Pour les TS2 version boulets. Giorgio Chuck VISCA 7 février 2016 PRIMITIVES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Pour les TS2 version boulets. Giorgio Chuck VISCA 7 février 2016 PRIMITIVES"

Transcription

1 Pour les TS2 version boulets Giorgio Chuck VISCA 7 février 206 PRIMITIVES

2 Table des matières I Le cours 3 I Définition et propriétés 3 I. définition I.2 primitive passant par un point donné I.3 illustration graphique I.4 condition d existence des primitives d une fonction donnée II Méthodes de calculs 5 II. primitives des fonctions usuelles II.2 règles de calculs II Les exos 6

3 I DÉFINITION ET PROPRIÉTÉS Première partie Le cours I Définition et propriétés Soit f la fonction définie surrpar : f(x) = +x 2. On notef une fonction définie surrvérifiant la propriété différentielle suivante : F (x) = +x 2. On ne connait pas explicitement F, mais on peut tracer sa courbe à l aide de la méthode d euler par exemple. Cette fonction est donc telle que F (x) = f(x) : On dit alors que F est une primitive def sur R. Un autre exemple : on pose F(x) = x 3 +x+ etg(x) = x 3 +x On pose par ailleursf(x) = 3x 2 +. Vous constatez aisément que x R, F (x) = G (x) = f(x). F et G sont alors des primitives def sur R. I. définition Définition soit f une fonction définie sur un intervalled f. On appelle PRIMITIVE de la fonctionf,une fonction F définie surd f, et qui a pour dérivée la fonction f..., ainsi x D f,f (x) = f(x). Sur l exemple précédent, F est alors une primitive de f,...oui mais G aussi en est une! Ainsi, une fonction admet non pas une primitive, mais des primitives, en effet : Lien entre les primitives si F etgsont des primitives d une même fonction f surd f,alors : x D f,f(x) = G(x)+k,k R, (ainsi les primitives d une même fonction sont toutes égales, mais à une constante additive près...) PREUVE : ainsi si F est une primitive def, toutes les primitives def, sont les fonctionsx F(x)+k,mais il en est une et une seule dont la courbe passe par un point donné... I.2 primitive passant par un point donné Unicité de la primitive Il existe une unique primitive F def vérifiant F(x 0 ) = y 0, i.e telle que C F passe par le point de coordonnées (x 0,y 0 ), où x 0 et y 0 sont deux réels donnés,avecx 0 D f. I.3 illustration graphique La figure ci-dessous représente les primitives de la fonction f(x) = x 2 x 2, c est à dire les fonctions F définies par :F(x) = 3 x3 2 x2 2x+k. 3 Giorgio

4 I.4 condition d existence des primitives d une fonction donnée I DÉFINITION ET PROPRIÉTÉS On constate graphiquement qu il n y en a qu une qui passe par le point A(,4) par exemple. D où l unicité de la primitive passant par un point donné. A O I.4 condition d existence des primitives d une fonction donnée On peut s interroger sur la ou les condition(s) d existence d une primitive sur un intervalle I : nous donnons ici une condition suffisante d existence,qui est la suivante : Condition d existence Toute fonction continue sur un intervallei,admet une primitive sur I. Pour justifier l existence d une primitive à une fonctionf,il suffira donc de justifier la continuité def. Les règles de calculs données dans le II qui va suivre, sont obtenues grâce aux formules de dérivations qu il faut tout simplement adapter et "lire à l envers",en effet : ( ) on a = u donc...est une primitive de... u u2 on a ( u ) u = 2 donc...est une primitive de... u de la même façon, on en déduit les formules de calculs des primitives suivantes : 4 Giorgio

