Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?

Dimension: px
Commencer à balayer dès la page:

Download "Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?"

Transcription

1 Analyses multivariées avec R Commander Analyses multivariées avec R Commander (via le package FactoMineR) Plate-forme de Support en Méthodologie et Calcul Statistique (SMCS) - UCL 1 Introduction à R 2 Cedric Taverne 3 Analyse des correspondances multiples Institut de Statistique, UCL Voie du Roman Pays, 20 Bureau : C113 1 er février Analyse factorielle multiple 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Qu est ce que R? Analyses multivariées avec R Commander Qu est ce que? Introduction à R Qu est ce que R? 1 Introduction à R Qu est ce que R? Qu est ce que R Commander? Importer une base de données en R Commander Quelques statistiques descriptives en R Commander Quelques références pour aller plus loin en R R est un langage de programmation orienté objet R est un logiciel libre (GNU Public Licence) R est un outil statistique puissant, flexible et collaboratif 2 3 Analyse des correspondances multiples 4 Analyse factorielle multiple Deux interfaces utilisées dans cette formation : RGui et R Commander Démarrer R en salles Socrate : Démarrer > Programmes > R > R C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

2 Introduction à R Qu est ce que R? Introduction à R Qu est ce que R? L interface classique sous Windows : RGui Qu est ce que? R est un logiciel dynamique : > [1] 2 a = > a [1] 2 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Qu est ce que? Introduction à R Qu est ce que R? C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Qu est ce que R? Les Packages et l Aide dans RGui R est un langage orienté objet : > a = c(1, 2, 3) > is.vector(a) [1] TRUE > a [1] Installation d un package sur votre ordinateur : 1 Menu RGui : Packages > Installer le(s) package(s) puis sélectionner le package Dans cette formation : Rcmdr, FactoMineR, RcmdrPlugin.FactoMineR 2 Entrer le code : library(nom_du_package) dans RGui Utiliser l aide de R : Aide html sur une fonction :?nom_de_fonction Recherche dans l aide html : help.search("mot clé") Recherche dans l aide en ligne : RSiteSearch("mot clé") C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

3 Introduction à R Qu est ce que R? Introduction à R Qu est ce que R Commander? Ouvrir un script Analyses multivariées avec R Commander 1 Introduction à R Qu est ce que R? Qu est ce que R Commander? Importer une base de données en R Commander Quelques statistiques descriptives en R Commander Quelques références pour aller plus loin en R 2 3 Analyse des correspondances multiples 4 Analyse factorielle multiple Conseil : Sauver les scripts avec l extension.r C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Qu est ce que R Commander? Introduction à R Qu est ce que R Commander? Qu est ce que R Commander? R Commander R Commander est une interface clique-boutons pour R développée par John Fox. (http ://socserv.mcmaster.ca/jfox/misc/rcmdr/) Pour lancer R Commander : charger le package Rcmdr Entrer le code : library(rcmdr) Pour relancer R Commander : Commander() Pour un lancement plus complet : library(rcmdrplugin.export) library(rcmdrplugin.factominer) library(rcmdrplugin.teachingdemos) options(rcmdr=list(plugins=c("rcmdrplugin.export", "RcmdrPlugin.FactoMineR", "RcmdrPlugin.TeachingDemos"))) library(rcmdr) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

4 Introduction à R Les menus de R Commander Qu est ce que R Commander? Introduction à R Importer une base de données en R Commander Analyses multivariées avec R Commander Fichier : Changer de répertoire de travail et sauver les scripts et sorties Edition : Copier, coller... Données : Importer et gérer le(s) jeu(x) de données, modifier des variables, etc. Statistiques : Les principales méthodes d analyse statistique Graphes : Tous les graphiques et leur sauvegarde Modèles : Gestion des options des modèles (suite du menu Statistiques) Distributions : Analyse et génération de nombreuses distributions Export : Module d exportation de données FactoMineR : Module d analyses multivariées Demos : Démonstrations pour l enseignement des statistiques Outils : Chargement de Packages, etc. Aide : Aide et introduction à R Commander C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / Introduction à R Qu est ce que R? Qu est ce que R Commander? Importer une base de données en R Commander Quelques statistiques descriptives en R Commander Quelques références pour aller plus loin en R 2 3 Analyse des correspondances multiples 4 Analyse factorielle multiple 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Changer le répertoire de travail Importer une base de données en R Commander Introduction à R La base de données Eurojob Importer une base de données en R Commander Données concernent 26 pays européens Informe sur la répartition (en %) des travailleurs dans 9 secteurs d activité Source : Euromonitor (1979), European Marketing Data and Statistics, London : Euromonitor Publications, (http ://lib.stat.cmu.edu/dasl/datafiles/europeanjobs.html) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

5 Introduction à R Importer une base de données en R Commander Introduction à R Importer une base de données en R Commander De SPSS à R Commander De SPSS à R Commander C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R De SPSS à R Commander Importer une base de données en R Commander Introduction à R Importer une base de données en R Commander R Commander : Visualiser et éditer une base de données C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

