Big Data. Cyril Amsellem Consultant avant-vente. 16 juin Talend
|
|
- Estelle Archambault
- il y a 5 ans
- Total affichages :
Transcription
1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend
2 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués Hadoop. MapReduce : framework logiciel pour le calcul distribué sur de hauts volumes de données (Merci Google). Hive : Hive est un data warehouse libre implémentant un langage de requête orienté SQL (HiveQL) dont la mise en œuvre se traduit par l exécution de jobs Map/Reduce orchestrés par Hadoop (Merci Facebook). Pig : language de haut niveau pour la création de programme MapReduce. Talend
3 Big Data Architecture globale Hadoop Les projets Hadoop (partie 2) HBase : Base de données Hadoop. Utile pour des accès aléatoires, temps réels (lecture/écriture) sur des Big Data. Chukwa : framework open source pour le monitoring de plateforme Hadoop. Zookeeper : Service de coordination pour les applications distribuées (configuration, synchronization, etc). Talend
4 Big Data Architecture globale Hadoop L écosystème Hadoop Talend
5 Big Data Architecture globale Hadoop Les forces de Hadoop Facile à utiliser : moins de deux jours pour monter un cluster de test. Facilité d utilisation de la librairie MapReduce pour la résolution de problèmes basiques. Scalabilité : branchez un noeud, démarrez les modules et le tour est joué. Robuste : si un noeud de calcul tombe, ses tâches sont automatiquement réparties sur d autres noeud. Les blocs de données sont également répliqués. Crée spécialement pour les gros volumes. Etudes de cas : Facebook pour l analyse des logs, Google pour l analyse des requêtes, etc. Talend
6 Big Data HDFS Qu est ce qu HDFS? Répartition des blocs: le moteur HDFS se charge de la répartition des blocs de données sur les racks. Vérification de la santé du cluster : les Datanodes envoient des signaux au Namenode. Ces signaux sont utilisés pour détecter des défaillances. Moteur de réplication : Le moteur HDFS répartie la charge de travail en terme d utilisation des disques et du réseau. Talend
7 Big Data HDFS Talend
8 Big Data MapReduce Qu est ce que MapReduce? MapReduce est un framework Java pour la création de programmes de calcul distribué. L étape du Map : le noeud père décompose un problème en plusieurs sous problèmes et les distribue aux noeuds fils. Un noeud fils peut également devenir père et rédécouper sa tâche. L étape du Reduce : les noeuds pères récupèrent les résultats des noeuds fils afin d agréger les résulats. Talend
9 Big Data MapReduce L éxemple WordCount Dans cet exemple nous allons voir comment un programme MapReduce procède pour compter le nombre d occurrence de chaque mot dans un fichier d entrée Talend
10 Big Data Et Talend dans tout cà? Pourquoi utiliser Talend? Entièrement en Java donc pleinement compatible avec les API Hadoop. Simplicité d utilisation : éditeur graphique vous permettant de générer du code. Richesse des connecteurs : plus de 500 connecteurs dans la solution dont une vingtaine pour Hadoop (HDFS, Hive, Pig, et beaucoup d autres très bientôt). Talend
11 Big Data Et Talend dans tout cà? Utilisation de Sqoop Permet l import / export de données entre SGBD et plateforme HDFS. En partenariat avec Cloudera, à l origine du projet et spéciliste des infrastructure Hadoop. Talend
12 Big Data Et Talend dans tout cà? Connecteurs HDFS / Hive Talend
13 Big Data Et Talend dans tout cà? Générateur de code Pig Latin Sans Talend : Customers = load '/opt/data/customers.csv' as (FirstName, LastName, Adress, RegistrationDate, Revenue, StateCode); StateGroup = group Customers by StateCode; StateRevenue = foreach StateGroup generate group, SUM(Customers.Revenue) as sum; ValuableStates= filter StateRevenue by sum > ; store ValuableStates into '/opt/data/beststates.csv'; Talend
14 Big Data Et Talend dans tout cà? Générateur de code Pig Latin Avec Talend : Talend
15 Big Data - Benchmarks Protocole (Partie 1) Pour chaque scénario, 3 jobs : un avec des composants java, un utilisant des composants FileScale, un utilisant les composants Hadoop / Hive. Plateforme de test (Hardware) Hadoop (1 node) MPX / Java CPU AMD Athlon 64 X2 Dual-Core (1.90Ghz) Bi Intel Xeon CPU QuadCore E5320 (1.86GHz) Mémoire 2 GB 14 GB Disque Dur 120Gb / 5400 RPM / 8MB Cache 1 TB / 7200 RPM / 32 MB Cache / RAID 0 Network 100 Mbits NC Talend
16 Big Data - Benchmarks Protocole (Partie 2) Structure du fichier : id (INTEGER), first name (STRING), last_name (STRING), birthdate (DATE, DD-MM-YYYY), street (STRING), city (STRING), state (STRING) Exemple : Talend