5 II MÉTHODES DE CALCULS II II. Méthodes de calculs primitives des fonctions usuelles Tableau des primitives des fonctions usuelles la fonctionf a pour primitives les fonctionsf f(x) = a surr F(x) = ax+k f(x) = x surr F(x) = x2 2 +k f(x) = x 2 f(x) = x n,n Z\{ } f(x) = x sur],0[ ou sur ]0, + [ R sur R ou surr + ou sur sur ]0,+ [ F(x) = x +k F(x) = n+ xn+ +k F(x) = lnx+k f(x) = x sur ]0,+ [ F(x) = 2 x+k f(x) = e x surr F(x) = e x +k f(x) = sin(x) surr F(x) = cos(x)+k f(x) = cos(x) surr F(x) = sin(x)+k f(x) = +tan 2 (x) = cos 2 (x) ] sur π 2, π [ 2 F(x) = tan(x)+k II.2 règles de calculs les règles de calculs de primitives sont données par les formules suivantes : 5 Giorgio

6 fonctionsf primitivesf f = u u 2 F = u +k f = u u F = 2 u2 +k f = u u n,n Z\{ } F = n+ un+ +k f(x) = sin(ax+b) aveca 0 f(x) = cos(ax+b) aveca 0 f = u u F(x) = a cos(ax+b) F(x) = a sin(ax+b) F = 2 u+k f = u e u F = e u +k f(x) = e ax+b F(x) = a eax+b +k f = u u F = ln u +k Deuxième partie Les exos exercice Déterminer les réels a,b,c tels que la fonction F définie sur R par : F(x) = (ax 2 + bx + c)e 2x soit une primitive de la fonctionf définie sur R par :f(x) = (xe x ) 2. exercice 2 Calculer une primitive des fonctions suivantes suri :. f(x) = (2x+) 3 sur I = R. 2. g(x) = (3x+) 3 3 (3 4x) 4 sur I =]3 4 ;+ [. 3x 3 3. i(x) = sur I = R. 2x j(x) = sur I = x(4+3 x) 2 R k(x) = tanx+tan 3 x sur I =] π 2 ; π 2 [ 6. f(x) = 3 sur ] 0.5;+ [ 2x+ 7. f(x) = x +x 2 sur R 8. f(x) = lnx x sur R + 9. f(x) = sur ];+ [ xlnx 6 Giorgio

7 0. f(x) = 3e 3x+ surr. f(x) = e/x x 2 sur ]0;+ [ 2. f(x) = e x +3e x exercice 3 Soit f une fonction définie et dérivable sur R. On note C sa courbe représentative dans le plan muni d un repère(o, ı, ). Partie A Sur les graphiques ci-dessous, on a représenté la courbe C et trois autres courbesc, C 2,C 3 avec la tangente en leur point d abscisse0. C O ı d 2 C 3 O ı d C O ı 2 O ı d 3 C. Donner par lecture graphique, le signe de f(x) selon les valeurs dex. 2. On désigne parf une primitive de la fonction f sur R. (a) à l aide de la courbe C, déterminerf (0) et F ( 2). (b) L une des courbes C,C 2, C 3 est la courbe représentative de la fonction F. Déterminer laquelle en justifiant l élimination des deux autres. 7 Giorgio

Dérivation Primitives

Dérivation Primitives Cours de Terminale STI2D Giorgio Chuck VISCA 27 septembre 203 Dérivation Primitives Table des matières I La dérivation 3 I Rappels 3 I. exemple graphique............................................. 3

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

x f(x)

x f(x) Limites de fonctions I) Limite d une fonction en plus l infini Etudier la ite d une fonction f en + c est étudier le comportement des nombres f(x) lorsque x tend vers +. ) Exemples Exemple : x 0 20 30

Plus en détail

Cours de terminale S. Giorgio Chuck VISCA 4 octobre 2013 LES LIMITES

Cours de terminale S. Giorgio Chuck VISCA 4 octobre 2013 LES LIMITES Cours de terminale S Giorgio Chuck VISCA 4 octobre 2013 LES LIMITES 1 Table des matières I Les limites 4 I Les généralités 4 I.1 limite infinie en l infini........................................... 4

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Chapitre 3 : Étude de fonctions; Rappels