6 Introduction à R Analyses multivariées avec R Commander Quelques statistiques descriptives en R Commander La fonction summary Introduction à R Quelques statistiques descriptives en R Commander 1 Introduction à R Qu est ce que R? Qu est ce que R Commander? Importer une base de données en R Commander Quelques statistiques descriptives en R Commander Quelques références pour aller plus loin en R La fonction summary fournit un résumé descriptif de chaque variable Variables qualitative : fréquences Variables quantitative : minimum, quartiles, moyenne, maximum 2 3 Analyse des correspondances multiples 4 Analyse factorielle multiple 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 La fonction numsummary Introduction à R Quelques statistiques descriptives en R Commander Introduction à R Matrice de corrélations - la fonction cor Quelques statistiques descriptives en R Commander La fonction numsummary fournit des statistiques descriptives pour les variables sélectionnées La fonction cor fournit la matrice des corrélations (Pearson, Spearman ou Partielles) entre les variables sélectionnées C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

7 Introduction à R Quelques statistiques descriptives en R Commander Tester une corrélation - la fonction cor.test Tester une corrélation... Introduction à R Quelques statistiques descriptives en R Commander La fonction cor.test fournit un test d hypothèse (uni ou bilatéral) sur la corrélation (Pearson ou Spearman) ou le Tau de Kendall entre les variables sélectionnées Peut-on interpréter sans risque les résultats ci-dessous? Il faut vérifier l hypothèse de normalité posée par la statistique de Pearson! C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Quelques statistiques descriptives en R Commander Vérifier une hypothèse de normalité C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Quelques statistiques descriptives en R Commander Vérifier une hypothèse de normalité Test formel QQ-plot Test formel QQ-plot C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

8 Introduction à R Vérifier une hypothèse de normalité Quelques statistiques descriptives en R Commander Introduction à R Vérifier une hypothèse de normalité Quelques statistiques descriptives en R Commander Histogramme QQ-plot Histogramme QQ-plot C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Quelques statistiques descriptives en R Commander Introduction à R Quelques statistiques descriptives en R Commander Vérifier une hypothèse de normalité Sauver un graphe Ajouter la fonction de densité normale correspondante : curve(dnorm(x, mean=mean(eurojob$agr), sd=sd(eurojob$agr)), add=true) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

9 Introduction à R Quelques références pour aller plus loin en R Introduction à R Quelques références pour aller plus loin en R Analyses multivariées avec R Commander Quelques références pour aller plus loin avec R 1 Introduction à R Qu est ce que R? Qu est ce que R Commander? Importer une base de données en R Commander Quelques statistiques descriptives en R Commander Quelques références pour aller plus loin en R 2 3 Analyse des correspondances multiples 4 Analyse factorielle multiple Initiation au langage R avec exemples dans RGui et R Commander : http ://www.stat.ucl.ac.be/smcs/formation/formationsis/support.html Le langage de programmation S et les environnements R-Gui et S-Plus sous Windows (STAT Calcul Statistique sur ordinateur) : http ://www.stat.ucl.ac.be/cours/stat2020/documents/manuels l ogiciels/syllabusr.pdf Le site officiel de R : http ://cran.r-project.org/ Avant tout, un mot d ordre : R est un logiciel très flexible, il se découvre donc facilement par essais-erreurs... 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Introduction à R Quelques références pour aller plus loin en R Petite introduction au calcul matriciel Quelques références pour aller plus loin avec FactoMineR Analyses multivariées avec R Commander 1 Introduction à R Le site de FactoMineR : http ://factominer.free.fr/ Husson F., Lê S., Pagès J. (2009) Analyse de données avec R, Rennes : Presses Universitaires de Rennes L ensemble des bases de données exploitées dans le bouquin : http ://factominer.free.fr/livre/ 2 Petite introduction au calcul matriciel La décomposition spectrale d une matrice L analyse en composantes principales L ACP sur les données Eurojob 3 Analyse des correspondances multiples 4 Analyse factorielle multiple 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

10 Petite introduction au calcul matriciel Petite introduction au calcul matriciel Exemples de matrices Petite introduction au calcul matriciel Une section pour vous aider à comprendre les notations mathématiques des méthodes d analyses multivariées et, par là, ce que l on effectue comme calculs sur les données Qu est ce qu une matrice? Un tableau de données à deux entrées (lignes, colonnes) Une table de contingence Une base de données A = B = Section suivante Eurojob = C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Petite introduction au calcul matriciel Dimensions d une matrice Transposer une matrice Les dimensions d une matrice informent sur sa taille C = lignes 4 colonnes Transposer une matrice, c est la faire pivoter sur sa diagonale F = t(f) = F = C est une matrice de dimension (3 4) (3 lignes 4 colonnes ) Les lignes deviennent les colonnes Les colonnes deviennent les lignes Les dimensions d inversent (4 3) (3 4) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

