Big Data. Cyril Amsellem Consultant avant-vente. 16 juin Talend

Dimension: px
Commencer à balayer dès la page:

Download "Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1"

Transcription

1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend

2 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués Hadoop. MapReduce : framework logiciel pour le calcul distribué sur de hauts volumes de données (Merci Google). Hive : Hive est un data warehouse libre implémentant un langage de requête orienté SQL (HiveQL) dont la mise en œuvre se traduit par l exécution de jobs Map/Reduce orchestrés par Hadoop (Merci Facebook). Pig : language de haut niveau pour la création de programme MapReduce. Talend

3 Big Data Architecture globale Hadoop Les projets Hadoop (partie 2) HBase : Base de données Hadoop. Utile pour des accès aléatoires, temps réels (lecture/écriture) sur des Big Data. Chukwa : framework open source pour le monitoring de plateforme Hadoop. Zookeeper : Service de coordination pour les applications distribuées (configuration, synchronization, etc). Talend

4 Big Data Architecture globale Hadoop L écosystème Hadoop Talend

5 Big Data Architecture globale Hadoop Les forces de Hadoop Facile à utiliser : moins de deux jours pour monter un cluster de test. Facilité d utilisation de la librairie MapReduce pour la résolution de problèmes basiques. Scalabilité : branchez un noeud, démarrez les modules et le tour est joué. Robuste : si un noeud de calcul tombe, ses tâches sont automatiquement réparties sur d autres noeud. Les blocs de données sont également répliqués. Crée spécialement pour les gros volumes. Etudes de cas : Facebook pour l analyse des logs, Google pour l analyse des requêtes, etc. Talend

6 Big Data HDFS Qu est ce qu HDFS? Répartition des blocs: le moteur HDFS se charge de la répartition des blocs de données sur les racks. Vérification de la santé du cluster : les Datanodes envoient des signaux au Namenode. Ces signaux sont utilisés pour détecter des défaillances. Moteur de réplication : Le moteur HDFS répartie la charge de travail en terme d utilisation des disques et du réseau. Talend

7 Big Data HDFS Talend

8 Big Data MapReduce Qu est ce que MapReduce? MapReduce est un framework Java pour la création de programmes de calcul distribué. L étape du Map : le noeud père décompose un problème en plusieurs sous problèmes et les distribue aux noeuds fils. Un noeud fils peut également devenir père et rédécouper sa tâche. L étape du Reduce : les noeuds pères récupèrent les résultats des noeuds fils afin d agréger les résulats. Talend

9 Big Data MapReduce L éxemple WordCount Dans cet exemple nous allons voir comment un programme MapReduce procède pour compter le nombre d occurrence de chaque mot dans un fichier d entrée Talend

10 Big Data Et Talend dans tout cà? Pourquoi utiliser Talend? Entièrement en Java donc pleinement compatible avec les API Hadoop. Simplicité d utilisation : éditeur graphique vous permettant de générer du code. Richesse des connecteurs : plus de 500 connecteurs dans la solution dont une vingtaine pour Hadoop (HDFS, Hive, Pig, et beaucoup d autres très bientôt). Talend

11 Big Data Et Talend dans tout cà? Utilisation de Sqoop Permet l import / export de données entre SGBD et plateforme HDFS. En partenariat avec Cloudera, à l origine du projet et spéciliste des infrastructure Hadoop. Talend

12 Big Data Et Talend dans tout cà? Connecteurs HDFS / Hive Talend

13 Big Data Et Talend dans tout cà? Générateur de code Pig Latin Sans Talend : Customers = load '/opt/data/customers.csv' as (FirstName, LastName, Adress, RegistrationDate, Revenue, StateCode); StateGroup = group Customers by StateCode; StateRevenue = foreach StateGroup generate group, SUM(Customers.Revenue) as sum; ValuableStates= filter StateRevenue by sum > ; store ValuableStates into '/opt/data/beststates.csv'; Talend