Chapitre 3 : Étude de fonctions; Rappels ECSB Carnot Chapitre 3 03/04 Chapitre 3 : Étude de fonctions; Rappels Objectifs : Connaître toutes les notions du lycée (parité, monotonie, périodicité) Connaître les fonctions de référence (l étude des

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Exercices : Étude de fonctions Exercice : Calculer les limites suivantes :. lim + lnx+x x+e x.. lim 3. lim x4 e x +3x x x 4. lim 5. lim 6. lim e x (lnx) (e 3 ) x e 3x +x ( (lnx) 3 +x ) x 7. lim x e x +e

Plus en détail

Études de fonctions Annales

Études de fonctions Annales Terminale 8 STG 009/00 Exercices Études de fonctions Annales Exercice CGRH Pondichéry, avril 007 Lors d une compétition d atlhlétisme, un entraîneur analyse la technique d un lanceur de poids, et plus

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

1 Dérivée des fonctions d une variable

1 Dérivée des fonctions d une variable Dérivée des fonctions d une variable La notion de dérivée d une fonction d une variable est essentielle pour le cours puisque nous allons la généraliser aux fonctions de plusieurs variables. L objectif

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES

FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES FONCTIONS DU SECOND DEGRÉ ET HOMOGRAPHIQUES Ph DEPRESLE 6 juin 05 Table des matières Fonction carré. Fonction x x..................................... Fonction x ax, a 0...............................

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 février 015 MATHEMATIQUES durée de l épreuve : 3h coefficient Le sujet est paginé de 1 à 5. Veuillez vérifier que vous avez bien toutes les pages. En cas d anomalie,

Plus en détail

EXERCICES CONTINUITÉ

EXERCICES CONTINUITÉ EXERCICES CONTINUITÉ On sait déjà calculer l aire de polygone, mais qu en est-il de figure dont les côtés ne sont pas des segments? Exercice 1. On cherche l aire A de la figure délimitée, sur l intervalle

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Mathématiques Exercices pour le soutien

Mathématiques Exercices pour le soutien Mathématiques 5-6 Exercices pour le soutien Ma9 UVSQ Exercice. Exercice 6. Calculer les dérivées des fonctions suivantes : f : x 3x g : x 4 x +x h : x x x+ k : x (3x +) 9 m : x 3 x +4 j : x 5(x )(x ) l

Plus en détail

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand.

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. Chapitre 1 Étude de fonctions Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. 1 Fonctions usuelles 1.1 Fonction en escalier Définition 1.1 Une fonction en escalier

Plus en détail

TD1 Continuité des fonctions de plusieurs variables réelles

TD1 Continuité des fonctions de plusieurs variables réelles Polytech Paris - UPMC Agral 3, 206-207 TD Continuité des fonctions de plusieurs variables réelles Exercice. Étudier la continuité des fonctions suivantes : { { x 2 y 2 (x, y) (0, 0) x 2 +y 2 g(x, y) =

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Fonctions linéaires et affines

Fonctions linéaires et affines Fonctions linéaires et affines Exercice N : Points et droites Dans cet exercice, il te faut placer points A( ; ) ; B(- ; -) ; C( ; ) et D( ; ). Tu traceras ensuite les droites (AB) et (CD). - - - - Exercice

Plus en détail

Baccalauréat ES Antilles Guyane 19 juin 2013

Baccalauréat ES Antilles Guyane 19 juin 2013 Exercice Baccalauréat ES Antilles Guyane 9 juin Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions, quatre réponses sont proposées ; une seule de ces réponses est exacte.