17 Big Data - Benchmarks Premier cas : Agrégation de données Scénario : Nombre de clients par ville Requête Hadoop / Hive : Talend
18 Big Data - Benchmarks Premier cas : Agrégation de données Résultats Total of The Java program uses a tsortrow with the «sort on disk» and taggregatesortedrow Talend
19 Big Data - Benchmarks Second cas: dédoublonnage des données Scenario : on dédoublonne les données sur les colonnes suivantes (prénom, nom, et date de naissance) Requête Hadoop / Hive : Talend
20 Big Data - Benchmarks Second cas : Dédoublonnage de données Résultats The MPX job failed due to a bug (Bugtrack : ) Talend
21 Big Data - Benchmarks Troisième cas : filtrage de données Scenario : extraction des clients qui se prénomment Lyndon et vivent dans la ville de Trenton. Requête Hadoop / Hive : Talend
22 Big Data - Benchmarks Troisième cas : filtrage de données Résultats Talend
HADOOP ET SON ÉCOSYSTÈME
HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos
Cartographie des solutions BigData
Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?
Big Data Concepts et mise en oeuvre de Hadoop
Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12
Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr
Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT
20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà
Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop
Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont
Introduction à MapReduce/Hadoop et Spark
1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -
Labs Hadoop Février 2013
SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL
API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture
API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant
Fouillez facilement dans votre système Big Data. Olivier TAVARD
Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche
Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant
Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?
Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi
L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13
L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2
Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution
BIG DATA en Sciences et Industries de l Environnement
BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie
Programmation parallèle et distribuée
Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution
MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306
MapReduce et Hadoop Alexandre Denis Alexandre.Denis@inria.fr Inria Bordeaux Sud-Ouest France ENSEIRB PG306 Fouille de données Recherche & indexation de gros volumes Appliquer une opération simple à beaucoup
Anticiper et prédire les sinistres avec une approche Big Data
Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél
Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013
Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine
Programmation parallèle et distribuée (Master 1 Info 2015-2016)
Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction
Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase
Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet
Hadoop, les clés du succès
Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject
Maîtriser les technologies Big Data pour obtenir des résultats en quasi-temps réel
LIVRE BLANC Processeurs Intel Xeon Unités de stockage SSD Intel Cartes réseau convergé Ethernet Intel Distribution Intel pour logiciel * Maîtriser les technologies Big Data pour obtenir des résultats en
Panorama des solutions analytiques existantes
Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop
Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno
AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL
AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES
Offre formation Big Data Analytics
Offre formation Big Data Analytics OCTO 2014 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél : +33 (0)1 58 56 10 00 Fax : +33 (0)1 58 56 10 01 www.octo.com 1 Présentation d OCTO Technology 2 Une
MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15
MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué
VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr
VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux
Les quatre piliers d une solution de gestion des Big Data
White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement
NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012
Livre blanc Solution Hadoop d entreprise d EMC Stockage NAS scale-out Isilon et Greenplum HD Par Julie Lockner et Terri McClure, Analystes seniors Février 2012 Ce livre blanc d ESG, qui a été commandé
Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.
Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision
Cassandra et Spark pour gérer la musique On-line
Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData mramdani@palo-it.com +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani
NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)
1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche
Hadoop, Spark & Big Data 2.0. Exploiter une grappe de calcul pour des problème des données massives
Hadoop, Spark & Big Data 2.0 Exploiter une grappe de calcul pour des problème des données massives Qui suis-je? Félix-Antoine Fortin Génie info. (B. Ing, M. Sc, ~PhD) Passionné de Python, Data Analytics,
Document réalisé par Khadidjatou BAMBA
Comprendre le BIG DATA Document réalisé par Khadidjatou BAMBA 1 Sommaire Avant propos. 3 Historique du Big Data.4 Introduction.....5 Chapitre I : Présentation du Big Data... 6 I. Généralités sur le Big
Les technologies du Big Data
Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR
Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015
Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 TP 3 TP noté Méthodologie Map/Reduce - programmation Hadoop - Sqoop Préparation du TP 1 Importer la machine virtuelle.ova du
Tables Rondes Le «Big Data»
Tables Rondes Le «Big Data» 2012-2013 1 Plan Introduc9on 1 - Présenta9on Ingensi 2 - Le Big Data c est quoi? 3 - L histoire 4 - Le monde du libre : Hadoop 5 - Le système HDFS 6 - Les algorithmes distribués
Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet
Le projet Gaïa, le Big Data au service du traitement de données satellitaires CRIP - 16/10/2013 Pierre-Marie Brunet 1 SOMMAIRE Le calcul scientifique au CNES Le BigData au CNES, le cas Gaïa HPC et BigData
Introduc)on à Map- Reduce. Vincent Leroy
Introduc)on à Map- Reduce Vincent Leroy Sources Apache Hadoop Yahoo! Developer Network Hortonworks Cloudera Prac)cal Problem Solving with Hadoop and Pig Les cours seront mis en ligne sur hhp://membres.liglab.fr/leroy/
http://blog.khaledtannir.net
Algorithme de parallélisations des traitements Khaled TANNIR Doctorant CIFRE LARIS/ESTI http://blog.khaledtannir.net these@khaledtannir.net 2e SéRI 2010-2011 Jeudi 17 mars 2011 Présentation Doctorant CIFRE
Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015
Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 TP 1 Méthodologie Map/Reduce - programmation Hadoop. 1 Installer VirtualBox (https://www.virtualbox.org/). Importer la machine
M2 GL UE DOC «In memory analytics»
M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les
Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014
Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD
DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les
Les journées SQL Server 2013
Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne
Département Informatique 5 e année 2013-2014. Hadoop: Optimisation et Ordonnancement
École Polytechnique de l Université de Tours 64, Avenue Jean Portalis 37200 TOURS, FRANCE Tél. +33 (0)2 47 36 14 14 www.polytech.univ-tours.fr Département Informatique 5 e année 2013-2014 Hadoop: Optimisation
Map-Reduce : un cadre de programmation parallèlle pour l analyse de grandes données. Stéphane Genaud ENSIIE
Map-Reduce : un cadre de programmation parallèlle pour l analyse de grandes données Stéphane Genaud ENSIIE Traitement de données distribuées Google a introduit Map-Reduce [Dean and Ghemawat 2004] Ils s
MapReduce. Nicolas Dugué nicolas.dugue@univ-orleans.fr. M2 MIAGE Systèmes d information répartis
MapReduce Nicolas Dugué nicolas.dugue@univ-orleans.fr M2 MIAGE Systèmes d information répartis Plan 1 Introduction Big Data 2 MapReduce et ses implémentations 3 MapReduce pour fouiller des tweets 4 MapReduce
Présentation Alfresco
Présentation d un CMS : Alfresco Présentation Alfresco Ludovic Plantin, Frédéric Sénèque, Xu Zhao Polytech Grenoble Décembre 2008 Plantin, Sénèque, Xu (Polytech) Présentation Alfresco Décembre 2008 1 /
Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be
Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par
Le cloud computing au service des applications cartographiques à haute disponibilité
Le cloud computing au service des applications cartographiques à haute disponibilité Claude Philipona Les Rencontres de SIG-la-Lettre, Mai 2010 camptocamp SA / www.camptocamp.com / info@camptocamp.com
R+Hadoop = Rhadoop* Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata!
R+Hadoop = Rhadoop* * Des logiciels libres complémentaires, une implémentation, une réponse au nouveau paradigme du bigdata! 27 Janvier 2014 / Université Paul Sabatier / DTSI / David Tsang-Hin-Sun Big
TRAVAUX DE RECHERCHE DANS LE
TRAVAUX DE RECHERCHE DANS LE DOMAINE DE L'EXPLOITATION DES DONNÉES ET DES DOCUMENTS 1 Journée technologique " Solutions de maintenance prévisionnelle adaptées à la production Josiane Mothe, FREMIT, IRIT
Big Data. Les problématiques liées au stockage des données et aux capacités de calcul
Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des
CAHIER DES CHARGES D IMPLANTATION
CAHIER DES CHARGES D IMPLANTATION Tableau de diffusion du document Document : Cahier des Charges d Implantation EVRP Version 6 Etabli par DCSI Vérifié par Validé par Destinataires Pour information Création
Hadoop : une plate-forme d exécution de programmes Map-Reduce
Hadoop : une plate-forme d exécution de programmes Map-Reduce Jonathan Lejeune UPMC 8 octobre 2013 PSIA 2013 Inspiré du cours des années précédentes de Luciana Arantes J. Lejeune (UPMC) Hadoop Map-Reduce
4 Exemples de problèmes MapReduce incrémentaux
4 Exemples de problèmes MapReduce incrémentaux 1 / 32 Calcul des plus courtes distances à un noeud d un graphe Calcul des plus courts chemins entre toutes les paires de noeuds d un graphe Algorithme PageRank
Détection d'intrusions en environnement haute performance
Symposium sur la Sécurité des Technologies de l'information et des Communications '05 Détection d'intrusions en environnement haute performance Clusters HPC Fabrice Gadaud (fabrice.gadaud@cea.fr) 1 Sommaire
Big Data Jean-Michel Franco
28/03/2014 Big Data Tendances, perspectives et cas d usage Jean-Michel Franco Directeur de l innovation et des solutions jean-michel.franco@businessdecision.com Twitter : @jmichel_franco Définition Le
Hébergement PHP. Comprendre pour bien choisir son hébergement
Hébergement PHP Comprendre pour bien choisir son hébergement Who am I? Souriant? Directeur Associé d Oxalide Ancien dev PHP/Java/C Responsable du design d infrastructure / Avant vente à Oxalide Oxalide?