11 Petite introduction au calcul matriciel Petite introduction au calcul matriciel Transposer un vecteur Matrices symétriques E = t(e) = E = ( ) D = D = = D vecteur colonne vecteur ligne D est une matrice symétrique D = D Si la transposition n est pas indiquée, un vecteur est toujours un vecteur colonne. Lorsque l on transpose, rien ne change C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Petite introduction au calcul matriciel Matrices diagonales Additions et multiplications E = E = = diag (1,2,2) Un scalaire est un nombre isolé en calcul matriciel Addition d un scalaire 3 + A = = = E est une matrice symétrique et diagonale Tous les éléments non-nuls de la matrice sont sur sa diagonale A+D = Addition de deux matrices Multiplication par un scalaire 3 A = = = = = C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

12 Produit scalaire de deux vecteurs Petite introduction au calcul matriciel Produit matriciel de deux vecteurs Petite introduction au calcul matriciel Attention : Multiplication Produit (scalaire ou matriciel) E F = ( ) = = 5 On obtient un scalaire! Que donnerait le produit dans l ordre inverse? F E = ( ) 2 2 = = 5 1 Et si on place le vecteur transposé derrière? F E = ( ) ( ) = Que dire des dimensions? Attention : E F = ( ( ) = ( ) ( ) ( ) ) = ( ) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Produit matriciel de deux matrices C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Produit matriciel de deux matrices Attention aux dimensions! = B D = B D = e ligne de B 1 e colonne de D 1 e ligne de B 2 e colonne de D 1 e ligne de B 3 e colonne de D 2 e ligne de B 1 e colonne de D 2 e ligne de B 2 e colonne de D 2 e ligne de B 3 e colonne de D 3 e ligne de B 1 e colonne de D 3 e ligne de B 2 e colonne de D 3 e ligne de B 3 e colonne de D B D = = ( ) ( ) ( ) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

13 Produit matriciel de deux matrices Petite introduction au calcul matriciel Petite introduction au calcul matriciel Prémultiplier et postmultiplier par une matrice diagonale Quelques règles à retenir concernant le produit de deux matrices : Les matrices doivent avoir au moins une dimension commune La matrice obtenue (si le calcul est possible) a pour dimensions le nombre de ligne de la première matrice et le nombre de colonnes de la seconde diag (1,2,3) B = = Prémultiplier par une matrice diagonale revient à multiplier les lignes uniquement! La matrice obtenue se calcule comme suit : Soit X une matrice (n p) et Y une matrice (p m) X Y = Z = {z ik } où z ik = p j=1 x ij y jk B diag (1,2,3) = = avec i = 1,2,...n, j = 1,2,...p et k = 1,2,...m Postmultiplier par une matrice diagonale revient à multiplier les colonnes uniquement! C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Petite introduction au calcul matriciel Inverser une matrice La matrice identité L inverse d un nombre, c est quoi? = Le nombre qui conduit à 1 par multiplication Ex : l inverse de 8 est 1/8; l inverse de -1 est L inverse d une matrice, c est quoi? = La matrice qui conduit à la matrice identité par produit matriciel Matrice identité est une matrice diagonale dont la diagonale est uniquement composée de 1 I 3 = = diag (1,1,1) La matrice identité, c est quoi? = Une matrice diagonale composée uniquement de 1 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

14 La matrice que l on veut inverser doit : Petite introduction au calcul matriciel Inverse de la matrice A Petite introduction au calcul matriciel Etre carrée Une matrice carrée est une matrice dont le nombre de lignes égale le nombre de colonnes. A = Etre de rang complet C = Un matrice de rang complet a autant de lignes/colonnes indépendantes que de lignes/colonnes dans la matrice. B = D = A = A A 1 = A 1 = Une propriété bien utile à connaître : A A 1 = A 1 A = I p = = I 3 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Exercice : Inversez la matrice ci-dessous C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 Petite introduction au calcul matriciel Exercice : Inversez la matrice ci-dessous ( ) ( ) 1 =? ( ) ( ) 1 =? Piste 1 pour résoudre : ( Piste 2 pour résoudre : ) ( a b c d ) = ( ) 2 a + 0 c = 1 2 b + 0 d = 0 0 a + 3 c = 0 0 b + 3 d = 1 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

15 Petite introduction au calcul matriciel Exemple de code R pour la manipulation de matrices Petite introduction au calcul matriciel Exemple de code R pour la manipulation de matrices A = > A1 = matrix(c(3, 1, 2, 2, 4, 2, 1, 3, 1), ncol = 3) > v1 = c(3, 1, 2) > v2 = c(2, 4, 2) > v3 = c(1, 3, 1) > A2 = cbind(v1, v2, v3) > A1 [,1] [,2] [,3] [1,] [2,] [3,] > A2 v1 v2 v3 [1,] [2,] [3,] C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 La décomposition spectrale d une matrice Analyses multivariées avec R Commander A = C = > A = A1 = matrix(c(3, 1, 2, 2, 4, 2, 1, 3, 1), ncol = 3) > C = matrix(c(3, 4, 1, 2, 1, 2, 4, 4, 1, 4, 2, 3), nrow = 3) Produit matriciel : C A ou C A? > t(c) [,1] [,2] [,3] [1,] [2,] [3,] [4,] > t(c) %*% A [,1] [,2] [,3] [1,] [2,] [3,] [4,] C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 La décomposition spectrale d une matrice La décomposition spectrale d une matrice 1 Introduction à R 2 Petite introduction au calcul matriciel La décomposition spectrale d une matrice L analyse en composantes principales L ACP sur les données Eurojob 3 Analyse des correspondances multiples 4 Analyse factorielle multiple Section précédente La décomposition spectrale d une matrice (d une base de données) consiste à rechercher son squelette en : réorganisant l information de manière hiérarchique (avec l idée que l on veut réduire le nombre de dimensions) de sorte à discriminer au mieux les points (inertie décroissante sur les nouvelles dimensions) 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

16 La décomposition spectrale d une matrice La Décomposition spectrale d une matrice La décomposition spectrale d une matrice La Décomposition spectrale d une matrice Les r couples de valeurs propres (λ i ) et de vecteurs propres (v i ) forment la décomposition spectrale de la matrice M. Ils correspondent aux r solutions possibles à l équation suivante : Mv i = λ i v i r = rang(m) = nombre minimal de lignes/colonnes indépendantes Quelques propriétés intéressantes : r λ i = trace(m) i=1 r λ i = M = det(m) i=1 Les vecteurs propres (v i ) sont : orthogonaux v i v j = 0 normés v i v i = 1 on dit qu ils sont orthonormés pour i j Aucune information n est perdue par la décomposition spectrale! (on peut toujours reconstruire la matrice de départ) La décomposition spectrale d une matrice est la méthode de base des analyses factorielles (ACP, ACM, AFM, etc.) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 L analyse en composantes principales Analyses multivariées avec R Commander C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 L analyse en composantes principales L analyse en composantes principales 1 Introduction à R 2 Petite introduction au calcul matriciel La décomposition spectrale d une matrice L analyse en composantes principales L ACP sur les données Eurojob 3 Analyse des correspondances multiples 4 Analyse factorielle multiple L Analyse en Composantes Principales (ACP) consiste en une décomposition spectrale d une matrice particulière : la matrice de variances-covariances la matrice des corrélations L objectif reste le même : réorganiser l information de manière hiérarchique (avec l idée que l on veut réduire le nombre de dimensions) de sorte à discriminer au mieux les individus (variance décroissante sur les nouvelles dimensions) 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

17 L analyse en composantes principales L analyse en composantes principales L analyse en Composantes Principales L analyse en Composantes Principales Les r couples (r = rang(x X)) de valeurs propres (λ i ) et de vecteurs propres (v i ) forment la décomposition spectrale de la matrice (X X). Il s agit des r solutions possibles à l équation suivante : (X X)v i = λ i v i Deux propriétés intéressantes : r i=1 λ i = trace((x X)) = p j=1 s jj = somme des variances si l on travaille sur la matrice de variances-covariances r i=1 λ i = trace((x X)) = p j=1 r jj = p si l on travaille sur la matrice de corrélations Les vecteurs propres obtenus vont fournir l orientation des nouvelles dimensions, appelées Composantes Principales Ces Composantes Principales sont hiérarchisées : λ 1 λ 2... λ p (avec seulement r valeurs propres non-nulles) la variance des projections des points (individus) sur les composantes principales décroît proportionnellement aux valeurs propres associées C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 L analyse en composantes principales L ACP sur les données Eurojob Variances-covariances ou Corrélations Analyses multivariées avec R Commander L utilisation de la matrice de variances-covariances n influence pas les résultats tant que : les unités des variables restent les mêmes les variances des variables restent sensiblement les mêmes L utilisation de la matrice de corrélations : ne peut qu améliorer le résultat de l ACP en mettant toutes les variables sur le même pied (pas de hiérarchie a priori) 1 Introduction à R 2 Petite introduction au calcul matriciel La décomposition spectrale d une matrice L analyse en composantes principales L ACP sur les données Eurojob 3 Analyse des correspondances multiples 4 Analyse factorielle multiple 5 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

18 L ACP sur les données Eurojob L ACP sur les données Eurojob La base de données Eurojob la fonction row.names La fonction row.names permet d extraîre ou imputer des noms aux individus d une matrice ou d un data frame. Données concernent 26 pays européens Informe sur la répartition (en %) des travailleurs dans 9 secteurs d activité Source : Euromonitor (1979), European Marketing Data and Statistics, London : Euromonitor Publications, (http ://lib.stat.cmu.edu/dasl/datafiles/europeanjobs.html) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 L ACP sur les données Eurojob L ACP sur les données Eurojob Analyser les variances et covariances Dans le cas d une ACP, les variables sont toutes considérées comme continues. Il faut donc : La fonction scatterplot.matrix La fonction scatterplot.matrix fournit une matrice de graphes XY permettant d observer en un coup d oeil tous les couples de variables. Menu R Commander : Graphes > Matrice de nuages de points Analyser et comparer les distributions (min, max, moyenne, variance, etc.) summary : Statistiques > Résumés > Jeu de données actif numsummary : Statistiques > Résumés > Stat. Descriptives Analyser les corrélations (ou covariances) entre variables cor : Statistiques > Résumés > Matrice de corrélations scatterplot.matrix : Graphes > Matrice de nuages de points C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

19 La fonction scatterplot.matrix L ACP sur les données Eurojob La fonction scatterplot.matrix fournit une matrice de graphes XY permettant d observer en un coup d oeil tous les couples de variables. Menu R Commander : Graphes > Matrice de nuages de points Analyser les variances et corrélations L ACP sur les données Eurojob Agr Min Man PS Con SI Fin SPS TC minimum Q médiane moyenne écart-type variance Q maximum Agr Min Man PS Con SI Fin SPS TC Agr Min Man PS Con SI Fin SPS TC C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 L ACP dans R Commander L ACP sur les données Eurojob L ACP sur les données Eurojob Les sorties de l ACP : les valeurs propres Deux manières (parmi d autres) de visualiser ces valeurs propres : barplot(resultacp$eig[,2], names.arg=seq(1,9), xlab=null, ylab="pourcentage de variance") plot(resultacp$eig[,2],type= l,xlab="valeurs propres",ylab="pourcentage de variance") C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

20 L ACP sur les données Eurojob L ACP sur les données Eurojob Les sorties de l ACP : les valeurs propres Combien de composantes principales retenir? barplot(res$eig[,2], names.arg=seq(1,9), xlab=null, ylab="pourcentage de variance") plot(resultacp$eig[,2], type= l, xlab= "Valeurs propres", ylab= "Pourcentage de variance" ) Trois règles sont généralement proposées : Toutes les composantes dont la valeur propre est supérieure à 1 Toutes les composantes dont le pourcentage de variance est supérieur à (100% / nombre de variables) Toutes les composantes se situant avant un coude sur le graphe des valeurs propres (ou des pourcentages de variance) C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 L ACP sur les données Eurojob L ACP sur les données Eurojob Les sorties de l ACP : l analyse des variables resultacp$var Les sorties de l ACP : l analyse des variables resultacp$var C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254 C. Taverne (SMCS, UCL) SMCS : Analyses multivariées avec R 01/02/ / 254

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité

Introduction à l analyse des données. Analyse des Données (1) Exemple, ville et (in)sécurité. Exemple, ville et (in)sécurité Introduction à l analyse des données Analyse des Données () Le but de l analyse de données est de synthétiser, structurer l information contenue dans des données multidimensionnelles Deux groupes de méthodes

Plus en détail

Introduction à l analyse des données. Olivier Godechot

Introduction à l analyse des données. Olivier Godechot Introduction à l analyse des données Olivier Godechot Introduction. Les données statistiques : de très nombreuses variables. Aucune n est parfaite La perception d un phénomène appréhendée comme la combinaison

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

1 Complément sur la projection du nuage des individus

1 Complément sur la projection du nuage des individus TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent

Plus en détail

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES

Analyse de données. [Tapez le sous-titre du document] ANALYSE DE DONNEES 2011 2012. ANALYSE DE DONNEES Page 1 LICENCE 3 SCIENCES ECONOMIQUES 2011 2012 ANALYSE DE DONNEES 2011 2012 LICENCE 3 SCIENCES ECONOMIQUES COURS DE M. THIERRY BLAYAC Analyse de données [Tapez le sous-titre du document] ANALYSE DE DONNEES Page 1 H34VEN Cours pour Licence

Plus en détail

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple

Analyse simultanée de variables quantitatives et qualitatives. à l aide de l analyse factorielle multiple Analyse simultanée de variables quantitatives et qualitatives à l aide de l analyse factorielle multiple Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus France Analyse Factorielle Multiple

Plus en détail

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali

GOUTTE. Analyse Statistique des Données Cours 4. Master 2 EID. LUISS, Libera Università Internazionale degli Studi Sociali LUISS, Libera Università Internazionale degli Studi Sociali Université Paris 13 Laboratoire Analyse, Géométrie et Applications UMR 7539 GOUTTE Analyse Statistique des Données Cours 4 Master 2 EID goutte@math.univ-paris13.fr

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Analyse discriminante

Analyse discriminante Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique"

Plus en détail

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE

Chapitre 9 ANALYSE MULTIDIMENSIONNELLE Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 9 ANALYSE MULTIDIMENSIONNELLE L analyse des données multidimensionnelles regroupe un ensemble de méthodes

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Classification Exemple : Enquête d opinion sur les OGM. Pauline Le Badezet Alexandra Lepage

Classification Exemple : Enquête d opinion sur les OGM. Pauline Le Badezet Alexandra Lepage Classification Exemple : Enquête d opinion sur les OGM Pauline Le Badezet Alexandra Lepage SOMMAIRE Introduction Méthodologie Méthode de partitionnement Classification Ascendante Hiérarchique Interprétation

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

MÉTHODES DE CLASSIFICATION

MÉTHODES DE CLASSIFICATION MÉTHODES DE CLASSIFICATION Pierre-Louis GONZALEZ MÉTHODES DE CLASSIFICATION Objet Opérer des regroupements en classes homogènes d un ensemble d individus. Données Les données se présentent en général sous

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées

Plus en détail

Cours 2-3 Analyse des données multivariées

Cours 2-3 Analyse des données multivariées Cours 2-3 des données s Ismaël Castillo École des Ponts, 13 Novembre 2012 Plan 1 2 3 4 1. On s intéresse à un jeu de données multi-dimensionel, avec n individus observés et p variables d intérêt ( variables

Plus en détail

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 29/01/2007 Stéphane Tufféry - Data Mining - http://data.mining.free.fr

Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 29/01/2007 Stéphane Tufféry - Data Mining - http://data.mining.free.fr 1 Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE Plan du cours Qu est-ce que le data mining? À quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

ANALYSE FACTORIELLE DE DONNÉES MIXTES : PRINCIPE ET

ANALYSE FACTORIELLE DE DONNÉES MIXTES : PRINCIPE ET ANALYSE FACTORIELLE DE DONNÉES MIXTES : PRINCIPE ET EXEMPLE D APPLICATION Jérôme Pagès Laboratoire de mathématiques appliquées Agrocampus, 35042 Rennes cedex email : pages@agrorennes.educagri.fr Résumé

Plus en détail

Méthodes de projection

Méthodes de projection Chapitre 11 Méthodes de projection Contenu 11.1 Analyse en composantes principales........ 138 11.1.1 L Analyse en Composantes Principales........ 139 11.1.2 La (grande) famille des ACP............. 151

Plus en détail

ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2

ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2 ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2 Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Analyse en Composantes. Principales

Analyse en Composantes. Principales AgroParisTech Analyse en Composantes Principales C Duby, S Robin Table des matières Introduction 3 2 Tableau de données 4 3 Choix d une distance 6 4 Choix de l origine 7 5 Moments d inertie 9 5 Inertie

Plus en détail

Introduction du logiciel libre de statistiques : R et R commander

Introduction du logiciel libre de statistiques : R et R commander Introduction du logiciel libre de statistiques : R et R commander (La version 05/09/2011) Toshiharu OKAYASU Conseiller Principal Projet de Renforcement du Programme de Prévention du VIH /JICA 1 Préambule

Plus en détail

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h

Analyse des Données. Questions de cours. Exercice n o 1. Examen terminal - Durée 3h I.U.T de Caen STID 2ème année Département STID Année Universitaire 2002-2003 Responsable de cours : Alain LUCAS Seule la calculatrice type collège est autorisée. Seul le cours est autorisé. On rappelera

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

Travaux dirigés. Introduction à R 1

Travaux dirigés. Introduction à R 1 Introduction à R 1 1 Introduction : pourquoi R? R est un logiciel pour l analyse statistique. C est un logiciel libre ; il est disponible gratuitement et tourne sur différents systèmes (PC Linux, PC Windows,

Plus en détail

Partie I. Les données quantitatives

Partie I. Les données quantitatives Variables quantitatives : analyse en composantes principales Jean-Marc Lasgouttes https://whorocqinriafr/jean-marclasgouttes/ana-donnees/ Partie I Les données quantitatives Description de données quantitatives

Plus en détail

L'AFC pour les nuls. Mise à jour du 21 janvier 2010. Dernière version des diapos disponible ici : analyse factorielle des composantes

L'AFC pour les nuls. Mise à jour du 21 janvier 2010. Dernière version des diapos disponible ici : analyse factorielle des composantes L'AFC pour les nuls Mise à jour du 21 janvier 2010 Dernière version des diapos disponible ici : analyse factorielle des composantes Source des images indiquées au-dessous ou en cliquant sur l image Cours

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

TP R de Statistiques sur l analyse multivariée: AFC, ACP, CAH, k-means et AFCM

TP R de Statistiques sur l analyse multivariée: AFC, ACP, CAH, k-means et AFCM TP R de Statistiques sur l analyse multivariée: AFC, ACP, CAH, k-means et AFCM Emmanuel Rachelson and Matthieu Vignes 9 octobre 2013, SupAero - ISAE 1 Présidentielles 2008 - AFC Récupérer les données,

Plus en détail

TP1 Master Finance logiciels Introduction à R

TP1 Master Finance logiciels Introduction à R TP1 Master Finance logiciels Introduction à R Emeline Schmisser, emeline.schmisser@math.univ-lille1.fr, bureau 314 (bâtiment M3). 1 Séquences, Vecteurs, Matrice Tableaux (arrays) Pour obtenir l aide de

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

Analyses statistiques multivariées. Béatrice de Tilière

Analyses statistiques multivariées. Béatrice de Tilière Analyses statistiques multivariées Béatrice de Tilière 23 novembre 2009 ii Table des matières 1 La Statistique 1 1.1 Généralités.................................. 1 1.2 Un peu de vocabulaire............................

