Statistique descriptive bidimensionnelle

Dimension: px
Commencer à balayer dès la page:

Download "Statistique descriptive bidimensionnelle"

Transcription

1 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets (rapport de corrélatio) Itroductio au cas multidimesioel Retour au pla 1 Itroductio Das cette sectio, o s itéresse à l étude simultaée de deux variables X et Y, étudiées sur le même échatillo, toujours oté Ω L objectif essetiel des méthodes présetées est de mettre e évidece ue évetuelle variatio simultaée des deux variables, que ous appelleros alors liaiso Das certais cas, cette liaiso peut être cosidérée a priori comme causale, ue variable X expliquat l autre Y ; das d autres, ce est pas le cas, et les deux variables jouet des rôles symétriques Das la pratique, il coviedra de bie différecier les deux situatios et ue liaiso etraîe pas écessairemet ue causalité Sot aisi itroduites les otios de covariace, coefficiet de corrélatio liéaire, régressio liéaire, rapport de corrélatio, idice de cocetratio, khi-deux et autres idicateurs qui lui sot liés De même, ous présetos les graphiques illustrat les liaisos etre variables : uage de poits (scatterplot), diagrammes-boîtes parallèles, diagramme de profils, tableau de uages (scatter-plot matrix) 2 Deux variables quatitatives 21 Nuage de poits Il s agit d u graphique très commode pour représeter les observatios simultaées de deux variables quatitatives Il cosiste à cosidérer deux axes perpediculaires, l axe horizotal représetat la variable X et l axe vertical la variable Y, puis à représeter chaque idividu observé par les coordoées des valeurs observées L esemble de ces poits doe e gééral ue idée as- ACAT X36b4 FIGURE 1 Souris : Nuage de poits illustrat la faible liaiso liéaire etre les expressios de deux gèes (corrélatio de 0,33) sez boe de la variatio cojoite des deux variables et est appelé uage O otera qu o recotre parfois la termiologie de diagramme de dispersio, traductio plus fidèle de l aglais scatter-plot Le choix des échelles à reteir pour réaliser u uage de poits peut s avérer délicat D ue faço géérale, o distiguera le cas de variables homogèes (représetat la même gradeur et exprimées das la même uité) de celui des variables hétérogèes Das le premier cas, o choisira la même échelle sur les deux axes (qui serot doc orthoormés) ; das le secod cas, il est recommadé soit de représeter les variables cetrées et réduites sur des axes orthoormés, soit de choisir des échelles telles que ce soit sesiblemet ces variables là que l o représete (c est e gééral cette secode solutio qu utiliset, de faço automatique, les logiciels statistiques) 22 Rappel : variables cetrées et réduites Si X est ue variable quatitative de moyee x et d écart type σ X, o appelle variable cetrée associée à X la variable X x (elle est de moyee

2 2 Statistique descriptive bidimesioelle ulle et d écart type σ X ), et variable cetrée et réduite (ou tout simplemet variable réduite) associée à X la variable X x σ X (elle est de moyee ulle et d écart type égal à u) Ue variable cetrée et réduite s exprime sas uité 23 Idice de liaiso Le coefficiet de corrélatio liéaire est u idice redat compte umériquemet de la maière dot les deux variables cosidérées variet simultaémet Il est défii à partir de la covariace qui gééralise à deux variables la otio de variace : cov(x, Y ) = = w i [x i x][y i y] i=1 w i x i y i x y i=1 La covariace est ue forme biliéaire symétrique qui peut predre toute valeur réelle et dot la variace est la forme quadratique associée E particulier, o e déduit les deux formules suivates : var(x + Y ) = var(x) + var(y ) + 2cov(X, Y ), [cov(x, Y )] 2 var(x)var(y ) ; (cette derière propriété est l iégalité de Cauchy-Schwarz) la covariace déped des uités de mesure das lesquelles sot exprimées les variables cosidérées ; e ce ses, ce est pas u idice de liaiso itrisèque C est la raiso pour laquelle o défiit le coefficiet de corrélatio liéaire (appelé coefficiet de Pearso ou de Bravais-Pearso), rapport etre la covariace et le produit des écarts-types : corr(x, Y ) = cov(x, Y ) σ X σ Y Le coefficiet de corrélatio est égal à la covariace des variables cetrées et réduites respectivemet associées à X et Y : corr(x, Y ) = cov( X x σ X, Y y σ Y ) Par coséquet, corr(x, Y ) est idépedat des uités de mesure de X et de Y Le coefficiet de corrélatio est symétrique et pred ses valeurs etre -1 et +1 Les valeurs 1 et +1 correspodet à ue liaiso liéaire parfaite etre X et Y (existece de réels a, b et c tels que : ax + by + c = 0) Notos pour mémoire la possibilité d utiliser d autres idicateurs de liaiso etre variables quatitatives Costruits sur les rags (corrélatio de Spearma) ils sot plus robustes faces à des situatios de o liéarité ou des valeurs atypiques mais restet très réducteurs 3 Ue variable quatitative et ue qualitative 31 Notatios Soit X la variable qualitative cosidérée, supposée à m modalités otées x 1,, x l,, x m et soit Y la variable quatitative de moyee y et de variace σ 2 Y Désigat par Ω l échatillo cosidéré, chaque modalité x l de X défiit ue souspopulatio (u sous-esemble) Ω l de Ω : c est l esemble des idividus, supposés pour simplifier de poids w i = 1/ et sur lesquels o a observé x l ; o obtiet aisi ue partitio de Ω e m classes dot ous oteros 1,, m les cardiaux (avec toujours m l=1 l =, où = card(ω)) Cosidérat alors la restrictio de Y à Ω l (l = 1,, m), o peut défiir la moyee et la variace partielles de Y sur cette sous-populatio ; ous les oteros respectivemet y l et σ 2 l : 32 Boîtes parallèles y l = 1 Y (ω i ) ; l ω i Ω l σl 2 = 1 [Y (ω i ) y l ] 2 l ω i Ω l Ue faço commode de représeter les doées das le cas de l étude simultaée d ue variable quatitative et d ue variable qualitative cosiste à réaliser

3 3 Statistique descriptive bidimesioelle Le premier terme de la décompositio de σy 2, oté σ2 E, est appelé variace expliquée (par la partitio, c est-à-dire par X) ou variace iter (betwee) ; le secod terme, oté σr 2, est appelé variace résiduelle ou variace itra (withi) 34 Rapport de corrélatio Il s agit d u idice de liaiso etre les deux variables X et Y qui est défii par : s Y/X = σe 2 σy 2 ; FIGURE 2 Baque : Diagrammes-boites illustrat les différeces de distributio des âges e foctio de la possessio d ue carte Visa Premier des diagrammes-boîtes parallèles ; il s agit, sur u même graphique doté d ue échelle uique, de représeter pour Y u diagramme-boîte pour chacue des sous-populatios défiies par X La comparaiso de ces boîtes doe ue idée assez claire de l ifluece de X sur les valeurs de Y, c est-à-dire de la liaiso etre les deux variables 33 Formules de décompositio Ces formules idiquet commet se décomposet la moyee et la variace de Y sur la partitio défiie par X (c est-à-dire commet s écrivet ces caractéristiques e foctio de leurs valeurs partielles) ; elles sot écessaires pour défiir u idice de liaiso etre les deux variables y = 1 σ 2 Y = 1 m l y l ; l=1 m l (y l y) l=1 m l σl 2 = σe 2 + σr 2 l=1 X et Y état pas de même ature, s Y/X est pas symétrique et vérifie 0 s Y/X 1 Cet ecadremet découle directemet de la formule de décompositio de la variace Les valeurs 0 et 1 ot ue sigificatio particulière itéressate 4 Deux variables qualitatives 41 Notatios O cosidère das ce paragraphe deux variables qualitatives observées simultaémet sur idividus O suppose que la première, otée X, possède r modalités otées x 1,, x l,, x r, et que la secode, otée Y, possède c modalités otées y 1,, y h,, y c Ces doées sot présetées das u tableau à double etrée, appelé table de cotigece, das lequel o dispose les modalités de X e liges et celles de Y e coloes Ce tableau est doc de dimesio r c et a pour élémet géérique le ombre lh d observatios cojoites des modalités x l de X et y h de Y ; les quatités lh sot appelées les effectifs cojoits Ue table de cotigece se présete doc sous la forme suivate :