Performances Veille. Système d Information. Semaine 25 du 18 au 24 juin 2012. Numéro 228
Performances Veille Système d Information Semaine 25 du 18 au 24 juin 2012 Numéro 228 TABLE DES MATIÈRES LA GÉNÉRATION Y DÉFIE LA DSI... 2 SOLUTIONS LINUX : BIG DATA ET BI OPEN SOURCE FONT BON MÉNAGE 01
Architectures d implémentation de Click&DECiDE NSI
Architectures d implémentation de Click&DECiDE NSI de 1 à 300 millions de ligne de log par jour Dans ce document, nous allons étudier les différentes architectures à mettre en place pour Click&DECiDE NSI.
Big Data, un nouveau paradigme et de nouveaux challenges
Big Data, un nouveau paradigme et de nouveaux challenges Sebastiao Correia 21 Novembre 2014 Séminaire Thématique : Traitement et analyse statistique des données massives, Poitiers. 1 Présentation Sebastiao
<Insert Picture Here> Exadata Storage Server et DB Machine V2
Exadata Storage Server et DB Machine V2 Croissance de la Volumétrie des Données Volumes multipliés par 3 tous les 2 ans Evolution des volumes de données 1000 Terabytes (Données) 800
Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS. Salon du Big Data 11 mars 2015
Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS Salon du Big Data 11 mars 2015 Accélération de l innovation +500 +280 Amazon EC2 Container Service +159 AWS Storage Gateway Amazon Elastic Transcoder
QLIKVIEW ET LE BIG DATA
QLIKVIEW ET LE BIG DATA Livre blanc sur la technologie QlikView Juillet 2012 qlikview.com Introduction Le Big Data suscite actuellement un vif intérêt. En l exploitant dans un cadre opérationnel, nombre
Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015
Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 6 map/reduce et Hadoop: exemples plus avancés Exemple: parcours de graphe 6-1 On cherche à déterminer la profondeur maximale
Bases de Données NoSQL
Bases de Données NoSQL LI328 Technologies Web Mohamed-Amine Baazizi Transparents de Bernd Amann UPMC - LIP6 LI328 Technologies Web (B. Amann) 1 SGBD Universalité Systèmes «SQL» : Facilité d'utilisation
Hibernate vs. le Cloud Computing
Hibernate vs. le Cloud Computing Qui suis-je? Julien Dubois Co-auteur de «Spring par la pratique» Ancien de SpringSource Directeur du consulting chez Ippon Technologies Suivez-moi sur Twitter : @juliendubois
Notes de cours Practical BigData
Notes de cours Practical BigData Nguyen-Nhut DOAN 15 janvier 2015 Introduction Ces notes personnelles traduisent la deuxième partie du cours INF553 de l Ecole Polytechnique sur les bases de données et
Analytics & Big Data. Focus techniques & nouvelles perspectives pour les actuaires. Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014
Analytics & Big Data Focus techniques & nouvelles perspectives pour les actuaires Local Optimization European Minded Université d Eté de l Institut des Actuaires Mardi 8 juillet 2014 Intervenants : Alexandre
Introduction à ElasticSearch
Introduction à ElasticSearch Présentée par : Romain Pignolet Lundi 7 Juillet 2014 Sommaire 1 Présentation de Elasticsearch 2 Installation et exemples simples 3 API Rest 4 Comment fonctionne Elasticsearch?
Fouille de données massives avec Hadoop
Fouille de données massives avec Hadoop Sebastiao Correia scorreia@talend.com Talend 2013 AAFD'14 29-30 avril 2014 1 Agenda Présentation de Talend Définition du Big Data Le framework Hadoop 3 thématiques
Benjamin Cornu Florian Joyeux. Les choses à connaître pour (essayer) de concurrencer Facebook.