Plus en détail

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015

L analyse des correspondances et ses applications en recherche marketing. MONSUG mai 2015 L analyse des correspondances et ses applications en recherche marketing MONSUG mai 2015 Contenu Mise en contexte et exemple d application L analyse des correspondances multiples (ACM) L ACM et la segmentation

Plus en détail

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1

Clustering. Christine Decaestecker, ULB Marco Saerens, UCL. LINF2275 Clustering 1 Clustering Christine Decaestecker, ULB Marco Saerens, UCL LINF75 Clustering 1 Classification non-supervisée (automatique) Méthodes de regroupement ("Clustering") Objectif : Sur base - soit d'un tableau

Plus en détail

Cours de Statistiques

Cours de Statistiques Cours de Statistiques Romain Raveaux 1 1 Laboratoire L3I Université de La Rochelle romain.raveaux01 at univ-lr.fr Octobre 24-11, 2008 1 / 35 Sommaire 1 Quelques Rappels 2 numériques Relations entre deux

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Analyse en Composantes Principales

Analyse en Composantes Principales Plan du cours Analyse en Composantes Principales Introduction Les données Leurs représentations La méthode Modèle Interprétation statistique Espace principal Composantes Principales Représentations Graphiques

Plus en détail

L3 Géographie UE Méthodologie. Statistiques COURS 1. Salle 125. Intervenants : Nadège. UMR Centre de Recherches de Climatologie (CRC)

L3 Géographie UE Méthodologie. Statistiques COURS 1. Salle 125. Intervenants : Nadège. UMR Centre de Recherches de Climatologie (CRC) L3 Géographie UE Méthodologie Statistiques COURS 1 Salle 125 Intervenants : Nadège Martiny & Julien Crétat UFR Sciences Humaines (Département de Géographie) UMR Centre de Recherches de Climatologie (CRC)

Plus en détail

Analyse Statistique pour Le Traitement d Enquêtes

Analyse Statistique pour Le Traitement d Enquêtes DAT 104, année 2004-2005 p. 1/90 Analyse Statistique pour Le Traitement d Enquêtes Mastère Développement Agricole Tropical Stéphanie Laffont & Vivien ROSSI UMR ENSAM-INRA Analyse des systèmes et Biométrie

Plus en détail

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive

Probabilités et Statistiques. Chapitre 1 : Statistique descriptive U.P.S. I.U.T. A, Département d Informatique Année 2008-2009 Probabilités et Statistiques Emmanuel PAUL Chapitre 1 : Statistique descriptive 1 Objectifs des statistiques. Il s agit d étudier un ou plusieurs

Plus en détail

INTRODUCTION A L UTILISATION DE SYSTAT

INTRODUCTION A L UTILISATION DE SYSTAT 1 INTRODUCTION A L UTILISATION DE SYSTAT F. Lyazrhi D. Concordet 2 Systat est un logiciel statistique qui permet de préparer les graphiques et de faire des calculs nécessaires à l analyse des données.

Plus en détail

Extraction d informations stratégiques par Analyse en Composantes Principales

Extraction d informations stratégiques par Analyse en Composantes Principales Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 dousset@irit.fr 1 Introduction

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Analyse de données avec R Complémentarité des méthodes d'analyse factorielle et de classification. 2 L'analyse de données avec R

Analyse de données avec R Complémentarité des méthodes d'analyse factorielle et de classification. 2 L'analyse de données avec R Analyse de données avec R Complémentarité des méthodes d'analyse factorielle et de classification François Husson, Julie Josse & Jérôme Pagès Laboratoire de mathématiques appliquées - 65 rue de St-Brieuc

Plus en détail

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM

La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Data Mining: Activité hospitalière

Data Mining: Activité hospitalière Data Mining: Activité hospitalière DIAGNE Sénéba 1, Huai Yuan WAN 2 1. S2IFA 2. DRM Chapitre 1 Clustering : Activité hospitalière 1.1 Présentation des données Le périmètre des données représente ici un

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Traitement informatique d un tableau de données statistiques. Classes de logiciels de statistique.

Traitement informatique d un tableau de données statistiques. Classes de logiciels de statistique. Traitement informatique d un tableau de données statistiques. Classes de logiciels de statistique. B. Govaerts - Institut de Statistique - UCL STAT2430 Traitements de données et classes de logiciels Page

Plus en détail

Introduction à Rcommander

Introduction à Rcommander Introduction à Rcommander Pauline Scherdel Septembre 2014 Table des matières 1 Introduction à Rcmdr sous R 2 2 Interagir avec R 3 3 Installer et charger le package Rcmdr sous R 3 4 Importation des données

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Analyse multidimensionnelle de données longitudinales

Analyse multidimensionnelle de données longitudinales Analyse multidimensionnelle de données longitudinales Ndèye Niang Conservatoire National des Arts et Métiers Plan Introduction Terminologie-Notations Méthodes directes Coefficient d association vectorielle

Plus en détail

Analyse des Données. Travaux Pratiques 3

Analyse des Données. Travaux Pratiques 3 Analyse des Données Travaux Pratiques 3 1 Introduction Ce TP sera consacré aux analyses factorielles. La première partie présentera un exemple réel (et poussé) d une analyse factorielle des correspondances

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Le type data.frame Le type data.frame est un type spécifique dédié à la manipulation d ensemble de données de type

Plus en détail

Guidance de Statistique : Epreuve de préparation à l examen

Guidance de Statistique : Epreuve de préparation à l examen Guidance de Statistique : Epreuve de préparation à l examen Durée totale : 90 min (1h30) 5 questions de pratique (12 pts) 20 décembre 2011 Matériel Feuilles de papier De quoi écrire Calculatrice Latte

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Livret de TP de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Introduction à

Plus en détail

Seconds pas vers l analyse de données...

Seconds pas vers l analyse de données... Fiche TD avec le logiciel : tdr1102 Seconds pas vers l analyse de données... A.B. Dufour & D. Clot Cette fiche comprend des exercices portant sur les paramètres descriptifs principaux et les représentations

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Marketing Data Set: Follow-Up to Purchases of a Consumer Panel

Marketing Data Set: Follow-Up to Purchases of a Consumer Panel Marketing Data Set: Follow-Up to Purchases of a Consumer Panel Typologie des consommateurs et Mesure de la loyauté/fidélité Stéphanie Ledauphin-Menard, Sébastien Lê Face aux problèmes de pouvoir d achat

Plus en détail

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.

L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques. L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Université de Rennes 2 Statistiques des données M1-GEO Ouvrages recommandés Analyse en composantes principales Ces livres sont à la BU. Pour les acheter, venir au bureau A-240 ou envoyer un mail : nicolas.jegou@uhb.fr

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Installation de la librairie VISP et création du projet

Installation de la librairie VISP et création du projet ESIR3-IN Travaux Pratiques VO 2012-2013 PREAMBULE Copier les données des TPs 1. créez un répertoire VO dans votre homedir cd ~/ mkdir VO cd VO 2. copier le dossier contenant toutes les données pour les

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3.

Algèbre 2 - L1 MIASHS/Lettres-Maths. UFR MIME, Université Lille 3. Algèbre 2 - L1 MIASHS/Lettres-Maths AMIRI Aboubacar UFR MIME, Université Lille 3. 10 avril 2015. Université Lille 3 1 Définitions et notations Quelques matrices particulières Matrice d une famille sur

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Analyse de données multidimensionnelles

Analyse de données multidimensionnelles Analyse de données multidimensionnelles M1 Statistique et économétrie, 2014 Projet - V. Monbet Le projet est composé de deux parties indépendantes. Les données sont disponibles sur la page web du cours.

Plus en détail

Introduction à l analyse des correspondances et à la classification

Introduction à l analyse des correspondances et à la classification Introduction à l analyse des correspondances et à la classification Bertrand Iooss Véronique Verrier EDF R&D Département Management des Risques Industriels Cours IUP SID Toulouse - M1-17/10/2011 14/10/2011

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN Pôle Informatique de Recherche et d Enseignement en Histoire ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN A. PREMIER PAS 1. INTEGRATION DU TABLEAU

Plus en détail

Master 2 Informatique UAG. Classification de documents/textes

Master 2 Informatique UAG. Classification de documents/textes Data Mining Master 2 Informatique UAG Classification de documents/textes Utilisée en text mining, information retrieval : amélioration du recall et de la précision Moyen de trouver les voisins les plus

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus²

Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Millenium Modes opératoires d'analyse de données Traitements et analyses avec Le Sphinx Plus² Le Sphinx Développement Parc Altaïs 74650 CHAVANOD Tél : 33 / 4.50.69.82.98. Fax : 33 / 4.50.69.82.78.

Plus en détail

Séance 10 : Analyse factorielle des correspondances

Séance 10 : Analyse factorielle des correspondances Séance 10 : Analyse factorielle des correspondances Sommaire Proc CORRESP : Analyse de tableaux d effectifs... 2 Exemple 1 :... 6 L analyse en composantes principales traite des variables quantitatives.

Plus en détail

Analyse de Données. Analyse en Composantes Principales (ACP)

Analyse de Données. Analyse en Composantes Principales (ACP) Analyse de Données Analyse en Composantes Principales (ACP) Analyse en composantes principales (ACP) ** Sur toute la fiche, on notera M' la transposée de M. Cadre de travail : On a des données statistiques

Plus en détail

TD de statistique : introduction à R

TD de statistique : introduction à R TD de statistique : introduction à R Jean-Baptiste Lamy 11 octobre 2007 1 Introduction : pourquoi R? R est un logiciel pour l analyse statistique. C est un logiciel libre; il est disponible gratuitement

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Conditions d application des méthodes statistiques paramétriques :

Conditions d application des méthodes statistiques paramétriques : Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques

Plus en détail

TP 2 : Importation et exportation de données Les outils graphiques de

TP 2 : Importation et exportation de données Les outils graphiques de TP 2 : Importation et exportation de données Les outils graphiques de Consulter les données disponibles sur Consulter les données disponibles sur les packages chargées en mémoire : data( Consulter les

Plus en détail

Introduction au logiciel R

Introduction au logiciel R Introduction au logiciel R Fabrice Rossi Projet AxIS, INRIA Rocquencourt 2007 F. Rossi (INRIA) Introduction au logiciel R 2007 1 / 34 Plan 1 Manipulations élémentaires Vecteurs et tableaux de données Graphisme

Plus en détail

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7.

UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES. STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre. Fiche N 7. UNIVERSITE PARIS 1 PANTHEON SORBONNE LICENCE DE SCIENCES ECONOMIQUES STATISTIQUE APPLIQUEE F. Gardes / P. Sevestre Fiche N 7 (avec corrigé) L objet de ce TD est de vous initier à la démarche et à quelques

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail