter un segment, faire quelques tests d'intersections, retirer un segment. Si un événement correspond à une extrémité à gauche, ajout de segment ; on teste l'intersection avec les segments déjà présents Si un point événement est une extrémité à droite, retirer le segment du statut. 10

11 On teste donc tous les segments présents dans le statut. Est-ce optimal? Non! Ici on teste un nombre quadratique de paires de segments... 11

12 Ordonnons les segments dans le statut de bas en haut Cela permet de savoir si deux segments sont proches ou éloignés dans la direction verticale On ne teste que des segments adjacents dans cet ordre. Lorsque l'on ajoute un segment dans le statut, on ne le teste qu'avec celui «au dessous» et celui «au dessus» Si un événement est une intersection simple, il faut intervertir les segments concernés dans le classement... et les tester avec leurs nouveaux voisins Si un événement revient à retirer un segment du statut, on teste les deux segments qui deviennent voisins. Ainsi, chaque nouvelle adjacence dans le statut est testée pour intersection 12

13 Cet algorithme fonctionne-t-il? Il faut vérifier que chaque point d'intersection p peut être calculé au moment ou l'on traite un événement. Revient à montrer que s i et s j deviennent adjacents avant de traiter p s ij l s k p s i Ici, s i et s j deviennent adjacents losque s k est retiré du statut. C'est la cas, car les deux segments sont adjacents dans le statut au moment ou est p est traité ; mais ne le sont pas au début (avant l'ajout d'un des segment s i ou s j ). Il existe donc un événement pour lequel ils deviennent adjacents. 13

14 En principe l'algorithme fonctionne, sans tenir compte des cas dégénérés. Intersections de 3 segments ou plus au même point Segments verticaux Segments confondus 14

15 «Invariant» de l'algorithme : tous les points d'intersection à gauche de la ligne ont été calculés correctement. 15

16 Structures de données La file des événements F Classée de façon lexicographique en fonction des coordonnées du point considéré règle le cas des points situés sur une même coordonnée x (e.g. Segments verticaux) - structure identique à celle utilisée dans le cas du calcul de l'enveloppe convexe Détermine la nature de l'événement Point «gauche» d'un segment ajout dans le statut Point «droit» d'un segment retrait du statut Point d'intersection échange de deux segments dans le statut Le statut T Classé en permanence selon l'ordre des segments le long de la ligne l Permet de rechercher rapidement les segments contigus à un événement donné (classement selon la coordonnée y par exemple) Difficulté : la clef (coordonnée y) varie lorsque l se déplace 16

17 Les algorithmes : TrouveIntersections(S) Entrée : un ensemble de segments S dans le plan Sortie : un ensemble contenant les points d'intersection, avec pour chacun des points les segments qui le contiennent { Initialiser une file d'événements F vide. Insérer les points extrémités des segments de S dans F. Si le point est un point situé a gauche du segment, on y attache le segment. Initialiser une stucture Statut T vide. Tant que F est non vide { Trouver le prochain point p de F, et l'effacer de F. TraiteEvenement(p,T) } } 17

18 TraiteEvenement(p) doit être capable de traiter les cas dégénérés suivants : l s 6 s 1 p s 2 s 2 s 1 s 3 s 4 s 5 T={s 5, s 4, s 3, s 2, s 1 } T={s 5, s 1, s 2, s 6 } 18