Benjamin Cornu Florian Joyeux Les choses à connaître pour (essayer) de concurrencer Facebook. 1 Sommaire Présentation générale Historique Facebook La face cachée de l iceberg (back end) Architecture globale
Certificat Big Data - Master MAthématiques
1 / 1 Certificat Big Data - Master MAthématiques Master 2 Auteur : Sylvain Lamprier UPMC Fouille de données et Medias Sociaux 2 / 1 Rich and big data: Millions d utilisateurs Millions de contenus Multimedia
Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an
Cassandra chez Chronopost pour traiter en temps réel 1,5 milliard d événements par an Qui suis-je? Alexander DEJANOVSKI Ingénieur EAI Depuis 15 ans chez Chronopost @alexanderdeja Chronopost International
Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant
Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated
Les Content Delivery Network (CDN)
Les Content Delivery Network (CDN) Paris Californie : + 45 ms Paris Sidney : + 85 ms Amazon : 100 ms de temps de chargement supplémentaires 1% de ventes en moins Poids moyen des pages d'accueil : 2000
Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012
Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des
Professeur-superviseur Alain April
RAPPORT TECHNIQUE PRÉSENTÉ À L ÉCOLE DE TECHNOLOGIE SUPÉRIEURE DANS LE CADRE DU COURS GTI792 BASE DE DONNÉES DISTRIBUÉE APPLIQUÉE EN GÉNÉTIQUE DANS LE CADRE DE L'ANALYSE DE SÉQUENÇAGE GÉNOMIQUE JEAN-PHILIPPE
Le BigData, aussi par et pour les PMEs
Parole d expert Le BigData, aussi par et pour les PMEs Stéphane MOUTON, CETIC Département Software and Services Technologies Avec le soutien de : LIEGE CREATIVE Le Big Data, aussi par et pour les PMEs
Pentaho Business Analytics Intégrer > Explorer > Prévoir
Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux
NFA 008. Introduction à NoSQL et MongoDB 25/05/2013
NFA 008 Introduction à NoSQL et MongoDB 25/05/2013 1 NoSQL, c'est à dire? Les bases de données NoSQL restent des bases de données mais on met l'accent sur L'aspect NON-relationnel L'architecture distribuée
Avant-propos. Organisation du livre
Avant-propos Avec Hadoop par la pratique, les développeurs vont apprendre à maîtriser Hadoop et vont acquérir de nombreuses compétences sur la résolution de problèmes à l aide de ce framework. Ils vont
Introduction à Hadoop & MapReduce
Introduction à Hadoop & MapReduce Cours 2 Benjamin Renaut MOOC / FUN 2014-2015 5 Hadoop: présentation Apache Hadoop 5-1 Projet Open Source fondation Apache. http://hadoop.apache.org/
Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique
Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB
Mercredi 15 Janvier 2014
De la conception au site web Mercredi 15 Janvier 2014 Loïc THOMAS Géo-Hyd Responsable Informatique & Ingénierie des Systèmes d'information loic.thomas@anteagroup.com 02 38 64 26 41 Architecture Il est
Projet Xdata. Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia
Projet Xdata Cinequant, Data Publica, EDF, ESRI, Hurence, INRIA, Institut Mines Telecom, La Poste, Orange, Veolia Mutualisation des données XData = Cross Data En croisant des données d origine diverses,
27 janvier 2011. Issam El Hachimi Ludovic Schmieder
27 janvier 2011 Issam El Hachimi Ludovic Schmieder Le Business Intelligence Les ETL PDI Talend Démo : 2 exemples Constat et comparatif Conclusion 2 «Il faut connaitre le client pour connaitre ses besoins»
Maarch Framework 3 - Maarch. Tests de charge. Professional Services. http://www.maarch.fr. 11, bd du Sud Est 92000 Nanterre
Maarch Professional Services 11, bd du Sud Est 92000 Nanterre Tel : +33 1 47 24 51 59 Fax : +33 1 47 24 54 08 Maarch Framework 3 - Maarch PS anime le développement d un produit d archivage open source
Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus
Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Mr Romaric SAGBO Ministère de l'economie et des Finances (MEF), Bénin SWD Technologies Email : rask9@yahoo.fr Tél : +229 97217745
Exigences système BauBit pro
INTRODUCTION Chaque installation de BauBit pro se compose d un serveur et d un ou plusieurs clients. Le serveur BauBit pro utilise Microsoft SQL Server 2014 comme système de base de données. Les exigences