4 4 Statistique descriptive bidimesioelle y 1 y h y c sommes x h 1c 1+ x l l1 lh lc l+ x r r1 rh rc r+ sommes +1 +h +c Les quatités l+ (l = 1,, r) et +h (h = 1,, c) sot appelées les effectifs margiaux ; ils sot défiis par l+ = c h=1 lh et +h = r l=1 lh, et ils vérifiet r l=1 l+ = c h=1 +h = De faço aalogue, o peut défiir les otios de fréqueces cojoites et de fréqueces margiales 42 Représetatios graphiques des profils O peut evisager, das le cas de l étude simultaée de deux variables qualitatives, d adapter les graphiques présetés das le cas uidimesioel : o découpe chaque partie (coloe, partie de barre ou secteur) représetat ue modalité de l ue des variables selo les effectifs des modalités de l autre Mais, de faço géérale, il est plus approprié de réaliser des graphiques représetat des quatités très utiles das ce cas et que l o appelle les profils O appelle l-ème profil-lige l esemble des fréqueces de la variable Y coditioelles à la modalité x l de X (c est-à-dire défiies au sei de la souspopulatio Ω l de Ω associée à cette modalité) Il s agit doc des quatités : { l1 l+,, lh l+,, lc l+ } O défiit de faço aalogue le h-ème profil-coloe : FIGURE 3 Baque : Diagrammes e barres des profils liges et coloes (mosaïque plot) de la table de cotigece croisat le sexe et la possessio de la carte Visa Premier La superficie de chaque case est e plus proportioelle à l effectif de la cellule associée { 1h +h,, lh +h,, rh +h } La représetatio graphique des profils-liges ou des profils-coloes, au moye, par exemple, de diagrammes e barre parallèles (mosaïc plot), doe alors ue idée assez précise de la variatio cojoite des deux variables