19 TraiteEvenement(p) { Soit G(p) l'ensemble des segments dont le point «à gauche» est p (ils sont connus et stockés avec p) Trouver tous les segments dans T qui contiennent p ; ils sont adjacents dans T. Soit D(p) le sous ensemble de ces segments dont p est le point «droit» C(p) le sous ensemble des segments contenant p dans leur intérieur. Si Union(G(p),D(p),C(p)) contient plus d'un segment { p est une intersection, y attacher G(p),D(p),C(p) } Effacer les segments appartenant a Union(D(p),C(p)) de T Inserer les segments appartenant a Union(G(p),C(p)) dans T : l'ordre nouveau doit correspondre à l'ordre obtenu si l est juste à droite de p. Si il y a un segment vertical, il vient en dernier. Note : l'ordre parmi les segments de C(p) est renversé... Si Union(G(p),C(p)) est vide { Soit s u et s d les voisins du dessus et du dessous de p dans T l s 6 TrouverEvenement(s u, s d, p) G(p) } Sinon { Soit s' le segment le plus haut dans Union(G(p),C(p)) Soit s u le segment voisin (vers le haut) de s' dans T Si s u existe TrouverEvenement(s u, s', p) Soit s'' le segment le plus bas dans Union(G(p),C(p)) Soit s d le segment voisin (vers le bas) de s'' dans T Si s d existe TrouverEvenement(s'', s d, p) } } s 2 s 3 s 1 s 5 D(p) s 4 p C(p) s 2 s 1 19

20 TrouveEvenement(s 1, s 2, p) { Si s 1 et s 2 s'intersectent à droite de la ligne l, ou sur la ligne l mais au dessus de p Et que l'intersection n'est pas présente dans F Inserer l'intersection comme nouvel événement dans F. } 20

21 Analyse de l'algorithme L'algorithme trouve-t-il toutes les intersections? Preuve par induction sur la priorité des événements On suppose que toutes les événements de plus haute priorité (avant p dans la file) sont correctement traitées. Soit p est une extrémité d'un des segments Il a été inséré dans F au début de l'algorithme et y figure donc, avec G(p), et les segments D(p) et C(p) sont dans T au moment ou cet événement est traité. Soit p est une intersection, il faut prouver que p a été introduit dans F à un moment ou à un autre. Ici, tous les segments impliqués ont p dans leur intérieur. Soit s i et s j deux segments voisins dans T. La preuve précédente (slide 13) permet d'affirmer que ces segments deviennent voisins (et sont donc testés et p calculé) pour un certain événement q antérieur à p. (Cf page 27 du livre) 21

22 e 1 degré=4 e 2 Performance en temps de l'algorithme On peut prouver que T=O((n+k) log n) avec k = taille de la sortie File d'événements : O(n log n) Le traitement de chaque événement Insertions / délétions dans F : log n chaque Insertions / délétions dans T : log n chaque (au pire), mais il y en a m(p)=card(union(g( p ), D( p ), C( p ) ) ) Soit m la somme des m(p), globalement on a O(m log n) Or m=o(n+k), k étant la taille de la sortie (segments + intersections) Au final, on a donc une complexité de de O((n+k) log n) On peut prouver un résultat plus fort : T=O((n+I) log n) avec I = nombre d'intersections considérations sur les graphes plans m est borné par la somme des degrés de chaque sommet Chaque arête contribue au degré de au plus deux sommets, donc m est borné par 2n e (nombre d'arêtes du graphe). n v (nombre de sommets) est au plus égal à 2n+I, Or, sur un graphe plan, n e = O(n v ), CQFD. 22

23 Relation d'euler pour les graphes plans Chaque face du graphe plan est bornée par au moins 3 arêtes Une arête limite au plus deux faces distinctes Donc n f 2n e /3 Formule d'euler : n v n e +n f = r avec r 2 r dépend du genre topologique (nb de trous etc) On a donc n e =O(n v ). 23

24 Performance en mémoire de l'algorithme T stocke au plus n segments, dans un arbre binaire O(n) La file F stocke au pire n +I événements O(n + I) Au final, M=O(n+I) Si I = O(n²), c'est trop peu efficace. Si l'on veut traiter les intersection les unes après les autres (sans stockage), c'est catastrophique. Faire mieux est possible : Ne faire figurer dans F que les événements (intersections) dont les segments sont adjacents dans T. Donc, dès que deux segments ne sont plus adjacents, il faut supprimer l'événement correspondant dans F. Un événement est susceptible d'être supprimé/réinséré plusieurs fois avant d'être effectivement traité. Toutefois, cela n'arrive jamais plus de n fois en tout... donc globalement T=O((n+I) log n) La file F ne contient donc plus que O(n) élements. 24

