Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, LES STATISTIQUES INFERENTIELLES
|
|
- Anne Dussault
- il y a 2 ans
- Total affichages :
Transcription
1 LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations, mais extrapole les constatations faites à un ensemble plus vaste et permet de tester des hypothèses sur cet ensemble ainsi que de prendre des décisions. Un test statistique est un mécanisme qui permet de trancher entre deux hypothèses au vu des résultats d'un échantillon. Soient H 0 et H 1 deux hypothèses (H 0 est appelée hypothèse nulle, H 1 hypothèse alternative), dont une et une seule qui est vraie. La décision consiste à retenir H 0 ou H 1. Pour un test bilatéral, nous pouvons émettre les hypothèses suivantes : Hypothèse nulle, H 0 : p A = p B Hypothèse alternative, H 1 : p A p B. Pour un test unilatéral, les hypothèses deviennent : Hypothèse nulle, H 0 : p A = p B Hypothèse alternative, H 1 : p A > p B ou p A < p B I. LES TESTS PARAMETRIQUES Un test est dit paramétrique si son objet est de tester une hypothèse relative à un ou plusieurs paramètres d'une variable aléatoire qui suit la loi normale ou ayant un effectif important (n > 30). 1. Le test de Student Ce test permet de comparer : une moyenne d'un échantillon à une valeur donnée les moyennes de deux échantillons indépendants les moyennes de deux échantillons appariés. 1
2 L'emploi de ce test reste subordonné en général à deux conditions d'application importantes qui sont la normalité et le caractère aléatoire et simple des échantillons. La première condition n'est toutefois pas essentielle lorsque les échantillons ont des effectifs suffisants (en pratique, la valeur de 30 est souvent retenue) pour assurer la quasi-normalité des distributions d'échantillonnage des moyennes. En plus, de ces deux conditions, nous devrons supposer, dans certains tests relatifs aux moyennes, l'égalité des variances des échantillons considérées. a. Cas d'un seul échantillon Le test de Student cas d'un seul échantillon est aussi appelé test de conformité, ce test a pour but de vérifier si notre échantillon provient bien d'une population avec la moyenne spécifiée, µ 0, ou s'il y a une différence significative entre la moyenne de l'échantillon et la moyenne présumée de la population. Exemple: Une usine veut vérifier le bon fonctionnement de ces machines car l'usure des machines peut impliquer une déviation aux normes imposées. Nous tirons aléatoirement un certain nombre d'éléments de la production, nous calculons la moyenne et nous comparons celle-ci avec la norme imposée. Les hypothèses à tester sont : hypothèse nulle : H 0 : µ = µ 0 hypothèse alternative : o H 1 : µ > µ 0 (test unilatéral à droite) o H 1 : µ < µ 0 (test unilatéral à gauche) o H 1 : µ µ 0 (test bilatéral symétrique) Conditions d'application du test de Student : Le caractère de l'échantillon étant supposé aléatoire, l'hypothèse de normalité de la variable X doit être vérifiée (par exemple) avec le test de Kolmogorov-Smirnov si n < 30. Calcul : Soit X une variable aléatoire distribuée selon une loi normale, la variable aléatoire définie ci-dessus suit une loi de Student avec n - 1 degrés de liberté. 2
3 où µ 0 est la moyenne de la population spécifiée par H 0, est la moyenne de l'échantillon, S² est la variance de l'échantillon et n est la taille de l'échantillon On compare la valeur calculée de t (t obs ) avec la valeur critique appropriée de t avec n - 1 degrés de liberté. On rejette H 0 si la valeur absolue de t obs est supérieure à cette valeur critique. Les valeurs critiques pour différents degrés de liberté et différents seuils de signification sont données par la table de Student. Pour un test unilatéral, nous prendrons la valeur t n-1,1- de la table et pour un test bilatéral, nous prendrons t n-1,1- /2. b. Cas de deux échantillons indépendants Etant donné deux échantillons de taille n 1 et n 2, on admet qu'ils ont été prélevés d une même population relativement à la variable étudiée, ces deux échantillons ayant été prélevés indépendamment l'un de l'autre? Les hypothèses à tester sont : hypothèse nulle : H 0 : µ 1 = µ 2 hypothèse alternative qui prend trois formes : o H 1 : µ 1 > µ 2 (test unilatéral à droite) o H 1 : µ 1 < µ 2 (test unilatéral à gauche) o H 1 : µ 1 µ 2 (test bilatéral) Conditions d'application : Les deux échantillons sont indépendants entre eux, sont aléatoires et ont n 1 et n 2 unités indépendantes (cette condition est d'ordinaire satisfaite en utilisant une procédure de randomisation ; procédure pour laquelle on affecte au hasard chaque individu à un groupe expérimental). La variable aléatoire suit une loi normale ou elle a des effectifs supérieurs à 30. Il est aussi nécessaire de vérifier l'égalité des variances des échantillons (grâce au test de Fisher). Cette condition est indispensable pour des effectifs inégaux. Remarques: Plusieurs auteurs ont montré que l'hypothèse de normalité est d'importance relativement secondaire dans le test d'égalité de deux moyennes. En effet, dans certaines limites, la nonnormalité des populations ne modifie pas sensiblement les risques d'erreur de première et deuxième espèce. Ceci est vrai surtout pour les distributions symétriques, même très différentes des distributions normales. De même, l'hypothèse d'égalité des variances n'est 3
4 pas fondamentale au point de vue pratique lorsque les effectifs des échantillons sont égaux. En raison de cette faible sensibilité du test à la non-normalité et à l'inégalité des variances, on dira qu'il s'agit, pour des effectifs égaux, d'un test robuste. Par contre, lorsque les effectifs des échantillons sont inégaux, il est absolument indispensable de s'assurer de l'égalité des variances et, si cette hypothèse n'est pas vérifiée, il est indispensable d'utiliser une méthode adaptée à ces circonstances. On peut notamment procéder à une transformation de variable, destinée à stabiliser les variances, et utiliser ensuite le test de Student. Cependant, ce cas d'inégalité des variances est assez rare. Mode de calcul : On calcule la valeur t observé (t obs ) qui suit une variable aléatoire de Student aux degrés de liberté (ddl = n1 + n2-2). où et sont les moyennes des deux échantillons, S p ² la variance commune. Cette dernière statistique correspond à la variance S² de la population parentale. Elle est égale à : avec Ce qui revient à : S p ² = = Si les effectifs des échantillons sont égaux, la valeur de t devient : La valeur de t est comparée à la valeur critique appropriée de t (dans la table de Student) avec (n 1 + n 2-2) degrés de liberté. On rejette H 0 si la valeur absolue de t obs est supérieure à cette valeur critique. Si le test est unilatéral, nous prendrons la valeur t n1 + n2-2,1- de la table de Student. S'il est bilatéral, nous prendrons la valeur t n1+n2-2,1-. c. Cas de deux échantillons appariés: Le test de Student pour observations pairées sert à comparer les moyennes de deux populations, dont chaque élément de l'une des populations est mis en relation avec un élément 4
5 de l'autre. Par exemple, il peut s'agir de comparer deux traitements, les données étant considérées comme des paires d'observations (première observation de la paire recevant le traitement 1 et deuxième observation recevant le traitement 2). Aspects mathématiques : Soit x ij l'observation j pour la paire i (j = 1,2 et i = 1,2,...,n). Pour chaque paire d'observations on calcule la différence d i = x i2 - x i1. Le test statistique est défini par : où n est le nombre de paires d'observations, observations et S d ² la variance. est la moyenne des différences entre les Le test de Student pour observations pairées est un test bilatéral. Les hypothèses sont : H 0 : µ 1 - µ 2 = 0 (il n'y a pas de différence entre les traitements) H 1 : µ 1 - µ 2 0 (il y a une différence entre les traitements) On rejette l'hypothèse nulle au seuil de signification α si : t obs > t n-1,1- α /2 où t n-1,1- α /2 est la valeur de la table de Student avec n - 1 degrés de liberté. Conditions d'application : les échantillons ont été tirés aléatoirement la population des différences doit suivre une loi de Gauss. Cette condition est moins restrictive que celle de normalité des deux populations. 5
L essentiel sur les tests statistiques
L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et
Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30
Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour
Introduction au cours STA 102 Analyse des données : Méthodes explicatives
Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide
Analyse de la variance (ANOVA)
Chapitre 7 Analyse de la variance (ANOVA) Introduction L analyse de la variance (ANOVA) a pour objectif d étudier l influence d un ou plusieurs facteurs sur une variable quantitative. Nous nous intéresserons
UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2
UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests
Correction de l épreuve de Statistiques et Informatique appliquées à la Psychologie
Université de Bretagne Occidentale Année Universitaire 2013-2014 U.F.R. de Lettres et Sciences Humaines CS 93837-29238 BREST CEDEX 3 Section : Psychologie - Licence 3è année Enseignant responsable : F.-G.
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
STATISTIQUES. Cours I : Test d hypothèses. Télécom Physique Strasbourg Module 2101. Fabrice Heitz. Octobre 2014
Télécom Physique Strasbourg Module 2101 STATISTIQUES Cours I : Test d hypothèses Fabrice Heitz Octobre 2014 Fabrice Heitz (Télécom PS) Statistiques 2014 1 / 75 Cours I TESTS D HYPOTHÈSES Fabrice Heitz
Test de Poisson à 1 échantillon et à 2 échantillons
Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons
Master 1 Informatique Éléments de statistique inférentielle
Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi
Principe des tests statistiques
Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
9. Distributions d échantillonnage
9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions
L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques.
L'APPROCHE EXPERIMENTALE EN RECHERCHE: introduction aux statistiques 1 BUTS DU COURS : se familiariser avec le vocabulaire statistique o variable dépendante, variable indépendante o statistique descriptive,
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Cours (8) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012. Test du Khi 2
Test du Khi 2 Le test du Khi 2 (khi deux ou khi carré) fournit une méthode pour déterminer la nature d'une répartition, qui peut être continue ou discrète. Domaine d application du test : Données qualitatives
Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.
Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages
11. Tests d hypothèses (partie 1/2)
11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Conditions d application des méthodes statistiques paramétriques :
Conditions d application des méthodes statistiques paramétriques : applications sur ordinateur GLELE KAKAÏ R., SODJINOU E., FONTON N. Cotonou, Décembre 006 Conditions d application des méthodes statistiques
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.
Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans
Analyse de la variance à deux facteurs
1 1 IRMA, Université Louis Pasteur Strasbourg, France Master 1 Psychologie du développement 06-10-2008 Contexte Nous nous proposons d analyser l influence du temps et de trois espèces ligneuses d arbre
Chapitre VI Échantillonages et simulations
Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Simulation Examen de Statistique Approfondie II **Corrigé **
Simulation Examen de Statistique Approfondie II **Corrigé ** Ces quatre exercices sont issus du livre d exercices de François Husson et de Jérôme Pagès intitulé Statistiques générales pour utilisateurs,
3. COMPARAISON DE PLUS DE DEUX GROUPES
3. COMPARAISON DE PLUS DE DEUX GROUPES La comparaison de moyennes de plus de deux échantillons se fait généralement par une analyse de variance (ANOVA) L analyse de variance suppose l homogénéité des variances
L analyse de variance à un critère de classification (ANOVA)
Bio 041 L analyse de variance à un critère de classification (ANOVA) Pierre Legendre & Daniel Borcard, Université de Montréal Référence: Scherrer (007), section 14.1.1.1 et 14.1. 1 - Introduction Objectif:
Les statistiques en biologie expérimentale
Les statistiques en biologie expérimentale Qualités attendues d une méthode de quantification : Le résultat numérique de la mesure permet d estimer avec précision la grandeur mesurée (ex. : il lui est
DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE
DOCUMENT 2.1 : INFORMATIONS COMPLEMENTAIRES SUR LA METHODE D ENQUETE 1 Définir le type de variable Dans notre cas, la variable est quantitative nominale. Note : Une variable est qualitative nominale quand
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
BANQUE DE QUESTIONS D'EXAMEN ÉTUDE DE MARCHÉ MRK-14811
NQUE DE QUESTIONS D'EXMEN ÉTUDE DE MRCHÉ MRK-. Nommer et expliquer brièvement chacune des étapes du processus de recherche en marketing.. Qu'est-ce que l'échelle de ratio?. Nommer deux plans d'expérimentation
Devoir Surveillé n 5 BTS 2009 groupement B
EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère
Ch.12 : Loi binomiale
4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des
Licence Pro Amélioration Végétale
Analyse de données Licence Pro Amélioration Végétale Marc Bailly-Bechet Université Claude Bernard Lyon I France marc.bailly-bechet@univ-lyon1.fr 1 marc.bailly-bechet@univ-lyon1.fr Analyse de données Des
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Loi normale ou loi de Laplace-Gauss
LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de
La méthode des quotas
La méthode des quotas Oliviero Marchese, décembre 2006 1 La méthode des quotas Principe de la méthode Point de départ et but recherché Caractère «intuitif» de la méthode A quoi ressemble une feuille de
une décision dans un monde aléatoire : modèles inférentiels
Lecture 9. Comment prendre une décision dans un monde aléatoire : modèles inférentiels Prof. Kizungu Vumilia Roger UNIKIN (FACAGRO-BIOLOGIE), UNILU (FACAGRO), UEA (FACAGRO), UCB (FACAGRO), ISS, ISTA (ENVIRONNEMENT),
Christophe Fournier. Clinique de Thuys. Aunége - Christophe Fournier
Christophe Fournier Clinique de Thuys Aunége - Christophe Fournier 2 Table des matières Information sur l'échantillon 3 Structure de l'échantillon...4 Point méthodologique 6 Point méthodologique...7 Représentativité
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
2. COMPARAISON DE DEUX GROUPES
2. COMPARAISON DE DEUX GROUPES Il existe des tests spécifiques pour comparer des proportions comparer des moyennes Données par paires ou non Nécessite éventuellement de comparer préalablement les variances
Chacune des valeurs d une variable en est une modalité particulière.
Psychologie générale Jean Paschoud STATISTIQUE Sommaire Rôle de la statistique Variables Échelles de mesure Résumer, décrire Comparer Rôle de la statistique La statistique est avant tout un outil permettant
Université d Orléans - Licence Economie et Gestion Statistique Mathématique
Université d Orléans - Licence Economie et Gestion Statistique Mathématique C. Hurlin. Correction du Contrôle de Décembre 00 Exercice Barème : 7 points Partie I : Test d hypothèses simples (0 points) Question
Tests de Student-Fisher compléments
Tests de Student-Fisher compléments Matthieu Kowalski 1 Rappels généraux sur les tests 1.1 Un exemple Un producteur d'ampoules ash, qui ne peuvent servir qu'une seule fois, arme à ses clients que la proportion
CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Probabilités Épreuve de Bernoulli, loi de Bernoulli.
1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. 1 ère - Chapitre 9 : LOI BINOMIALE. ÉCHANTILLONNAGE. Textes officiels (30 septembre 2010) : CONTENU CAPACITÉ ATTENDUE COMMENTAIRE Probabilités Épreuve
Cartes de contrôle aux mesures
Cartes de contrôle aux mesures 1 Une introduction à la maîtrise statistique des processus Deux objets ne sont jamais rigoureusement identiques. Quelles que soient les techniques utilisées pour fabriquer
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Mémoire de n d'étude: Etudes statistiques. Mémoire de n d'étude: Etudes statistiques. Nicolas Sutton-Charani. Université Montpellier 1 1/31
1/31 Mémoire de n d'étude: Etudes statistiques Nicolas Sutton-Charani Université Montpellier 1 Plan Rappels de cours La base La Statistique Types des variables Outils mathématiques Statistiques descriptives
Analyse de variance à un facteur Tests d hypothèses Analyse de variance à deux facteurs. Analyse de la variance ANOVA
Analyse de la variance ANOVA Terminologie Modèles statistiques Estimation des paramètres 1 Analyse de variance à un facteur Terminologie Modèles statistiques Estimation des paramètres 2 3 Exemple. Analyse
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
L analyse de variance à deux critère de classification
L analyse de variance à deux critère de classification Objectif : comparer l influence de chaque facteur sur la moyenne de plusieurs (k) groupes indépendants d observations La méthode détaillée ci-dessous
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES
Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax
Dossier PUBLICITE - Analyse
Dossier PUBLICITE - Analyse - 1 - Dossier PUBLICITE - Analyse A. DESCRIPTION 1) Calculer la moyenne générale (m), et la variance totale (var) ainsi que les moyennes (m1, m) et les variances de chaque groupe
Excel. Quelques traitements statistiques
Excel Quelques traitements statistiques Rachid BOUMAZA Département ETIC Institut National d'horticulture Angers Sommaire 1. Tirer au hasard 2. Saisie des données 3. Comparer deux moyennes 4. Analyse de
Séminaire de Statistique
Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière
Leçon 5. Systèmes de gestion à recomplétement périodique et stock de sécurité
CANEGE Leçon 5 Systèmes de gestion à recomplétement périodique et stock Objectif : A l'issue de la leçon l'étudiant doit être capable : dans le cadre des calendriers d approvisionnement à recomplètement
Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon
PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie
NORME INTERNATIONALE D AUDIT 530 SONDAGES EN AUDIT
Introduction NORME INTERNATIONALE D AUDIT 530 SONDAGES EN AUDIT (Applicable aux audits d états financiers pour les périodes ouvertes à compter du 15 décembre 2009) SOMMAIRE Paragraphe Champ d application
Introduction et concepts de base
Introduction et concepts de base Les statistiques sont un ensemble de procédures destinées à traiter des données quantitatives. Elles remplissent deux fonctions fondamentales: il s'agit tout d'abord de
Chapitre IV : Couples de variables aléatoires discrètes
UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)
Cours 11 : Homogénéité de la variance et transformations non linéaires
Cours 11 : Homogénéité de la variance et transformations non linéaires Table des matières Section 1. Régularité de la nature et effets linéaires... 2 Section 2. Homogénéité des variances... 2 Section 3.
4.1 Planification d une expérience complètement randomisée
Chapitre 4 La validation des hypothèses d ANOVA à un facteur Dans le modèle standard d ANOVA, on a fait quelques hypothèses. Pour que les résultats de l analyse effectuée soient fiables, il est nécessaire
Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009
Entrer par les problèmes en probabilités et en statistique Équipe Académique Mathématiques - 2009 Quelle valeur ajoutée peut-on espérer d une entrée par les problèmes en probabilités? Donner du sens aux
Statistiques inférentielles : tests d hypothèse
Statistiques inférentielles : tests hypothèse Table es matières I Tests hypothèse 2 I.1 Test bilatéral relatif à une moyenne...................................... 2 I.2 Test unilatéral relatif à une moyenne.....................................
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
MTH 2301 Méthodes statistiques en ingénierie
Chapitre 7 - ests d hypothèses Lexique anglais - français Constats - terminologie - onepts de base tests ests onernant une moyenne - variane onnue - variane inonnue - ourbe aratéristique - n =? est de
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Exercices : Probabilités
Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
LE TRAITEMENT STATISTIQUE. I. Les types de traitements statistiques en fonction des questions-problèmes (QP)
LE TRAITEMENT STATISTIQUE I. Les types de traitements statistiques en fonction des questions-problèmes (QP) Dans une recherche, on se pose toujours une ou plusieurs questions qu'il s'agira de résoudre.
Introduction à l analyse quantitative
Introduction à l analyse quantitative Vue d ensemble du webinaire Le webinaire sera enregistré. Les diapositives et tous les autres documents seront envoyés aux participants après la séance. La séance
Test de validité et d'hypothèse
Test de validité et d'hypothèse 1 Vocabulaire Problème: Il s'agit à partir de l'étude d'u ou plusieurs échatillos de predre des décisios cocerat l'esemble de la populatio. O est alors ameé à émettre des
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 patrick.devos@univ-lille2.fr Plan Données Générales : Définition des statistiques Principe de l
+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01
Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
Annexes du cours de l UE 4. PACES et APEMR
Annexes du cours de l UE 4 PACES et APEMR RAPPELS et TABLES STATISTIQUES Dérivées usuelles Domaine de définition Fonction Domaine de dérivabilité Dérivée Condition ou remarque Cas n = 1 de x n Cas n =
Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 5 - Corrigé
Statistiques appliquées (L3 d'économie) - Cours de Patrick Sevestre - TD 5 - Corrigé Marc Sangnier - marc.sangnier@ens-cachan.fr 6 janvier 2008 Exercice 1 Question 1 - Test bilatéral L'estimateur du loyer
PROPOSITIONS SUR LES ASPECTS TECHNIQUES DES ARMES A SOUS-MUNITIONS
GROUPE D EXPERTS GOUVERNEMENTAUX DES HAUTES PARTIES CONTRACTANTES À LA CONVENTION SUR L INTERDICTION OU LA LIMITATION DE L EMPLOI DE CERTAINES ARMES CLASSIQUES QUI PEUVENT ÊTRE CONSIDÉRÉES COMME PRODUISANT
Simulation d un système d assurance automobile
Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...
Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques
Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de
MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE
MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif
Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr
Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
Tests statistiques Notes de cours. V. Monbet
Tests statistiques Notes de cours V. Monbet L2 S1-2009 Table des matières 1 Introduction 4 1.1 Qu'est ce que la statistique?.............................. 4 1.2 Qu'est ce qu'un test statistique?............................
TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc
TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités
Probabilités. Chapitre 2 : Le modèle probabiliste - Indépendance d évènements. Julian Tugaut. 15 janvier 2015
Indépendance de deux évènements Chapitre 2 : Le modèle probabiliste - Indépendance d évènements 15 janvier 2015 Sommaire 1 Indépendance de deux évènements 2 Indépendance de deux évènements Approche intuitive
Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold
Analyse des données «Hamburgers» à l aide de SPSS (v2, janvier 2011) Auteur : André Berchtold Le site web «The Fast Food Explorer» (www.fatcalories.com) propose des données relatives à la composition des
SCI03 - Analyse de données expérimentales
SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?
Master 1 de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( 2014/2015) -
Dominique Ferrieux - Université Paul Valéry - Montpellier III Master de Psychologie du Travail et des Organisations : Recueil et analyse des données - Corrigés des T.D. ( /) - Deuxième partie : Plans :
Savoir Faire Excel Niveau 2. 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr
Savoir Faire Excel Niveau 2 5 novembre 2007 Naomi Yamaguchi naomi.yamaguchi@univ-paris3.fr Ce qu on sait faire Entrer et recopier des données numériques Les fonctions de base (somme, moyenne, nb, si) Faire
Analyse de la variance
M2 Statistiques et Econométrie Fanny MEYER Morgane CADRAN Margaux GAILLARD Plan du cours I. Introduction II. Analyse de la variance à un facteur III. Analyse de la variance à deux facteurs IV. Analyse
I - Introduction à La psychologie Expérimentale
LA METHODE EXPERIMENTALE I - Introduction à La psychologie Expérimentale I.1. Introduction I.2. Critiques concernant l utilisation de la méthode expérimentale en psychologie I.2.A. Critiques morales I.2.A.
Statistique n 1 Susanna Davoust
CORRECTION de la Conférence du 28 Septembre 2010 Statistique n 1 Susanna Davoust Question de Statistiques Section I : -16. Statistique descriptive : estimation des paramètres d une population, intervalle
Lignes de conduite pour le diagnostic présymptomatique de la Chorée de Huntington par l'analyse d'adn.
Lignes de conduite pour le diagnostic présymptomatique de la Chorée de Huntington par l'analyse d'adn. 1. Il faut donner une information appropriée et actualisée à toute personne qui souhaite un DIAGNOSTIC
Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen
Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................