5 5 Statistique descriptive bidimesioelle 43 Idices de liaiso Lorsque tous les profils-liges sot égaux, ce qui est équivalet à ce que tous les profils-coloes soiet égaux et que (l, h) {1,, r} {1,, c} : lh = l+ +h o dit qu il existe aucue forme de liaiso etre les deux variables cosidérées X et Y Par suite, la mesure de la liaiso va se faire e évaluat l écart etre la situatio observée et l état de o liaiso défii ci-dessus 431 Khi-deux Il est courat e statistique de comparer ue table de cotigece observée, d effectif cojoit géérique lh, à ue table de cotigece doée a priori (et appelée stadard), d effectif cojoit géérique s lh, e calculat la quatité r c l=1 h=1 ( lh s lh ) 2 s lh De faço aturelle, pour mesurer la liaiso sur ue table de cotigece, o utilise doc l idice appelé khi-deux (chi-square) et défii comme suit : χ 2 = r l=1 h=1 c ( lh l+ +h l+ +h ) 2 = [ r c l=1 h=1 2 lh l+ +h 1 Le coefficiet χ 2 est toujours positif ou ul et il est d autat plus grad que la liaiso etre les deux variables cosidérées est forte Malheureusemet, il déped aussi des dimesios r et c de la table étudiée, aisi que de la taille de l échatillo observé ; e particulier, il est pas majoré C est la raiso pour laquelle o a défii d autres idices, liés au khi-deux, et dot l objectif est de palier ces défauts 432 Autres idicateurs Nous e citeros trois Le phi-deux : Φ 2 = χ2 Il e déped plus de, mais déped ecore de r et de c, ] Le coefficiet T de Tschuprow : Φ T = 2 (r 1)(c 1) O peut vérifier : 0 T 1 Le coefficiet C de Cramer : C = Φ 2 d 1, avec : d = if(r, c) O vérifie maiteat : 0 T C 1 Efi, la p-valeur d u test d idépedace (test du χ 2 ) est aussi utilisée pour comparer des liaisos etre variables 5 Vers le cas multidimesioel L objectif des prochais chapitres de ce cours est d exposer les techiques de la statistique descriptive multidimesioelle Or, sas coaître ces techiques, il se trouve qu il est possible de débuter ue exploratio de doées multidimesioelles e adaptat simplemet les méthodes déjà étudiées 51 Matrices des covariaces et des corrélatios Lorsqu o a observé simultaémet plusieurs variables quatitatives (p variables, p 3) sur le même échatillo, il est possible de calculer d ue part les variaces de toutes ces variables, d autre part les p(p 1) 2 covariaces des variables prises deux à deux L esemble de ces quatités peut alors être disposé das ue matrice carrée (p p) et symétrique, comportat les variaces sur la diagoale et les covariaces à l extérieur de la diagoale ; cette matrice, appelée matrice des variaces-covariaces (ou ecore matrice des covariaces) sera otée S Elle sera utilisée par la suite, mais a pas d iterprétatio cocrète Notos qu il est possible de vérifier que S est semi défiie positive De la même maière, o peut costruire la matrice symétrique p p, comportat des 1 sur toute la diagoale et, e dehors de la diagoale, les coefficiets de corrélatio liéaire etre les variables prises deux à deux Cette matrice est appelée matrice des corrélatios, elle est égalemet semi défiie positive, et ous la oteros R Elle est de lecture commode et idique quelle est la structure de corrélatio des variables étudiées

6 6 Statistique descriptive bidimesioelle 52 Tableaux de uages C140 C160 C180 C1619 C1617 C1819 C1817 C2019 C2039 C1826 C1836 C2026 C2036 C2046 C2246 C2256 C1833 C2033 C2053 C2253 C2263 C140 C160 C180 C1619 C1617 C1819 C1817 C2019 C2039 C1826 C1836 C2026 C2036 C2046 C2246 C2256 C1833 C2033 C2053 C2253 C2263 FIGURE 4 Souris : représetatio graphique des corrélatios etre les variables de cocetratio de lipides par des itesités de couleur Notos X 1,, X p les p variables quatitatives cosidérées ; o appelle tableau de uages le graphique obteu e juxtaposat, das ue sorte de matrice carrée p p, p 2 sous-graphiques ; chacu des sous-graphiques diagoaux est relatif à l ue des p variables, et il peut s agir, par exemple, d u histogramme ; le sous-graphique figurat das le bloc d idice (j, j ), j j, est le uage de poits réalisé avec la variable X j e abscisses et la variable X j e ordoées Das certais logiciels aglo-saxos, ces graphiques sot appelés splom (Scatter PLOt Matrix) Le tableau de uages, avec la matrice des corrélatios, fourit aisi ue visio globale des liaisos etre les variables étudiées 53 La matrice des coefficiets de Tschuprow (ou de Cramer) Cosidéros maiteat le cas où l o étudie simultaémet plusieurs variables qualitatives (p variables, p 3) La matrice des coefficiets de Tschuprow est la matrice carrée d ordre p, symétrique, comportat des 1 sur la diagoale et, e dehors de la diagoale, les coefficiets de Tschuprow etre les variables prises deux à deux Il s agit doc d ue matrice du même type que la matrice des corrélatios (elle est d ailleurs, elle aussi, semi défiie positive), et so utilisatio pratique est aalogue Notos que l o peut, de la même faço, utiliser les coefficiets de Cramer au lieu des coefficiets de Tschuprow 54 Le tableau de Burt Le tableau de Burt est ue gééralisatio particulière de la table de cotigece das le cas où l o étudie simultaémet p variables qualitatives Notos X 1,, X p ces variables, appelos c j le ombre de modalités de X j, j = 1,, p et posos c = p j=1 c j Le tableau de Burt est e fait ue matrice carrée c c, costituée de p 2 sous matrices Chacue des p sous matrices diagoales est relative à l ue des p variables ; la j ième d etre elles est carrée d ordre c j, diagoale, et comporte sur la diagoale les effectifs margiaux de X j La sous matrice figurat das le bloc d idice (j, j ), j j, est la table de cotigece costruite e mettat X j e liges et X j e coloes ; le tableau de Burt est doc symétrique Il apparaît e fait comme l aalogue qualitatif du tableau des uages

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson

Loi binomiale. Niveau : Première S + SUP (Convergence) Prérequis : Variable aléatoire, espérance, variance, théorème limite central, loi de Poisson 4 L E Ç O N Loi biomiale Niveau : Première S + SUP (Covergece) Prérequis : Variable aléatoire, espérace, variace, théorème limite cetral, loi de Poisso 1 Loi de Beroulli Défiitio 41 Loi de Beroulli Soit

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

Intérêt simple CHAPITRE. Sommaire

Intérêt simple CHAPITRE. Sommaire HAPTRE térêt simple Sommaire A B D E F G H J K L Notio d itérêt Formule fodametale de l itérêt simple Durée de placemet exprimée e mois Durée de placemet exprimée e jours alculs sur la formule fodametale

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent http://www.math.u-bordeaux.fr/ machaven/ 2014-2015 Uiversité de Bordeaux - Master MIMSE - 2ème aée Scorig Marie Chavet http://www.math.u-bordeaux.fr/ machave/ 2014-2015 1 Itroductio L idée géérale est d affecter ue ote (u score) global à u idividu à partir

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Inégalités souvent rencontrées

Inégalités souvent rencontrées Iégalités souvet recotrées Recotres Putam 004 Uiversité de Sherbrooke Jea-Philippe Mori Théorie Certaies iégalités sot deveues célèbres e raiso de leur grade utilité Elles sot aussi souvet au coeur de

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Apprentissage: cours 3a Méthodes par moyennage local

Apprentissage: cours 3a Méthodes par moyennage local Appretissage: cours 3a Méthodes par moyeage local Guillaume Oboziski 1 er mars 2012 Réferece : chap. 6 of [Hastie et al., 2009] ad chap. 6 of [Devroye et al., 1996]. Algorithmes par moyeage local O cosidère

Plus en détail

Statistique Numérique et Analyse des Données

Statistique Numérique et Analyse des Données Statistique Numérique et Aalyse des Doées Arak DALALYAN Septembre 2011 Table des matières 1 Élémets de statistique descriptive 9 1.1 Répartitio d ue série umérique uidimesioelle.............. 9 1.2 Statistiques

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr1105 Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1)

I. Quitte ou double. Pour n = 1 : C 0 + (2p 1) E (M k ) = C 0 + (2p 1) E (M 1 ) = E (C 1 ) d après le 1. Soit n N tel que E (C n ) = C 0 + (2p 1) Corrigé ESSEC III 008 par Pierre Veuillez Das certaies situatios paris sportifs, ivestissemets fiaciers..., o est ameé à miser de l arget de faço répétée sur des paris à espérace favorable. O se propose

Plus en détail

Principes et Méthodes Statistiques

Principes et Méthodes Statistiques Esimag - 2ème aée 0 1 2 3 4 5 6 7 0 5 10 15 x y Pricipes et Méthodes Statistiques Notes de cours Olivier Gaudoi 2 Table des matières 1 Itroductio 7 1.1 Défiitio et domaies d applicatio de la statistique............