25 En bref, Il est possible de calculer les intersections en un temps T=O((n+I) log n) et une place mémoire M=O(n) Cet algorithme date de 1979 (avec une modification ultérieure pour garder la mémoire en O(n)) J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput., C-28: , 1979 Est-ce optimal? Non... cas ou I=O(n²) : T=O(n² log n), or on peut y arriver en O(n²)!!! La borne inférieure théorique est T=Ω(n log n +k) et il existe un algorithme déterministe qui réalise cela (seulement) depuis 1995 I. J. Balaban. An optimal algorithm for finding segment intersections. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages ,

26 Robustesse? Tel quel ; algorithme non robuste à cause du calcul des intersections fait en précision finie... Il est possible que le calcul (imprécis) d'une intersection donne un point légèrement à gauche de l, mais que ce point n'ait pas été traité auparavant (n'a jamais figuré dans F.) Conséquence, l'intersection n'est pas reportée... l ε 2 k ε 26

27 Solutions pour la robustesse Travailler avec des données en entrée sous forme d'entiers, et calculer les intersection exactes sous forme de nombres rationnels Lent / réducteur! Augmenter la précision des calculs Une implémentation naïve (i.e. telle quelle) de l'algorithme de Bentley et Ottmann impose des calculs sur 5n bits pour un résultat exact sur n bits Boissonat & Preparata ont montré que l'on peut parvenir à faire les calculs sur 2n bits pour la même précision finale de n bits. Cf. Boissonat, J.-D.; Preparata, F. P. (2000), Robust plane sweep for intersecting segments, SIAM Journal on Computing 29 (5):

28 Erreur numérique Calcul de Erreur faite avec l'expression ( x+ y)( x y) x y x y = x y1 1 x y = x y x y Pas d'augmentation catastrophique de l'erreur x 2 y 2 =( x+ y)( x y) Erreur faite avec l'expression x 2 y 2 ( x x) ( y y) = [ x 2 (1+ δ 1 ) y 2 (1+ δ 2 )](1+ δ 3 ) = (( x 2 y 2 )(1+ δ 1 )+ (δ 1 δ 2 ) y 2 )(1+ δ 3 ) = (( x 2 y 2 )(1+ δ 1 + δ 3 + (δ 1 δ 2 ) y 2 + δ 1 δ 3 + (δ 1 δ 2 ) y 2 δ 3 )) Quand x est proche de y, l'erreur peut être de l'ordre de grandeur dur résultat calculé... 28

29 Erreur numérique Quelques règles utiles Préférer x y x y à Forme de Lagrange plus précise que le schéma de Horner E. g. somme d'un grand nombre de termes L'algorithme naïf : x 2 y 2 S=0; for (j=1;j<=n;j++){ S=S+X[j] ; } return S ; implique une erreur N L'algorithme de sommation compensée de Kahan S=X[1];C=0 for (j=2;j<=n;j++) { Y=X[j]-C; T=S+Y; C=(T-S)-Y; S=T } return S ; implique une erreur 2 N S = j=1 X [ j ] 29

30 Erreur numérique Exemple d'arrondi catastrophique nx*ny échatillons Calcul d'une intégrale y max S= Ω nx 1 ny 1 S i=0 j=0 f ( x, y)dxdy avec f ( x, y)=x 2 + y 2 f xi, y j det J y min dx=x max x min / nx dy= y max y min /ny xi =x min i dxdx/2 y j = y min j dydy/2 det J =dx dy y x x min x max 30