14 Big Data Et Talend dans tout cà? Générateur de code Pig Latin Avec Talend : Talend

15 Big Data - Benchmarks Protocole (Partie 1) Pour chaque scénario, 3 jobs : un avec des composants java, un utilisant des composants FileScale, un utilisant les composants Hadoop / Hive. Plateforme de test (Hardware) Hadoop (1 node) MPX / Java CPU AMD Athlon 64 X2 Dual-Core (1.90Ghz) Bi Intel Xeon CPU QuadCore E5320 (1.86GHz) Mémoire 2 GB 14 GB Disque Dur 120Gb / 5400 RPM / 8MB Cache 1 TB / 7200 RPM / 32 MB Cache / RAID 0 Network 100 Mbits NC Talend

16 Big Data - Benchmarks Protocole (Partie 2) Structure du fichier : id (INTEGER), first name (STRING), last_name (STRING), birthdate (DATE, DD-MM-YYYY), street (STRING), city (STRING), state (STRING) Exemple : Talend

17 Big Data - Benchmarks Premier cas : Agrégation de données Scénario : Nombre de clients par ville Requête Hadoop / Hive : Talend

18 Big Data - Benchmarks Premier cas : Agrégation de données Résultats Total of The Java program uses a tsortrow with the «sort on disk» and taggregatesortedrow Talend

19 Big Data - Benchmarks Second cas: dédoublonnage des données Scenario : on dédoublonne les données sur les colonnes suivantes (prénom, nom, et date de naissance) Requête Hadoop / Hive : Talend

20 Big Data - Benchmarks Second cas : Dédoublonnage de données Résultats The MPX job failed due to a bug (Bugtrack : ) Talend

21 Big Data - Benchmarks Troisième cas : filtrage de données Scenario : extraction des clients qui se prénomment Lyndon et vivent dans la ville de Trenton. Requête Hadoop / Hive : Talend

22 Big Data - Benchmarks Troisième cas : filtrage de données Résultats Talend

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr

Déploiement d une architecture Hadoop pour analyse de flux. françois-xavier.andreu@renater.fr Déploiement d une architecture Hadoop pour analyse de flux françois-xavier.andreu@renater.fr 1 plan Introduction Hadoop Présentation Architecture d un cluster HDFS & MapReduce L architecture déployée Les

Plus en détail

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages

Plan. Pourquoi Hadoop? Présentation et Architecture. Démo. Usages 1 Mehdi LOUIZI Plan Pourquoi Hadoop? Présentation et Architecture Démo Usages 2 Pourquoi Hadoop? Limites du Big Data Les entreprises n analysent que 12% des données qu elles possèdent (Enquête Forrester

Plus en détail

Big Data Concepts et mise en oeuvre de Hadoop

Big Data Concepts et mise en oeuvre de Hadoop Introduction 1. Objectif du chapitre 9 2. Le Big Data 10 2.1 Introduction 10 2.2 Informatique connectée, objets "intelligents" et données collectées 11 2.3 Les unités de mesure dans le monde Big Data 12

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop

Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont

Plus en détail

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture

API04 Contribution. Apache Hadoop: Présentation et application dans le domaine des Data Warehouses. Introduction. Architecture API04 Contribution Apache Hadoop: Présentation et application dans le domaine des Data Warehouses Introduction Cette publication a pour but de présenter le framework Java libre Apache Hadoop, permettant

Plus en détail

KARMA Le système de Revenue Management d'air France KLM avec Hadoop

KARMA Le système de Revenue Management d'air France KLM avec Hadoop KARMA Le système de Revenue Management d'air France KLM avec Hadoop Conférence BIG DATA - Master MBDS Université de Nice Sophia Antipolis 16 Décembre 2014 Martial AYAS maayas@airfrance.fr 2 Agenda 1. Présentation

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 Plan de présentation 1. L écosystème Hadoop 2. Principe de programmation MapReduce 3. Programmation des fonctions

Plus en détail

FORMATION HADOOP Administrateur pour Hadoop (Apache)

FORMATION HADOOP Administrateur pour Hadoop (Apache) FORMATION HADOOP Administrateur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de

Plus en détail

For Fun and Profit Datasio 2012

For Fun and Profit Datasio 2012 For Fun and Profit Datasio 2012 130 Nouveaux acteurs Big Data depuis 2009 1 2 3 Agenda Hadoop, poids lourd du Big Data Stats Web avec Hive chez Scoop.it Profession: Data Scientist Agenda 1 Hadoop, poids

Plus en détail

Introduction à MapReduce/Hadoop et Spark

Introduction à MapReduce/Hadoop et Spark 1 / 36 Introduction à MapReduce/Hadoop et Spark Certificat Big Data Ludovic Denoyer et Sylvain Lamprier UPMC Plan 2 / 36 Contexte 3 / 36 Contexte 4 / 36 Data driven science: le 4e paradigme (Jim Gray -

Plus en détail

Programmation parallèle et distribuée (Master 1 Info 2015-2016)

Programmation parallèle et distribuée (Master 1 Info 2015-2016) Programmation parallèle et distribuée (Master 1 Info 2015-2016) Hadoop MapReduce et HDFS Note bibliographique : ce cours est largement inspiré par le cours de Benjamin Renaut (Tokidev SAS) Introduction

Plus en détail

FORMATION HADOOP Développeur pour Hadoop (Apache)

FORMATION HADOOP Développeur pour Hadoop (Apache) FORMATION HADOOP Développeur pour Hadoop (Apache) Ce document reste la propriété du Groupe Cyrès. Toute copie, diffusion, exploitation même partielle doit faire l objet d une demande écrite auprès de Cyrès.

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web

Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Sujet du stage Mise en place et paramétrage d un moteur spécialisé pour la recherche de CV à travers le web Responsable du stage : Nabil Belcaid Le Guyader Chef de projet : Ali Belcaid Déroulement du stage

Plus en détail

Hadoop, les clés du succès

Hadoop, les clés du succès Hadoop, les clés du succès Didier Kirszenberg, Responsable des architectures Massive Data, HP France Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Panorama des solutions analytiques existantes

Panorama des solutions analytiques existantes Arnaud LAROCHE Julien DAMON Panorama des solutions analytiques existantes SFdS Méthodes et Logiciels - 16 janvier 2014 - Données Massives Ne sont ici considérés que les solutions autour de l environnement

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

aprevotleygonie.wordpress.com >

aprevotleygonie.wordpress.com > Comment marche le big data??? A part être un sujet marketing faisant couler des flots d encre digitale, le big data, ce sont des concepts, des techniques. Le jour est venu pour appréhender en profondeur

Plus en détail

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data

avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data avec nos solutions spécialisées pour la microfinance et ses institutions coopératives Big Data Historique de Big data Jusqu à l avènement d Internet et surtout du Web 2.0 il n y avait pas tant de données

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013

Les enjeux du Big Data Innovation et opportunités de l'internet industriel. Datasio 2013 Les enjeux du Big Data Innovation et opportunités de l'internet industriel François Royer froyer@datasio.com Accompagnement des entreprises dans leurs stratégies quantitatives Valorisation de patrimoine

Plus en détail

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main CODEL : conception et développement d applications d entreprise à large échelle TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main Jonathan Lejeune Contexte Le modèle

Plus en détail

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData

NoSql. Principes. Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData NoSql Principes Google (Map Reduce, Big Table) et Amazone (Dynamo) pour faire face à la monté en charge liée au BigData Les SGBD NoSql partagés ne peuvent satisfaire que 2 critères au plus NoSql Les transactions

Plus en détail

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA SI 2.0 DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA REF : SICL001 DUREE : 4 JOURS TARIF : 2 695 HT Public Analystes de données, business analysts, développeurs et administrateurs.

Plus en détail

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main

TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main PSIA :Plates-formes pour les systèmes informatiques avancés TME 1 - Hadoop, une plate-forme open-source de MapReduce. Installation et prise en main Jonathan Lejeune, Julien Sopena Contexte Le modèle MapReduce

Plus en détail

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO

Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Retour d expérience BigData 16/10/2013 Cyril Morcrette CTO Mappy en Chiffre Filiale du groupe Solocal 10M de visiteurs uniques 300M visites annuelles 100 collaborateurs dont 60% technique 3,7 Md de dalles

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Soutenance de projet ASR 27/01/2011 Julien Gerlier Siman Chen Encadrés par Bruno

Plus en détail

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306 MapReduce et Hadoop Alexandre Denis Alexandre.Denis@inria.fr Inria Bordeaux Sud-Ouest France ENSEIRB PG306 Fouille de données Recherche & indexation de gros volumes Appliquer une opération simple à beaucoup

Plus en détail

CAHIER DES CHARGES D IMPLANTATION D EvRP V3

CAHIER DES CHARGES D IMPLANTATION D EvRP V3 CAHIER DES CHARGES D IMPLANTATION D EvRP V3 Tableau de diffusion du document Document : Cahier des Charges d Implantation EVRP V3 Version 42 Etabli par Département Accompagnement des Logiciels Vérifié

Plus en détail

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop

Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Julien Gerlier Siman Chen Rapport de projet de fin d étude ASR 2010/2011 Prototypage et évaluation de performances d un service de traçabilité avec une architecture distribuée basée sur Hadoop Encadrants

Plus en détail

Détection d'intrusions en environnement haute performance

Détection d'intrusions en environnement haute performance Symposium sur la Sécurité des Technologies de l'information et des Communications '05 Détection d'intrusions en environnement haute performance Clusters HPC Fabrice Gadaud (fabrice.gadaud@cea.fr) 1 Sommaire

Plus en détail

Les données massives à Calcul Québec

Les données massives à Calcul Québec Les données massives à Calcul Québec Marc Parizeau, professeur et directeur scientifique de Calcul Québec Plan Calcul Québec / Calcul Canada Les outils et les services disponibles Un outil en particulier

Plus en détail

Hadoop / Big Data. Benjamin Renaut MBDS 2014-2015

Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015 Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 TP 3 TP noté Méthodologie Map/Reduce - programmation Hadoop - Sqoop Préparation du TP 1 Importer la machine virtuelle.ova du

Plus en détail

Hadoop, Spark & Big Data 2.0. Exploiter une grappe de calcul pour des problème des données massives

Hadoop, Spark & Big Data 2.0. Exploiter une grappe de calcul pour des problème des données massives Hadoop, Spark & Big Data 2.0 Exploiter une grappe de calcul pour des problème des données massives Qui suis-je? Félix-Antoine Fortin Génie info. (B. Ing, M. Sc, ~PhD) Passionné de Python, Data Analytics,

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Le langage Pig latin Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr

SQL-ON-HADOOP. Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr SQL-ON-HADOOP Veille Technologique et Stratégique 2015 Guo Kai Élève de RICM 5 Kai.Guo@e.ujf-Grenoble.fr Données structurées (RDBMS) Exiger de strictement être organisé Annexer à RDBMS sans couture Consultable

Plus en détail

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase

Big Data : utilisation d un cluster Hadoop HDFS Map/Reduce HBase Big Data : utilisation d un cluster cluster Cécile Cavet cecile.cavet at apc.univ-paris7.fr Centre François Arago (FACe), Laboratoire APC, Université Paris Diderot LabEx UnivEarthS 14 Janvier 2014 C. Cavet

Plus en détail

CAHIER DES CHARGES D IMPLANTATION

CAHIER DES CHARGES D IMPLANTATION CAHIER DES CHARGES D IMPLANTATION Tableau de diffusion du document Document : Cahier des Charges d Implantation EVRP Version 6 Etabli par DCSI Vérifié par Validé par Destinataires Pour information Création

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20

New Features. Developed by. BPM Conseil - SARL au capital de 70 000 euros - RCS LYON 479 400 129 9, rue Pierre Blanc - 69001 Lyon - France 1/20 5 New Features Developed by 1/20 Sommaire 1 Introduction... 3 2 Evolutions des studios de développement et améliorations fonctionnelles... 5 3 Portail Vanilla... 6 3.1 Open Street Maps... 6 3.2 Gestion

Plus en détail

Les journées SQL Server 2013

Les journées SQL Server 2013 Les journées SQL Server 2013 Un événement organisé par GUSS Les journées SQL Server 2013 Romain Casteres MVP SQL Server Consultant BI @PulsWeb Yazid Moussaoui Consultant Senior BI MCSA 2008/2012 Etienne

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306

MapReduce et Hadoop. Alexandre Denis Alexandre.Denis@inria.fr. Inria Bordeaux Sud-Ouest France ENSEIRB PG306 MapReduce et Hadoop Alexandre Denis Alexandre.Denis@inria.fr Inria Bordeaux Sud-Ouest France ENSEIRB PG306 Fouille de données Recherche & indexation de gros volumes Appliquer une opération simple à beaucoup

Plus en détail

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD

DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD DEMARRER UN PROJET BIGDATA EN QUELQUES MINUTES GRACE AU CLOUD BIGDATA PARIS LE 1/4/2014 VINCENT HEUSCHLING @VHE74! 1 NOUS 100% Bigdata Infrastructure IT + Data Trouver vos opportunités Implémenter les

Plus en détail

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco

L analytique en temps réel en un clic. Jean-Michel Franco Directeur Marketing Produit @jmichel_franco L analytique en temps réel en un clic Jean-Michel Franco Directeur Marketing Produit @jmichel_franco 2015 Talend Inc. 1 1 Dynamiser l entreprise par ses données Les entreprises orientées données 23X plus

Plus en détail

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment?

Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Hadoop dans l entreprise: du concept à la réalité. Pourquoi et comment? Jean-Marc Spaggiari Cloudera jms@cloudera.com @jmspaggi Mai 2014 1 2 Avant qu on commence Agenda -Qu est-ce que Hadoop et pourquoi

Plus en détail

CONFIGURATION MINIMALE POUR SERVEUR ET POSTE DE TRAVAIL

CONFIGURATION MINIMALE POUR SERVEUR ET POSTE DE TRAVAIL CONFIGURATION MINIMALE POUR SERVEUR ET POSTE DE TRAVAIL Révision Mars 2015 CES INFORMATIONS SONT D UNE GRANDE IMPORTANCE. PORTEZY UNE ATTENTION PARTICULIÈRE. TABLE DES MATIÈRES Serveur dédié ou non dédié

Plus en détail

Pascal BASSET, - PMU Responsable Risques Numériques, Expériences Utilisateurs et DSI international

Pascal BASSET, - PMU Responsable Risques Numériques, Expériences Utilisateurs et DSI international Pascal BASSET, - PMU Responsable Risques Numériques, Expériences Utilisateurs et DSI international CRiP Thématique Sécurité de l informatique de demain 03/12/14 Agenda Introduction big data et lien avec

Plus en détail

Avantages du système de fichiers HDFS en termes de performances sur les entrepôts de données de type ROLAP. par. Mounir BOUSSAFSAF

Avantages du système de fichiers HDFS en termes de performances sur les entrepôts de données de type ROLAP. par. Mounir BOUSSAFSAF Avantages du système de fichiers HDFS en termes de performances sur les entrepôts de données de type ROLAP par Mounir BOUSSAFSAF essai présenté au CeFTI en vue de l obtention du grade de maître en génie

Plus en détail

Big Data EC2 S3. Stockage. Amazon Web Services. Réf. Intitulé des formations Page

Big Data EC2 S3. Stockage. Amazon Web Services. Réf. Intitulé des formations Page IAM Big Data EBS Big Data Cloud EC2 S3 Cloud Stockage Stockage Amazon Web Services Réf. Intitulé des formations Page GK4501 Notions de base Amazon Web Services 3 GK4502 Architecture sur Amazon Web Services

Plus en détail

Bases de données documentaires et distribuées Cours NFE04

Bases de données documentaires et distribuées Cours NFE04 Bases de données documentaires et distribuées Cours NFE04 Introduction Ãă Spark Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département d informatique Conservatoire

Plus en détail

Maîtriser les technologies Big Data pour obtenir des résultats en quasi-temps réel

Maîtriser les technologies Big Data pour obtenir des résultats en quasi-temps réel LIVRE BLANC Processeurs Intel Xeon Unités de stockage SSD Intel Cartes réseau convergé Ethernet Intel Distribution Intel pour logiciel * Maîtriser les technologies Big Data pour obtenir des résultats en

Plus en détail

TP1_1 DE BUSINESS INTELLIGENCE ISIMA 3 ÈME ANNÉE ZZ3 F3

TP1_1 DE BUSINESS INTELLIGENCE ISIMA 3 ÈME ANNÉE ZZ3 F3 TP1_1 DE BUSINESS INTELLIGENCE ISIMA 3 ÈME ANNÉE ZZ3 F3 05/10/2015 Plan du TP 2 Présentation et but de ce TP (15 min) Présentation de Talend Open Studio et ateliers (2H) Présentation de BIRT et ateliers

Plus en détail

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/30. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/30 2/30 Anne-Cécile Caron Master MIAGE - SGBD 1er trimestre 2014-2015 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Les quatre piliers d une solution de gestion des Big Data

Les quatre piliers d une solution de gestion des Big Data White Paper Les quatre piliers d une solution de gestion des Big Data Table des Matières Introduction... 4 Big Data : un terme très vaste... 4 Le Big Data... 5 La technologie Big Data... 5 Le grand changement

Plus en détail

CNAM 2010-2011. Déploiement d une application avec EC2 ( Cloud Amazon ) Auteur : Thierry Kauffmann Paris, Décembre 2010

CNAM 2010-2011. Déploiement d une application avec EC2 ( Cloud Amazon ) Auteur : Thierry Kauffmann Paris, Décembre 2010 CNAM 2010-2011 Déploiement d une application avec EC2 ( Cloud Amazon ) Auteur : Thierry Kauffmann Paris, Décembre 2010 Déploiement d une application dans le cloud. 1. Cloud Computing en 2010 2. Offre EC2

Plus en détail

Gestion de gros volumes de données RDF

Gestion de gros volumes de données RDF LIPADE Université Paris Descartes June 23, 2014 Sommaire 1 2 3 4 Contexte 1 Augmentation considérable des données du Web, RDF 2 Données provenant de multiple sources autonomes, donc 3 Hétérogènes : sémantique

Plus en détail

Architecture technique

Architecture technique OPUS DRAC Architecture technique Projet OPUS DRAC Auteur Mathilde GUILLARME Chef de projet Klee Group «Créateurs de solutions e business» Centre d affaires de la Boursidière BP 5-92357 Le Plessis Robinson

Plus en détail

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL

AVRIL 2014. Au delà de Hadoop. Panorama des solutions NoSQL AVRIL 2014 Panorama des solutions NoSQL QUI SOMMES NOUS? Avril 2014 2 SMILE, EN QUELQUES CHIFFRES 1er INTÉGRATEUR EUROPÉEN DE SOLUTIONS OPEN SOURCE 3 4 NOS EXPERTISES ET NOS CONVICTIONS DANS NOS LIVRES

Plus en détail

All in one with Polybase. SQL Server 2016, Azure SQL DataWarehouse,

All in one with Polybase. SQL Server 2016, Azure SQL DataWarehouse, All in one with Polybase SQL Server 2016, Azure SQL DataWarehouse, Merci à nos sponsors Speakers Romain Casteres Microsoft PFE Data Platform Arnaud Voisin Consultant BI Data Platform @PulsWeb @ArnaudVoisinSQL

Plus en détail

Systèmes de fichiers distribués : comparaison de GlusterFS, MooseFS et Ceph avec déploiement sur la grille de calcul Grid 5000.

Systèmes de fichiers distribués : comparaison de GlusterFS, MooseFS et Ceph avec déploiement sur la grille de calcul Grid 5000. : comparaison de, et avec déploiement sur la grille de calcul Grid 5000. JF. Garcia, F. Lévigne, M. Douheret, V. Claudel 30 mars 2011 1/34 Table des Matières 1 2 3 4 5 6 7 1/34 Présentation du sujet Présentation

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Architectures d implémentation de Click&DECiDE NSI

Architectures d implémentation de Click&DECiDE NSI Architectures d implémentation de Click&DECiDE NSI de 1 à 300 millions de ligne de log par jour Dans ce document, nous allons étudier les différentes architectures à mettre en place pour Click&DECiDE NSI.

Plus en détail

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant

Acquisition des données - Big Data. Dario VEGA Senior Sales Consultant Acquisition des données - Big Data Dario VEGA Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated

Plus en détail

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur)

NoSQL. Introduction 1/23. I NoSQL : Not Only SQL, ce n est pas du relationnel, et le contexte. I table d associations - Map - de couples (clef,valeur) 1/23 2/23 Anne-Cécile Caron Master MIAGE - BDA 1er trimestre 2013-2014 I : Not Only SQL, ce n est pas du relationnel, et le contexte d utilisation n est donc pas celui des SGBDR. I Origine : recherche

Plus en détail

Exigences système BauBit pro

Exigences système BauBit pro INTRODUCTION Chaque installation de BauBit pro se compose d un serveur et d un ou plusieurs clients. Le serveur BauBit pro utilise Microsoft SQL Server 2008 R2 comme système de base de données. Les exigences

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail

Hadoop / Big Data. Benjamin Renaut MBDS 2014-2015

Hadoop / Big Data. Benjamin Renaut <renaut.benjamin@tokidev.fr> MBDS 2014-2015 Hadoop / Big Data Benjamin Renaut MBDS 2014-2015 TP 1 Méthodologie Map/Reduce - programmation Hadoop. 1 Installer VirtualBox (https://www.virtualbox.org/). Importer la machine

Plus en détail

Pentaho Business Analytics Intégrer > Explorer > Prévoir

Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho Business Analytics Intégrer > Explorer > Prévoir Pentaho lie étroitement intégration de données et analytique. En effet, les services informatiques et les utilisateurs métiers peuvent accéder aux

Plus en détail

Cluster de stockage NAS sur SYRHANO. TutoJRES 14 / Stockage - 01/12/2010 Alain BIDAUD - CRIHAN

Cluster de stockage NAS sur SYRHANO. TutoJRES 14 / Stockage - 01/12/2010 Alain BIDAUD - CRIHAN Cluster de stockage NAS sur SYRHANO TutoJRES 14 / Stockage - 01/12/2010 Alain BIDAUD - CRIHAN Service de stockage SYRANO Plan Contexte utilisateur bref historique besoins exprimés Cluster de stockage ISILON

Plus en détail

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique

Vos experts Big Data. contact@hurence.com. Le Big Data dans la pratique Vos experts Big Data contact@hurence.com Le Big Data dans la pratique Expert Expert Infrastructure Data Science Spark MLLib Big Data depuis 2011 Expert Expert Hadoop / Spark NoSQL HBase Couchbase MongoDB

Plus en détail

PERSISTANCE DES DONNEES

PERSISTANCE DES DONNEES PERSISTANCE DES DONNEES Matthieu VALET Valentin CARRIE Janvier 2014 C est quoi des «données»??? L informatique consiste à traiter des éléments d information par un algorithme Tous les éléments d informations

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012

Livre. blanc. Solution Hadoop d entreprise d EMC. Stockage NAS scale-out Isilon et Greenplum HD. Février 2012 Livre blanc Solution Hadoop d entreprise d EMC Stockage NAS scale-out Isilon et Greenplum HD Par Julie Lockner et Terri McClure, Analystes seniors Février 2012 Ce livre blanc d ESG, qui a été commandé

Plus en détail

Introduc)on à Map- Reduce. Vincent Leroy

Introduc)on à Map- Reduce. Vincent Leroy Introduc)on à Map- Reduce Vincent Leroy Sources Apache Hadoop Yahoo! Developer Network Hortonworks Cloudera Prac)cal Problem Solving with Hadoop and Pig Les cours seront mis en ligne sur hhp://lig- membres.imag.fr/leroyv/

Plus en détail

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul

Big Data. Les problématiques liées au stockage des données et aux capacités de calcul Big Data Les problématiques liées au stockage des données et aux capacités de calcul Les problématiques liées au Big Data La capacité de stockage - Traitement : Ponctuel ou permanent? - Cycle de vie des

Plus en détail

Le cloud computing au service des applications cartographiques à haute disponibilité

Le cloud computing au service des applications cartographiques à haute disponibilité Le cloud computing au service des applications cartographiques à haute disponibilité Claude Philipona Les Rencontres de SIG-la-Lettre, Mai 2010 camptocamp SA / www.camptocamp.com / info@camptocamp.com

Plus en détail

Système de Stockage Sécurisé et Distribué

Système de Stockage Sécurisé et Distribué Système de Stockage Sécurisé et Distribué Philippe Boyon philippe.boyon@active-circle.com ACTIVE CIRCLE QUI SOMMES NOUS? Editeur français, spécialiste du stockage de fichiers et de la gestion de données

Plus en détail

Introduc)on à Map- Reduce. Vincent Leroy

Introduc)on à Map- Reduce. Vincent Leroy Introduc)on à Map- Reduce Vincent Leroy Sources Apache Hadoop Yahoo! Developer Network Hortonworks Cloudera Prac)cal Problem Solving with Hadoop and Pig Les cours seront mis en ligne sur hhp://membres.liglab.fr/leroy/

Plus en détail

M2 GL UE DOC «In memory analytics»

M2 GL UE DOC «In memory analytics» M2 GL UE DOC «In memory analytics» Alexandre Termier 2014/2015 Sources Travaux Amplab, U.C. Berkeley Slides Ion Stoica Présentations Databricks Slides Pat McDonough Articles de M. Zaharia et al. sur les

Plus en détail

Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus

Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Cloud Computing : Utiliser Stratos comme PaaS privé sur un cloud Eucalyptus Mr Romaric SAGBO Ministère de l'economie et des Finances (MEF), Bénin SWD Technologies Email : rask9@yahoo.fr Tél : +229 97217745

Plus en détail

Big Graph Data Forum Teratec 2013

Big Graph Data Forum Teratec 2013 Big Graph Data Forum Teratec 2013 MFG Labs 35 rue de Châteaudun 75009 Paris, France www.mfglabs.com twitter: @mfg_labs Julien Laugel MFG Labs julien.laugel@mfglabs.com @roolio SOMMAIRE MFG Labs Contexte

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Architecture Constellio

Architecture Constellio Architecture Constellio Date : 12 novembre 2013 Version 3.0 Contact : Nicolas Bélisle nicolas.belisle@doculibre.com 5146555185 1 Table des matières Table des matières... 2 Présentation générale... 4 Couche

Plus en détail

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation

Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com. 18 Mars 2015. Big data et le z. 2015 IBM Corporation Marc AMADOU Technical Sales Analytics on System z amadoum@fr.ibm.com 18 Mars 2015 Big data et le z 2015 IBM Corporation Agenda Contexte Cas d utilisation DB2 z/os et Hadoop Connecteurs z pour Hadoop 2

Plus en détail

POSSEDEZ VOTRE SERVEUR WEB DES MAINTENANT!

POSSEDEZ VOTRE SERVEUR WEB DES MAINTENANT! POSSEDEZ VOTRE SERVEUR WEB DES MAINTENANT! Vous avez besoin d indépendance et d un controlle complêt de votre présence sur Internet? Vous avez besoin de plus que d un simple paquêt d hébergement chez un

Plus en détail

SAP HANA: note de synthèse

SAP HANA: note de synthèse Préface: Au cœur des nombreux défis que doivent relever les entreprises, l informatique se doit de soutenir les évolutions, d aider au développement de nouveaux avantages concurrentiels tout en traitant

Plus en détail

ELASTICSEARCH MAINTENANT EN VERSION 1.4

ELASTICSEARCH MAINTENANT EN VERSION 1.4 ELASTICSEARCH MAINTENANT EN VERSION 1.4 firm1 29 octobre 2015 Table des matières 1 Introduction 5 2 Les principaux atouts 7 2.1 Moteur de recherche vs Moteur d indexation.................... 7 2.2 Du

Plus en détail