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Bio-Statistique. 1 ère partie. Discipline : Bio-statistique, Bio-mathématique et Sciences de l Information

Bio-Statistique. 1 ère partie. Discipline : Bio-statistique, Bio-mathématique et Sciences de l Information Bio-Statistique 1 ère partie Disciplie : Bio-statistique, Bio-mathématique et Scieces de l Iformatio OBJECTIFS PEDAGOGIQUES Réaliser l importace du problème de la variabilité ihérete au doées médicales,

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état

Approximation de la solution d une équation différentielle ordinaire avec impulsions qui dépendent de l état Approximatio de la solutio d ue équatio différetielle ordiaire avec impulsios qui dépedet de l état F. Dubeau A. Ouasafi A. Sakat CRM-276 Jauary 21 Départemet de mathématiques et d iformatique, Uiversité

Plus en détail

Chapitre 13. Statistiques et probabilités. Sommaire

Chapitre 13. Statistiques et probabilités. Sommaire 13 Chapitre Chapitre 13 Statistiques et probabilités Les statistiques et les probabilités occupet ue place importate das l eseigemet de certaies classes préparatoires Les pricipales foctios écessaires

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Probabilité 1 - L1 MMIA

Probabilité 1 - L1 MMIA Probabilité 1 - L1 MMIA Tra Viet Chi, vtra@u-paris10fr, Bureau E12(G) Exercice 1 (Pour démarrer) 1 Soiet A et B deux esembles Rappelez les défiitios de l itersectio A B, de l uio A B, de la différece A

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

LES PROBABILITÉS POUR LES OPTIONS B, C ET D

LES PROBABILITÉS POUR LES OPTIONS B, C ET D LES PROBABILITÉS POUR LES OPTIONS B, C ET D PRÉPARATION À L AGRÉGATION EXTERNE DE MATHÉMATIQUES DE L UNIVERSITÉ RENNES 1 1 ANNÉE 2009/2010 1. ESPACE PROBABILISÉ - VARIABLE ALÉATOIRE 1.1 ESPACE PROBABILISÉ

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ

Comment utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Commet utiliser ce que vous POSSÉDEZ pour réduire ce que vous DEVEZ Survol du compte Mauvie U La majorité des Caadies gèret leurs fiaces comme suit : 1. Ils déposet leur reveu et autres actifs à court

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

P : Dénombrements / Probabilités en univers fini

P : Dénombrements / Probabilités en univers fini P : Déombremets / Probabilités e uivers fii Déombremet & Combiatoire P.1 O tire les cartes! O tire 5 cartes das u jeu de 32 cartes usuel. Combie y a-t-il de tirages possibles vérifiat les coditios suivates

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

1. CALCUL DES CARACTÉRISTIQUES «R- L-C» D'UNE JONCTION TRIPHASÉE

1. CALCUL DES CARACTÉRISTIQUES «R- L-C» D'UNE JONCTION TRIPHASÉE . CALCUL DES CAACTÉISTIQUES «- L-C» DUNE JONCTION TIPHASÉE Trasport et Distributio de léergie Electrique Mauel de travaux pratiques. CALCUL DES CAACTÉISTIQUES «-L-C» DUNE JONCTION TIPHASÉE.. Itroductio....

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Maîtrise de Mathématiques TER Le bandit manchot à deux bras

Maîtrise de Mathématiques TER Le bandit manchot à deux bras Maîtrise de Mathématiques TER Le badit machot à deux bras Deis Cousieau Sous la directio de Jea-Michel Loubes Septembre 2003 Table des matières 1 Présetatio du problème 2 1.1 Exemple de la machie à sous,

Plus en détail

Tableaux Croisés et Diagrammes en Mosaïque : Pour Voir Les Probabilités Marginales et Conditionnelles.

Tableaux Croisés et Diagrammes en Mosaïque : Pour Voir Les Probabilités Marginales et Conditionnelles. Tableaux Croisés et Diagrammes e Mosaïque : Pour Voir Les Probabilités Margiales et Coditioelles. Moique Le Gue CNRS- MATISSE 1 Résumé Cet article s iscrit das ue démarche de sesibilisatio aux différetes

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014

Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014 Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement)

Cours : Le choix des investissements grâce à l actualisation : La VAN (Valeur Actualisée Nette) et le TIR (Taux Interne de Rendement) Cours : Le choix des ivestissemets grâce à l actualisatio : La VAN (Valeur Actualisée Nette) et le TIR (Taux Itere de Redemet) 1 La VAN, la Valeur Actualisée (ou Actuelle) Nette e aveir certai 11 La comparaiso

Plus en détail

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire

HEC. Gilles Mauffrey. METHODES QUANTITATIVES AVEC EXCEL Programmation linéaire, programmation dynamique, simulation, statistique élémentaire HEC Gilles Mauffrey METHODES QUANTITATIVES AVEC EXCEL Programmatio liéaire, programmatio dyamique, simulatio, statistique élémetaire La Modélisatio LA MODELISATION Modèle et typologie des modèles. La otio

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

trouve jamais dans les concepts généraux que ce qu on y met

trouve jamais dans les concepts généraux que ce qu on y met ,QIRUPDWLTXHQRUPHHWWHPSV,VDEHOOH%R\GHQV Présetatio par Marie-Ae Chabi Réuio PIN 15 javier 2004 /HVEDVHVGHGRQQpHVHPSLULTXHV Collectio fiie et structurée de doées codifiées, textuelles ou multimédia, destiées

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation

Tempêtes : Etude des dépendances entre les branches Automobile et Incendie à l aide de la théorie des copulas Topic 1 Risk evaluation Tempêtes : Etude des dépedaces etre les braches Automobile et Icedie à l aide de la théorie des copulas Topic Risk evaluatio Belguise Olivier Charles Levi ACM Guy Carpeter 34 rue du Wacke 47/53 rue Raspail

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail

Processus géométrique généralisé et applications en fiabilité

Processus géométrique généralisé et applications en fiabilité Processus géométrique gééralisé et applicatios e fiabilité Lauret Bordes 1 & Sophie Mercier 2 1,2 Uiversité de Pau et des Pays de l Adour Laboratoire de Mathématiques et de leurs Applicatios - Pau UMR

Plus en détail

MESURE DE L'INFORMATION

MESURE DE L'INFORMATION MESURE DE L'INFORMATION Marc URO TABLE DES MATIÈRES INTRODUCTION... 3 INCERTITUDE D'UN ÉVÉNEMENT (OU SELF-INFORMATION)... 7 INFORMATION MUTUELLE DE DEUX ÉVÉNEMENTS... 9 ENTROPIE D'UNE VARIABLE ALÉATOIRE

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio

Plus en détail

INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï

INTRODUCTION AUX MATRICES ALÉATOIRES. par. Djalil Chafaï INTRODUCTION AUX MATRICES ALÉATOIRES par Djalil Chafaï Résumé. E cocevat les mathématiques comme u graphe, où chaque sommet est u domaie, la théorie des probabilités et l algèbre liéaire figuret parmi

Plus en détail

Le meilleur scénario pour votre investissement

Le meilleur scénario pour votre investissement ivestir Best Strategy 2012 Le meilleur scéario pour votre ivestissemet U ivestissemet diversifié U coupo uique de 0% à 50% brut* à l échéace Ue courte durée : 4 as et demi Votre capital garati à l échéace

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Système constructif avec isolation par l extérieur

Système constructif avec isolation par l extérieur Système costructif avec isolatio par l extérieur Eco-costruire e Bloc Moomur Isolat HERMIBLOC Matériau durable par ature pour des Habitats Basse Cosommatio www.thermibloc.fr LE «BÉON DE BOIS» Le matériau

Plus en détail