31 Erreur numérique Calculs fais avec les paramètres suivants : x min = y min = 0.0 ; x max = y max = 1.0 ; nx = ny = 10, S exact =2/3 1) Flottants simple précision (32 bits) 2) Flottants double précision (64/80 bits) 3) Flottants quadruple précision (128 bits) 4) Flottants simple précision avec la sommation compensée de Kahan 10 1) sum (float )= ) sum (double )= ) sum (ldouble)= ) sum (kahan )= Note : Le programme doit être compilé sans optimisation 31

32 Erreur numérique ) somme (float )= ) somme (double )= ) somme (ldouble)= ) somme (kahan )= ) somme (float )= ) somme (double )= ) somme (ldouble)= ) somme (kahan )= Algorithme de sommation compensée tiré de : William Kahan. Further remarks on reducing truncation errors. Comm. ACM, 8(1):40,

33 Erreur numérique y=p(x)=(1-x) n pour x=1.333 et 2<n<41 S. Graillat, Ph. Langlois, N. Louvet Compensated Horner Scheme Research Report RR , LP2A, University of Perpignan, France, july

34 Erreur numérique Définition du conditionnement d'une expression numérique Ratio entre l'erreur directe et l'erreur inverse K P, x=lim 0 y sup x D Pour un polynôme x sous forme monomiale: K P, x= i=0 n n i=0 a i x i a i x i x erreur δ x inverse x+δ x p p p y= p(x) δ y erreur directe y= p(x)= y+δ y = p(x+δ x) 34

35 Algorithme de balayage Paradigme utile dans un certain nombre de problèmes en CG Intersections de segments Diagrammes de Voronoï Triangulation de polygones M. I. Shamos and D. Hoey. Geometric intersection problems. In Proc. 17th Annu. IEEE Sympos. Found. Comput. Sci., pages , D. T. Lee and F. P. Preparata. Location of a point in a planar subdivision and its applications. SIAM J. Comput., 6: , et référence précédente (J. L. Bentley and T. A. Ottmann) 35

36 Exercice : Tenter de trouver un algorithme incrémental pour l'intersection de segments? 36

37 Algorithmes par balayage Deux autres exercices Déterminer en T=O(nlogn) les segments (tous disjoints) visibles à partir d'un point. Non visible 37

38 Algorithmes par balayage Relier un ensemble de n triangles disjoints Chaque segment relie deux triangles Les segments sont disjoints (pas d'intersection excepté aux extrémités) et ils sont disjoints des bords des triangles (connectés en exactement un point) Donner les événements, les cas qui apparaissent et les actions à mener, les structures de données, et l'invariant de l'algorithme. 38

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé

EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé MIE - E ANNÉE ALGORITHMIQUE GÉNÉRALE Vincent Mousseau EXAMEN FINAL Février 006 - heures Aucun document autorisé Exercice : On s intéresse à la gestion informatique des réservations sur l année d une salle

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

Arbres de segments. Plan. Arbres de segments. Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates. Solution.

Arbres de segments. Plan. Arbres de segments. Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates. Solution. Plan Arbres de segments Arbres de segments Arbres de sélection Listes à saut Compléments de Java Dictionnaires Automates Problème : Chercher, dans un ensemble d intervalles de la droite réelle, les intervalles

Plus en détail

Cours 10 Géométrie algorithmique

Cours 10 Géométrie algorithmique Cours 10 Géométrie algorithmique Jean-Jacques.Levy@inria.fr http://jeanjacqueslevy.net tel: 01 39 63 56 89 secrétariat de l enseignement: Catherine Bensoussan cb@lix.polytechnique.fr Aile 00, LIX tel:

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Introduction au maillage pour le calcul scientifique

Introduction au maillage pour le calcul scientifique Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel franck.ledoux@cea.fr Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,

Plus en détail

Partie I Le consommateur et la demande

Partie I Le consommateur et la demande Partie I Le consommateur et la demande Chapitre 1 La fonction d utilité 1 Plan du cours 1. Le consommateur. 2. La notion d utilité. 3. Les courbes d indifférence. 4. L optimum du consommateur. 5. Exercices.