Plus en détail

Méthodologie scientifique (L1) : fonctions usuelles, dérivées première et seconde, point d inflexion

Méthodologie scientifique (L1) : fonctions usuelles, dérivées première et seconde, point d inflexion Méthodologie scientifique (L1 : fonctions usuelles, dérivées première et seconde, point d inflexion 1 Cinétique chimique On s intéresse aux fonctions f : t f(t avec t 0 dont la dérivée première est proportionnelle

Plus en détail

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité Chapitre 3 Dérivée I EXERCICES page I-1 I Exercices Comment déterminer le coefficient directeur d une droite ()? Exemple : (2, ; 2) ; (4 ; 3) (l unité du repère est un carreau) Graphiquement : on compte

Plus en détail

Mathématiques Livre 1.indb 3 04/11/ :01:17

Mathématiques Livre 1.indb 3 04/11/ :01:17 Mathématiques Sujet 1 Énoncé Mathématiques Mathématiques Sujet 1 Sujet national, juin 015, exercice 5 Une municipalité a décidé d installer un module de skateboard dans un parc de la commune. Le dessin

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

Continuité et Dérivabilité

Continuité et Dérivabilité Cours de Terminale S Giorgio Chuck VISCA 30 septembre 2015 Continuité et Dérivabilité 1 Table des matières I la continuité 3 I continuité en un point,sur un intervalle d une fonction 3 I.1 définition...................................................

Plus en détail

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

MATH Pratique des Fonctions Numériques. Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité UNIVERSITÉ DE CERGY Année 2012-2013 LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH 101 - Pratique des Fonctions Numériques Livret d exercices III Chapitres 3 & 4 : Continuité - Dérivabilité

Plus en détail

2de Variations de fonctions Cours

2de Variations de fonctions Cours 2de Variations de fonctions Cours I. Fonction croissante, fonction décroissante Transmath : Activité 1 page 23 1. Définitions ( la courbe «monte» de gauche à droite, plus La courbe «descend» de gauche

Plus en détail

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe de la ère S à la TS. Exercice n : On donne la fonction f définie sur R par : = x 4 + x +. On appelle Γ la courbe représentative de f dans un repère orthonormé (O; ı, j).. Étudier la parité de f.. Déterminer

Plus en détail

Session Enseignement Obligatoire. Durée de l épreuve : 3 heures. Coefficient : 5. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session Enseignement Obligatoire. Durée de l épreuve : 3 heures. Coefficient : 5. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement Obligatoire Durée de l épreuve : 3 heures Coefficient : 5 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle Table des matières I Introduction de l exponentielle 2 I.1 Définition............................................... 2 I.2 Relation fondamentale........................................

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE Ph DEPRESLE 29 juin 205 Table des matières Propriétés algébriques 2 2 Nouvelle notation 2 3 Étude de la fonction exponentielle 2 3. Variations et ites........................................

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

TERMINALE ES Fonctions 2/2 La convexité

TERMINALE ES Fonctions 2/2 La convexité * 1. Rappels sur la dérivation 1. Définition Soit f une fonction définie sur un intervalle I de R et a un réel de I. Soit h un nombre très petit et non nul. Alors Dire que f est dérivable en a de I signifie

Plus en détail

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton

BTS MCI. Lycée Vauban, Brest 4 mai 2016. André Breton BTS MCI Lycée Vauban, Brest 4 mai 06 André Breton Table des matières I Compléments pour les bac pro 8 ÉquationsFactorisationsInéquations 9. Identités remarquables................................ 9. Le

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

EXERCICE n o 1 (problème France juin points) Soitf la fonction définie sur l intervalle ] 0 ; + [ par. f(x) = e x lnx + ex x.

EXERCICE n o 1 (problème France juin points) Soitf la fonction définie sur l intervalle ] 0 ; + [ par. f(x) = e x lnx + ex x. EXERCICE n o (problème France juin 7 - points) Soitf la fonction définie sur l intervalle ] ; + [ par f(x) = e x lnx + ex x. On appellec la courbe représentative de la fonctionf dans un repère orthogonal

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

sur un intervalle que l on précisera, et préciser

sur un intervalle que l on précisera, et préciser Révision : fonctions logarithmes fonctions exponentiels intégrale Mr : FARHATI HICHEM EX 1 : Partie A : 1) Soit f(x)=1+ (1-x) a) Montrer que f (x)=-x b) Dresser le tableau de variation de f. c) Montrer

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement de Spécialité

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. Enseignement de Spécialité Session 2012 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement de Spécialité Durée de l épreuve : 4 heures Coefficient : 9 Ce sujet comporte 6 pages numérotées de 1 à 6. L annexe de la page 6 est

Plus en détail

Chapitre 7 Les fonctions

Chapitre 7 Les fonctions Chapitre7 Lesfonctions 1 Les relations Une relation d'un ensemble A vers une ensemble B établit un lien entre certains éléments de A et certains éléments de B (d'après le livre "Des situations pour apprendre",

Plus en détail

Module de Maths approfondies. Enoncés des exercices

Module de Maths approfondies. Enoncés des exercices Module de Maths approfondies Enoncés des exercices Université Paul Sabatier - Toulouse 3 IUT de Toulouse 3 A Département GEA PONSAN Clement Rau clement.rau@iut-tlse3.fr Systémes linéaires, Pivot de Gauss.

Plus en détail

3 ème Révisions Fonctions linéaires et affines

3 ème Révisions Fonctions linéaires et affines Exercice 1 Mettre une croix où la réponse est oui. 3 ème Révisions Fonctions linéaires et affines La fonction est une fonction linéaire affine constante f(x) = 5x + 2 g(x) = 3x² h(x) = 5x i(x) = 7 + 2x

Plus en détail

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com

Correction Baccalauréat S Amérique du Nord Mai 2008 http ://www.maths-express.com Correction Baccalauréat S Amérique du Nord Mai 28 http ://www.maths-express.com Exercice. Voir la figure finale à la fin de l exercice! 2. (a) Le cercle Γ est l ensemble des points M du plan tels que AM

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa 3//2 Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa Année Universitaire 2/2 MATHEMATIQUES (Semestre ) Professeur: M.REDOUABY 3//2 Partie 2 A. Fonctions à une variable réel

Plus en détail

Baccalauréat ES L Antilles Guyane juin 2016

Baccalauréat ES L Antilles Guyane juin 2016 Baccalauréat ES L ntilles Guyane juin 016 EXERCICE 1 Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. ucune justification n est demandée. Une bonne réponse rapporte

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide

5. f(x) = x x en x = f(x) = (x 1) 1 x 2 en x = f(x) = (x 1) 1 x 2 en x = 1. (plus difficile) Aide de la ère S à la TS. I Exercices Dérivabilité Étudier la dérivabilité des fonctions suivantes au point demandé. f(x) = x 2 en x = 3 (Revenir à la définition du nombre dérivé) 2. f(x) = x en x =. 3. f(x)

Plus en détail

Nom : QCM T LES. Exercice 1

Nom : QCM T LES. Exercice 1 Exercice 1 Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point. Une réponse fausse ou l absence de réponse ne rapporte ni n enlève aucun point. Pour chacune des questions

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation grapique 1) Taux de variation d une fonction en un point. Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

Dérivabilité d une fonction numérique.

Dérivabilité d une fonction numérique. 34 Chapitre 6 Dérivabilité d une fonction numérique. 6.1 Taux d accroissement Définition : Soient f une fonction numérique et I D f un intervalle ouvert. Soit c I, on appelle taux d accroissement de f

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

Exo7. Équations différentielles. 1 Ordre 1. Fiche de Léa Blanc-Centi.

Exo7. Équations différentielles. 1 Ordre 1. Fiche de Léa Blanc-Centi. Exo7 Équations différentielles Fiche de Léa Blanc-Centi. Ordre Exercice Résoudre sur R les équations différentielles suivantes :. y + 2y = x 2 (E ) 2. y + y = 2sinx (E 2 ). y y = (x + )e x (E ) 4. y +

Plus en détail

Dérivation. 2 Fonctions usuelles. 2.1 Fonction constante : f : x 7 C. 2.2 Fonction identité :f : x 7 x. 2.3 Fonction carré :f : x 7 x 2

Dérivation. 2 Fonctions usuelles. 2.1 Fonction constante : f : x 7 C. 2.2 Fonction identité :f : x 7 x. 2.3 Fonction carré :f : x 7 x 2 Dérivation Définition Définition Soit f une fonction définie sur un intervalle I et soit a I. On dit que f est dérivable en a si la fonction x 7 admet une limite finie ` lorsque x tend vers a. x a Définition

Plus en détail

Amérique du Nord-mai-2014.

Amérique du Nord-mai-2014. Exercice 2 6 points On considère la fonction f définie sur [0;+ [ par : f (x)=5 e x 3e 2x +x 3 On note c la représentation graphique de la fonction f et d la droite d'équation y=x-3 dans un repère orthogonal

Plus en détail

Terminales L / ES Bac blanc 2017 EPREUVE DE MATHEMATIQUES

Terminales L / ES Bac blanc 2017 EPREUVE DE MATHEMATIQUES Terminales L / ES Bac blanc 2017 EPREUVE DE MATHEMATIQUES L utilisation de la calculatrice est autorisée. Les élèves de la série ES ayant choisi la spécialité mathématiques rédigeront l exercice 5 sur

Plus en détail

Correction du devoir surveillé de mathématiques n o 8.

Correction du devoir surveillé de mathématiques n o 8. Correction du devoir surveillé de mathématiques n o 8. Exercice (3 points) Rafael habite à km de son lycée. On note T la variable alétoire égale à la durée, exprimée en minutes, du trajet que Rafael emprunte

Plus en détail

Exercices type bac. Exercice 1: Partie A. On considère la fonction f définie sur [0 ; 8] par :

Exercices type bac. Exercice 1: Partie A. On considère la fonction f définie sur [0 ; 8] par : Exercice 1: Partie A Exercices type bac On considère la fonction f définie sur [0 ; 8] par : f(x) = ( 4x +5 ) e x +3 On note (C) la courbe représentative de la fonction f dans un repère orthogonal. On

Plus en détail

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation :

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation : Nom : Prénom : Terminale S T08 Appréciation : Contrôle du 16 octobre (durée : 2h ) Sujet A /20 Evaluation des compétences : Lecture graphique Limites Lecture graphique Dérivée Tracer une courbe, ses tangentes

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Fonction valeur absolue

Fonction valeur absolue Fonction valeur absolue Valeur absolue et distance Introduction Sur un axe gradué, on a placé quatre points A, B, C et D. Les abscisses de ces points sont x A = 3, x B = 6, x C = 2 et x D = 8,5. Comment

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion Année 2012-2013 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre 1 MATH101 : Pratique des Fonctions numériques Enseignant responsable : J. Stéphan Documents

Plus en détail

INTÉGRATION (Partie 1)

INTÉGRATION (Partie 1) INTÉGRATION (Partie 1) 1 En 1696, Jacques Bernoulli reprend le mot latin «integer», déjà utilisé au XIVe siècle, pour désigner le calcul intégral. A cette époque, on partait de l équation de la courbe

Plus en détail

BAC BLANC TES Session 2006 MATHEMATIQUES Lycée Pierre Corneille Durée de l épreuve 3h. Exercice 2 (5 points) Commun à tous les candidats

BAC BLANC TES Session 2006 MATHEMATIQUES Lycée Pierre Corneille Durée de l épreuve 3h. Exercice 2 (5 points) Commun à tous les candidats BAC BLANC TES Session 006 MATHEMATIQUES Lycée Pierre Corneille Durée de l épreuve 3h Exercice QCM (3 points) A faire sur la feuille annexe Exercice (5 points) Une résidence de vacances propose deux types

Plus en détail

Baccalauréat ES Amérique du Nord 31 mai 2007

Baccalauréat ES Amérique du Nord 31 mai 2007 Baccalauréat ES Amérique du Nord mai 2007 EXERCICE 4 points Commun à tous les candidats Pour chaque question, une seule réponse est exacte. L exercice consiste àa cocher la réponse exacte sans justification.

Plus en détail

Exercices d oraux de la banque CCP BANQUE ALGÈBRE

Exercices d oraux de la banque CCP BANQUE ALGÈBRE Exercices d oraux de la banque CCP 2014-2015 20 exercices sur les 37 d algèbre peuvent être traités en Maths Sup. BANQUE ALGÈBRE EXERCICE 59 Soit E l espace vectoriel des polynômes à coefficients dans

Plus en détail

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x Exponentielle Exercice n 1 Simplifier les expressions suivantes : A = e ln 8 B = e 3 ln 5 C = ln ( e 3) + e 1 2 ln 4 D = e 2+ln 3 E = (e x ) 2 (e x ) 3 F = (e x e x ) 2 e x ( e 3x + e x) Exercice n 2 Résoudre

Plus en détail

Exercices : Limites et continuité

Exercices : Limites et continuité Eercice.. Résoudre dans R l inéquation Eercices : Limites et continuité 2 0 4 +2< 2. Soitf la fonction définie sur R parf() = 2 + 2 (a) Etudier les variations de f (b) Déterminer un réelatel que, pour

Plus en détail

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 5

Université de Nice Sophia-Antipolis Licence L3 Mathématiques Année 2008/2009. Analyse Numérique. Corrigé du TD 5 Licence L3 Mathématiques Année 008/009 Analyse Numérique Corrigé du TD 5 EXERCICE 1 Méthode des approximations successives, ordre de convergence Soient I un intervalle fermé de R, g : I I une fonction

Plus en détail

1.3 Quelques techniques de calcul des DL

1.3 Quelques techniques de calcul des DL + + +.3 Quelques techniques de calcul des DL.3 Quelques techniques de calcul des DL Théorème.24. (troncation) Soient m et n deux entiers naturels tels que n

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

La dérivation dans R

La dérivation dans R S La dérivation dans R Introduction Activité sur la cute libre d un corps. 2 Nombre dérivé Définition du nombre dérivé Soit f une fonction définie sur un intervalle I de R et soit a un réel de l intervalle

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS DÉVELOPPEMENTS LIMITÉS Définitions et premières propriétés Définition. Développement limité Soient f une fonction définie au voisinage de a R (éventuellement non définie en a) et n N. On dit que f possède

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Les Développements Limités

Les Développements Limités Abderezak Ould Houcine, 003-004. Les Développements Limités Définition. Soit I un intervalle et f : I R une application. Soit x 0 un élément de I ou une extrémité de I (exemple : si I = ]a, b[ alors x

Plus en détail

Chapitre 2: Séries de Maclaurin et de Taylor

Chapitre 2: Séries de Maclaurin et de Taylor LES SÉRIES DE MACLAURIN ET DE TAYLOR 13 Chapitre 2: Séries de Maclaurin et de Taylor 2.1 Polynômes et séries de Maclaurin Exercice 2.1 : On considère la fonction f (x) = x 3 5x 2 + 4x 6 a) Calculer f (0),

Plus en détail

Corrigé du devoir surveillé n 2

Corrigé du devoir surveillé n 2 Corrigé du devoir surveillé n 2 Exercice 2. (,5 points). Déterminer les fonctions dérivées des fonctions suivantes : f (x)= g (x)= 4 + x+ h(x)=(3 + ) 3 + 2x+ 3 f = u donc f = u u 2 donc f (x)= 2x+2 ( +2x+3)

Plus en détail

Fonctions : Dérivation-Composition

Fonctions : Dérivation-Composition Fonctions : Dérivation-Composition Terminale S 2011/2012 15 septembre 2011 Terminale S (2011/2012) Lycée Français de Valence 15 septembre 2011 1 / 21 Nombre dérivé Plan 1 Compléments sur la dérivation

Plus en détail