Plus en détail

Arbres couvrants minimaux

Arbres couvrants minimaux Arbres couvrants minimaux Algorithmique L François Laroussinie er décembre 00 Plan Définitions Algorithme de Prim Algorithme de Kruskal Application au voyageur de commerce Plan Définitions Algorithme de

Plus en détail

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

Application des arbres binaires. Plan

Application des arbres binaires. Plan Application des arbres binaires. Plan Compter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Chapitre 5 :. Introduction aux méthodes par séparation et évaluation Les méthodes arborescentes ( Branch and Bound Methods ) sont des méthodes exactes d'optimisation qui pratiquent une énumération intelligente

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Liste B. Jacob IC2/LIUM 15 février 2010 Plan 1 Définition du TDA Liste 2 Réalisation du TDA Liste 3 Type de stockage des éléments 4 Recherche d un élément Dans une liste non triée Dans une

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S Classe de Troisième C H A P I T R E C A L C U L S A L G E B R I Q U E S UTILISER DES LETTRES...4 EXPRESSIONS ÉQUIVALENTES...6 VOCABULAIRE DU CALCUL LITTÉRAL...7 RÉDUCTIONS D'ÉCRITURES...9 DÉVELOPPER UN

Plus en détail

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés

Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Trier des tableaux en C++ : efficacité du std::sort (STL) et tris paramétrés Hélène Toussaint, juillet 2014 Sommaire 1. Efficacité du std::sort... 1 1.1. Conditions expérimentales... 1 1.2. Tableaux de

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

MODELISATION. ❶ Choix d'un Mode de Représentation ❷ Construction d'un Modèle de l'objets 3D

MODELISATION. ❶ Choix d'un Mode de Représentation ❷ Construction d'un Modèle de l'objets 3D MODELISATION Modélisation deux étapes : ❶ Choix d'un Mode de Représentation ❷ Construction d'un Modèle de l'objets 3D Ces deux étapes ne sont pas Indépendantes Modèle = Ensemble d Informations sur l'objet

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 5 : Structures de données linéaires Benjamin Wack 2015-2016 1 / 37 La dernière fois Logique de Hoare Dichotomie Aujourd hui Type Abstrait de Données

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

INF-130 Travail Pratique #2

INF-130 Travail Pratique #2 École de technologie supérieure INF-30 Travail Pratique #2 Travail individuel Tracé d un métro Francis Bourdeau, Frédérick Henri et Patrick Salois Remise à la 0 e semaine. Objectifs - Amener l étudiant

Plus en détail

Projets individuels Informatique II

Projets individuels Informatique II Projets individuels Informatique II 1. Faites un programme en C qui effectue la lecture à partir du clavier d un nombre entier N qui détermine la taille d une matrice N x N et qui recherche la valeur minimale

Plus en détail

Programmation récursive

Programmation récursive Année 2004-2005 F. Lévy IUT De Villetaneuse Dép t informatique Cours d'algorithmique 2 éme Année Cours 8 Programmation récursive 1. Qu'est-ce que la programmation récursive Définition : la programmation

Plus en détail

1. Description du cours

1. Description du cours 1. Description du cours Ce cours porte sur la généralisation de notions mathématiques par le biais d expériences, d applications et du développement de structures formelles et abstraites. Au moyen de la

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Algorithmique P2 Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Sources supplémentaires Cours Algorithms and Data Structures in Java, Patrick Prosser, 2000, Glasgow University Algorithmique

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Les graphes planaires

Les graphes planaires Les graphes planaires Complément au chapitre 2 «Les villas du Bellevue» Dans le chapitre «Les villas du Bellevue», Manori donne la définition suivante à Sébastien. Définition Un graphe est «planaire» si

Plus en détail

Placement de centres logistiques

Placement de centres logistiques Master 1 - Spécialité Androide Année 2014/2015 Module RP Résolution de Problèmes Projet Placement de centres logistiques On considère dans ce projet la résolution du problème de placement de centres logistiques

Plus en détail

9 è et 10 è années 2013

9 è et 10 è années 2013 Partie A: Chaque bonne réponse vaut 3 points. Jeu-concours international KANGOUROU DES MATHÉMATIQUES 1. Le nombre n'est pas divisible par (A). (B). (C). (D). (E). 2. Les huit demi-cercles inscrits à l'intérieur

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

TP Sage. Yannick Renard.

TP Sage. Yannick Renard. TP Sage. Yannick Renard. 1. Introduction. Le logiciel Software for Algebra and Geometry Experimentation (Sage) est un logiciel de mathématiques qui rassemble de nombreux programmes et bibliothèques libres

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Chapitre 4 Solutions des problèmes

Chapitre 4 Solutions des problèmes Chapitre 4 Solutions des problèmes 1. Résolution d'un modèle PLTE à deux variables. (a) La région issible de la relaxation continue ( ) est le polygone ABC représenté à la figure cidessous. La solution

Plus en détail

Mathématiques pour l informatique 1 notes de cours sur la seconde partie

Mathématiques pour l informatique 1 notes de cours sur la seconde partie Mathématiques pour l informatique notes de cours sur la seconde partie L Université Paris-Est, Marne-la-Vallée Cyril Nicaud Organisation Ce demi-cours est composé de 6 séances de cours et 6 séances de

Plus en détail

Fiches méthode SOMMAIRE

Fiches méthode SOMMAIRE Fiches méthode Tableur (LibreOffice) SOMMAIRE 1. Saisir une formule dans une cellule page 2 2. Recopier une formule sur plusieurs cellules page 2 3. Créer une liste de nombres page 5 4. Trier une liste

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Gestion de la mémoire

Gestion de la mémoire Gestion de la mémoire ENSIIE : Programmation avancée 1/20 Langages et mémoire Différence principale entre langages de haut niveau : OCaml, Java, C# langages de bas niveau : C, C++ : Gestion de la mémoire

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

Chapitre 2 : Représentation des nombres en machine

Chapitre 2 : Représentation des nombres en machine Chapitre 2 : Représentation des nombres en machine Introduction La mémoire des ordinateurs est constituée d une multitude de petits circuits électroniques qui ne peuvent être que dans deux états : sous

Plus en détail

( n) !n! 0. Compter les arbres binaires (1) Application des arbres binaires. Plan

( n) !n! 0. Compter les arbres binaires (1) Application des arbres binaires. Plan pplication des arbres binaires. Plan ompter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Arbres binaires Version prof Version prof

Arbres binaires Version prof Version prof Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Graphes planaires. Classes de graphes & Décompositions

Graphes planaires. Classes de graphes & Décompositions Classes de graphes & Décompositions Détails des démonstrations dans les livres suivants : [West] Introduction to Graph Theory, D. West [Diestel] Graph Theory, R. Diestel 2010-2011 : définition Définition

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Relations binaires sur un ensemble.

Relations binaires sur un ensemble. Math122 Relations binaires sur un ensemble. TABLE DES MATIÈRES Relations binaires sur un ensemble. Relations d équivalence, relation d ordre. Table des matières 0.1 Définition et exemples...................................

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Mini-Projet de Prolog : Solver de Sudoku

Mini-Projet de Prolog : Solver de Sudoku UNIVERSITE François Rabelais TOURS Polytech Tours-Département Informatique 64, Avenue Jean Portalis 37200 TOURS Mini-Projet de Prolog : Solver de Sudoku Encadré par : Présenté par : M. J-L Bouquard Florent

Plus en détail

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP

Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

Exercices 4. Nombres réels...

Exercices 4. Nombres réels... Exercices 4 Nombres réels La maîtrise des inégalités et de la notion de borne supérieure est un préalable incontournable à l étude de l analyse réelle. 4 Nombres réels..........................................................................

Plus en détail

Routage compact. 1 Préambule. 2 Détail du sujet. Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr. 2.1 Un modèle de routage

Routage compact. 1 Préambule. 2 Détail du sujet. Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr. 2.1 Un modèle de routage Routage compact Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr URL de suivi : http://www.enseignement.polytechnique.fr/profs/informatique/ Gilles.Schaeffer/INF431/projetX06.html

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Animation d un robot

Animation d un robot nimation d un robot IFT3355 : Infographie - TP #1 Jérémie Dumas Baptiste De La Robertie 3 février 2010 Université de Montréal Table des matières Introduction au problème 2 1 Transformations 2 1.1 Passage

Plus en détail

Programmation par Contraintes. Correctif des quelques exercices.

Programmation par Contraintes. Correctif des quelques exercices. Programmation par Contraintes. Correctif des quelques exercices. Ruslan Sadykov 22 décembre 204 Les règles de Golomb Une règle de Golomb est un ensemble d entiers naturels dans lequel les distances entre

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE PROBLEME DE L ARBRE RECOUVRANT MINIMAL I - INTRODUCTION (1) Définitions (2) Propriétés, Conditions d existence II ALGORITHMES (1) Algorithme de KRUSKAL (2) Algorithme de PRIM I

Plus en détail

Projet de modélisation et programmation C++ MMIS Triangulation d un ensemble de points scannés

Projet de modélisation et programmation C++ MMIS Triangulation d un ensemble de points scannés MMIS Triangulation d un ensemble de points scannés Cette seconde moitié du semestre est consacrée à la conception d un code orienté objet permettant de résoudre des problèmes relatifs à votre filière.

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments

Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments A- 0/0 Aspects théoriques et algorithmiques du calcul réparti Placement - Compléments Patrick CIARLET Enseignant-Chercheur UMA patrick.ciarlet@ensta-paristech.fr Françoise LAMOUR franc.lamour@gmail.com

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

TD 3 : Problème géométrique dual et méthode des moindres carrés

TD 3 : Problème géométrique dual et méthode des moindres carrés Semestre, ENSIIE Optimisation mathématique 4 mars 04 TD 3 : Problème géométrique dual et méthode des moindres carrés lionel.rieg@ensiie.fr Exercice On considère le programme géométrique suivant : min x>0,y>0

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

INFOGRAPHIE. Rapport du Projet de dessin 2D et 3D

INFOGRAPHIE. Rapport du Projet de dessin 2D et 3D Institut Galilée INFO 1 : Yohan ROUSSET Stéphane FOURNIER INFOGRAPHIE Rapport du Projet de dessin 2D et 3D Superviseur : R. MALGOUYRES Année 2008-2009 2 Table des matières I. Introduction... 4 II. Dessin

Plus en détail

Représentation des nombres entiers et réels. en binaire en mémoire

Représentation des nombres entiers et réels. en binaire en mémoire L3 Mag1 Phys. fond., cours C 15-16 Rep. des nbs. en binaire 25-09-05 23 :06 :02 page 1 1 Nombres entiers 1.1 Représentation binaire Représentation des nombres entiers et réels Tout entier positif n peut

Plus en détail

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples

CH.1 COMPLEXITÉ. 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples CH.1 COMPLEXITÉ 1.1 Les ordres de grandeur 1.2 Les récurrences linéaires 1.3 Des exemples L2-2 ch1 1 1.1 Les ordres de grandeur Chaque problème peut être résolu de différentes manières par des algorithmes

Plus en détail

Un algorithme de composition musicale

Un algorithme de composition musicale Un algorithme de composition musicale Table des matières Présentation Le compositeur. Le code PMX.................................................. Structures de données utilisées........................................

Plus en détail

Visibilité polygone à polygone :

Visibilité polygone à polygone : Introduction Visibilité polygone à polygone : calcul, représentation, applications Frédéric Mora Université de Poitiers - Laboratoire SIC 10 juillet 2006 1 La visibilité Introduction Contexte L espace

Plus en détail

Relations d ordre et relations d équivalence

Relations d ordre et relations d équivalence CHAPITRE 1 Relations d ordre et relations d équivalence 1.1 Définition Une relation sur un ensemble E est un sous-ensemble R de l ensemble E E, produit cartésien de E par lui-même. Par exemple, si E =

Plus en détail

Présentation du programme d informatique

Présentation du programme d informatique Présentation du programme d informatique UPS 31 mai 2015 Table des matières 1 Introduction 2 1.1 Présentation.................................. 2 1.2 Représentation des nombres.........................

Plus en détail

MAP-SIM2 : Planification de trajectoire

MAP-SIM2 : Planification de trajectoire MP-SIM : Planification de trajectoire sujet proposé par Nicolas Kielbasiewicz : nicolas.kielbasiewicz@ensta-paristech.fr 0 janvier 06 La planification de trajectoire consiste à déterminer une trajectoire,

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Rapport de stage Mise à plat d'un polygone

Rapport de stage Mise à plat d'un polygone Rapport de stage Mise à plat d'un polygone Stagiaire : Sejjil Olfa Tuteurs de stage: Luc BIARD et Bernard LACOLLE Laboratoire: Jean Kuntzmann (LJK) Equipe: Modélisation Géométrique & Multirésolution pour

Plus en détail

Les Tables de Hachage

Les Tables de Hachage NICOD JEAN-MARC Licence 3 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2007 NICOD JEAN-MARC 1 / 34 Référence Tables à adressage directe Thomas H. Cormen, Charles E.

Plus en détail

Recherche des intersections rayon - surfaces par classement préférentiel dans un logiciel d acoustique des salles

Recherche des intersections rayon - surfaces par classement préférentiel dans un logiciel d acoustique des salles Recherche des intersections rayon - surfaces par classement préférentiel dans un logiciel d acoustique des salles Stéphane Lesoinne 1, Jean-Jacques Embrechts 2 1 Intelsig, Institut Montéfiore, B28, Université

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Mathématiques, physique et sciences de l'ingénieur (MPSI) Mathématiques et physique (MP) Discipline : Option Informatique

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations.

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations. DOSSIER N 01 Question : Présenter un choix d exercices sur le thème suivant : Exemples simples de problèmes de dénombrement dans différentes situations. Consignes de l épreuve : Pendant votre préparation

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Systèmes de Fichiers

Systèmes de Fichiers Systèmes de Fichiers Hachage et Arbres B Serge Abiteboul INRIA February 28, 2008 Serge Abiteboul (INRIA) Systèmes de Fichiers February 28, 2008 1 / 26 Systèmes de fichiers et SGBD Introduction Hiérarchie

Plus en détail

Arbres bien équilibrés

Arbres bien équilibrés Arbres bien équilibrés ENSIIE : Programmation avancée 1/24 Recherche par dichotomie on aimerait avoir des opérations de recherche, d insertion et de suppression efficaces en moyenne et dans le pire des

Plus en détail

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes

Plus en détail

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont

Algorithmique P2. HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Algorithmique P2 HeapSort et files de priorité Ulg, 2009-2010 Renaud Dumont Structure de tas - arbre Un tas est une structure de données qui Permet un nouveau type de tri (Tri par tas) Permet l'implémentation

Plus en détail

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux Info0101 Intro. à l'algorithmique et à la programmation Cours 5 Tableaux Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique

Plus en détail

Excel 2002 Initiation

Excel 2002 Initiation Excel 2002 Initiation Guide de formation avec exercices et cas pratiques Patrick Morié, Bernard Boyer Tsoft et Groupe Eyrolles, 2003 ISBN : 2-212-11237-8 4 - CRÉER UNE FORMULE CRÉATION DE FORMULE 1 - SOMME

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail