17/07/2013. Décisionnel dans le Nuage. Laboratoire ERIC. Section 1. Équipe d Accueil Décisionnel dans le Nuage.

Dimension: px
Commencer à balayer dès la page:

Download "17/07/2013. Décisionnel dans le Nuage. Laboratoire ERIC. Section 1. Équipe d Accueil 3083. Décisionnel dans le Nuage."

Transcription

1 Master 2 FDGC-ECD Année Laboratoire ERIC Équipe d Accueil 3083 et Jérôme Darmont eric.univ-lyon2.fr/~jdarmont/ Section Décisionnel dans le Nuage 2 Le meilleur des mondes Du décisionnel à papa datawarehousing0.wikispaces.com propriétaires Utilisateurs bien identifiés cloudcomputingadvices.com Stockage «in house» Dimensionnement a priori investissement initial important 3 4 à la Cloud BI! Vers le décisionnel à la demande propriétaires situationnelles ETL Entrepôt dans le nuage Analyses [collaboratives] [Production collaborative] danbrint.wordpress.com Élasticité et paiement à la demande investissement graduel 5 6

2 7/07/203 Nouvelles données nouveaux usages Scénario écolo Association qui surveille les activités de pêche Self-service BI complexes ouvertes Personal BI Crowd sourcing Règlements Statistiques Géolocalisation Observations de terrain Masses de données situationnelles Cloud intelligence 7 Nouveaux problèmes! 8 Déjà de quoi jouer! Conception - Analyse Confidentialité Centrée utilisateur Disponibilité Fusion tables Bottom up Stockage Elasticité des sources Nuage Technologie Modèle économique Accepter une perte de contrôle 9 0 Architecture des services Pour voir plus loin A. Abello J. Darmont L. Etcheverry M. Golfarelli J.N. Mazon F. Naumann T.B. Pedersen S. Rizzi J. Trujillo P. Vassiliadis G. Vossen "Fusion Cubes: Towards Self- Business Intelligence" International Journal of Data Warehousing and Mining Vol. 9 No Schéma extensible Instances extensibles Drill beyond (données situationnelles) Quasi temps réel 2 2

3 Architecture fonctionnelle Recherche par mots clés Contraintes de qualité Évaluation de la qualité Réécriture des requêtes Amélioration itérative de précision et rappel Partage et réutilisation des mappings Mise en valeur des éléments importants Filtrage en fonction de la qualité Requêtes Sources Mappings Cubes 3 Utilisateur non expert Problèmes ouverts Le décisionnel en poche Analyses à la demande Requêtage façon moteur de recherche Drill-beyond Quasi temps réel Collaboratif Technos Entrepôts de données / OLAP Web sémantique Gestion de documents Fouille de données Ingénierie sociale Modèle de données avancé algèbre de requêtes Equilibre entre partage et confidentialité des données Formalisation de l intelligence collaborative interfaces Modèle économique 4 Jusqu ici tout va bien Section 2 des dans le Nuage Collaboration avec V. Attasena N. Harbi et G. Gavin Transfert réseau Fournisseur d accès ED Transfert réseau 5 6 Plus dure sera la chute Solution Cloud computing Intruders Cloud service provider policies Characteristics of cloud architecture Inside-Intruders Outside-Intruders provider staffs & other customers Policies for Control & modification policies Virtual Virtual Grid taking benefit machine Established on network technology technology technology network Accidental plan Intentional plans s network electrical failure C Delete unmodify C2 C3 C4 C5 & unaccess Data loss & damage Data loss & damage Data alteration & damage Data alteration & damage data down Data transfer bottlenecks Data pilfering Data pilfering down Data availability Data integrity Data privacy Cloud security issues 7 8 3

4 KEYS DATA WAREHOUSE DATA WAREHOUSE KEYS 7/07/203 Comment faire? Partager pour mieux cacher Synchronous Asynchronous Semi-synchronous Adil Shamir "How to share a secret" Communications of the ACM 22() 979 -anonymization -diversity Homomorphic encryption (HE) Partially HE Data anonymization Fully HE Data replication Related works Data encryption Incremental encryption Data verification Secret sharing Secret sharing (SS) Multi-secret sharing (MSS) Inner code verifying Outer code verifying Verify secret sharing (VSS) Partage :tpoints polynôme f(x) de degré t- Secret = terme constant Chaque donnée x i est transformée en npartages f(x i ) Reconstruction : interpolation de Lagrange Un seul polynôme p(x) tel que degré(p(x)) < tet p(x i ) = f(x i ) Secret = p(0) A Data Availability I Data Integrity P Data Privacy A Data Analysis t = Repartons dans les nuages Notre procédé de Multi-Secret Sharing ED Fournisseur... Sharing process Utilisateur ED ED 2 Fournisseur 2 MSSS Provider MSSS Volume de données ED n Fournisseur n Provider Provider 2 Provider Provider 2 Provider 2 Transfer _ 2 22 Notre procédé de Multi-Secret Sharing Partageons une base de données Reconstructing process 336 Mo/s t = 3... Original data id name salary sex 24 Bob 2450 M Encrypted data at id name salary sex 24 (72)()() (50) (6) 25 (44)(00)(50)(33) (72) (44) Provider MSSS Provider 2 2 Provider Transfer Provider Verify encrypted data _ MSSS Provider Requêtes A 25 Anna 3000 F select avg(salary) from customer At : select avg(salary) from customer select id salary from customer where sex = M At : select id salary from customer where sex = 6 Encrypted data at id name salary sex 24 (50)(6)(50) () (33) 25 (83)(22)()(44) (00) (83) Encrypted data at id name salary sex 24 (72)()() (50) (6) 25 (44)(00)(50)(33) (72) (44)

5 Confidentialité? Probabilité de casser le secret en dérobant x partages : P! "#$ Disponibilité A et intégrité I? Disponibilité Par construction jusqu à n t fournisseurs peuvent être défaillants Intégrité : signatures (fonctions de hachage) Fiabilité des fournisseurs Intégrité des données partagées Volume de données : % & % '()*+ - %.2 Complexité de décryptage par force brute :! "#$ (environ 2 semaines pour un entier sur un PC standard avec t= 3) Et ensuite? Partage des données Risque de perte ou de vol des données Section 3 de l Accès aux stockées dans le Nuage OLAP partagées Collaboration avec B. Bachelet S. Bimonte et L. d Orazio Payer plus pour gagner plus de perfs Soyons terre à terre! L infonuagique d un point de vue économique Fournisseur d accès ED Index Caches Vues matérialisées Partitionnement Élasticité Paiement à la demande Coût global = Coût transfert + Coût calcul + Coût stockage

6 Sélection de vues à matérialiser Problématique et contributions Optimisation multicritère Modèles de tarification flexibles Modèles de coût pour la matérialisation des vues Modèle détaillé du processus d optimisation D: Ensemble de données Q: Charge de requêtes A: Réponse aux requêtes Coût de transfert 0 " %2 30 " % 40 " 2 ascendant 50 " 627 descendant Volume EC2 Coût 0 Go Go 0 Go 0 To 02 $ / Go 0 To 40 To 009 $ / Go 3 32 Coût de calcul Coût de stockage S3 > A > Temps de :: ; 90 <.= < 7 ;$ <$ Coût de location Q = {Q i } / i=..n Q : Charge de requêtes IC = {IC j } / j=..n IC : Configuration d instances de calcul Volume Coût 0 To To 040 $ / Go To 450 To 025 $ / Go > D Coût de stockage Durée de stockage 0 ' % 3 := ' B % C.6% C 7 C$ Taille des données D = {D k } / k=..n D : stockées par périodes de temps Coût de calcul avec vues matérialisées Coût de stockage avec VM Temps de traitement 0 8 E90 3F6E7.= G 7. HI Coût de location Coût de stockage Durée de stockage 0 ' %E 3= ' 6B % 4B6E77. F E 3 F J*K8 E 4F L)" E 4F L);>" E Taille des données Exécution requêtes Matérialisation Maintenance Q: Charge de requêtes V: Ensemble de vues matérialisées IC: Configuration d instances de calcul D: Ensemble de données V: Ensemble de vues matérialisées

7 Processus d optimisation Problèmes d optimisation Sélection de vues (algorithme existant) Trouver un ensemble de vues matérialisées V V cand V all Programme linéaire MV Minimiser T proc Contrainte : C C max MV2 Minimiser C Contrainte : T proc T max V cand V MV3 Minimiser α T proc + ( -α) C Environnement expérimental Paramètres Star Schema Benchmark : 55 Go 4 séries de requêtes Période d expérimentation : -24 [2] (mois) VM VM2 VM3 VM20 P P2 P2 2 Go RAM 8 Go disque Hadoop Pig 0.9. Quadri-pros 800 MGhz 96 Go RAM Nombre de nœuds :5-20 [0] Fréquence de la charge :-5 [4] (par semaine) Résultats expérimentaux Bilan et perspectives Gain de performance :0 % Nouveaux modèles de coût (facturation dans le nuage) Processus d optimisation multicritère Matérialisation de vues toujours avantageuse Enrichissement des modèles de coût Extension à d autres modèles de tarification Intégration des phases de sélection de vues et d optimisation Exploitation d autres techniques d optimisation Gain de coût :30 % Objectifs d optimisation non contradictoires Expériences à plus grande échelle Algorithmes d optimisation plus performants

8 Pour aller plus haut! Cloud Intelligence Workshop eric.univ-lyon2.fr/cloud-i/ Journée eric.univ-lyon2.fr/~jdn/ Cloud Computing Research Group liris.cnrs.fr/cloud/wiki Projet IA REQUEST «BigData BigAnalytics» 43 8

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Sécurisation du stockage de données sur le Cloud Michel Kheirallah

Sécurisation du stockage de données sur le Cloud Michel Kheirallah Sécurisation du stockage de données sur le Cloud Michel Kheirallah Introduction I Présentation du Cloud II Menaces III Exigences de sécurité IV Techniques de sécurisation 2 26/02/2015 Présentation du Cloud

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

Atelier aide à la Décision à tous les Etages (AIDE)

Atelier aide à la Décision à tous les Etages (AIDE) Atelier aide à la Décision à tous les Etages (AIDE) Organisateurs : Frédéric AMBLARD (IRIT - Université Toulouse I Capitole), Cécile FAVRE (ERIC - Université Lumière Lyon 2), Franck RAVAT (IRIT - Université

Plus en détail

arxiv:0707.1304v1 [cs.db] 9 Jul 2007

arxiv:0707.1304v1 [cs.db] 9 Jul 2007 Hadj Mahboubi, Kamel Aouiche, Jérôme Darmont ERIC, Université Lumière Lyon 2 5 avenue Pierre Mendès-France 69676 Bron Cedex { hmahboubi kaouiche jdarmont}@eric.univ-lyon2.fr arxiv:0707.1304v1 [cs.db] 9

Plus en détail

Performances. Gestion des serveurs (2/2) Clustering. Grid Computing

Performances. Gestion des serveurs (2/2) Clustering. Grid Computing Présentation d Oracle 10g Chapitre VII Présentation d ORACLE 10g 7.1 Nouvelles fonctionnalités 7.2 Architecture d Oracle 10g 7.3 Outils annexes 7.4 Conclusions 7.1 Nouvelles fonctionnalités Gestion des

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be

Groupe de Discussion Big Data Aperçu des technologies et applications. Stéphane MOUTON stephane.mouton@cetic.be Groupe de Discussion Big Data Aperçu des technologies et applications Stéphane MOUTON stephane.mouton@cetic.be Recherche appliquée et transfert technologique q Agréé «Centre Collectif de Recherche» par

Plus en détail

Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri

Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri Gaëtan LAVENU Plan de la présentation Evolution des architectures SIG Qu'est ce que le Cloud Computing? ArcGIS et

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Les entrepôts de données pour les nuls... ou pas! Cécile Favre, Fadila Bentayeb, Omar Boussaid, Jérôme Darmont, Gérald Gavin, Nouria Harbi, Nadia Kabachi, Sabine Loudcher Université de Lyon ERIC - Lyon

Plus en détail

La tête dans les nuages

La tête dans les nuages 19 novembre 2010 La tête dans les nuages Démystifier le "Cloud Computing" Jean Bernard, Directeur, Gestion des services Radialpoint SafeCare Inc. Au sujet de Radialpoint Radialpoint offre des solutions

Plus en détail

Plan de cours ADM 992C Page 1. École des sciences de la gestion Département de management et technologie Université du Québec à Montréal

Plan de cours ADM 992C Page 1. École des sciences de la gestion Département de management et technologie Université du Québec à Montréal Plan de cours ADM 992C Page 1 École des sciences de la gestion Département de management et technologie Université du Québec à Montréal ADM-992C LES TECHNOLOGIES D'AIDE À LA PRISE DE DÉCISION DANS LES

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Architectures informatiques dans les nuages

Architectures informatiques dans les nuages Architectures informatiques dans les nuages Cloud Computing : ressources informatiques «as a service» François Goldgewicht Consultant, directeur technique CCT CNES 18 mars 2010 Avant-propos Le Cloud Computing,

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Thèse présentée par Cécile FAVRE pour obtenir le titre de Docteur en Informatique

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

A N N E X E S A P P E N D I C E S

A N N E X E S A P P E N D I C E S OBLIGATIONS ALIMENTAIRES MAINTENANCE OBLIGATIONS Doc. prél. No 9 - annexes Prel. Doc. No 9 - appendices Juin / June 2004 A N N E X E S TRANSFERT DE FONDS ET UTILISATION DES TECHNOLOGIES DE L INFORMATION

Plus en détail

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data.

Les participants repartiront de cette formation en ayant une vision claire de la stratégie et de l éventuelle mise en œuvre d un Big Data. Big Data De la stratégie à la mise en oeuvre Description : La formation a pour objet de brosser sans concession le tableau du Big Data. Les participants repartiront de cette formation en ayant une vision

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 2013/2014 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

SpagoBI: la seule suite décisionnelle 100% open source, complète et flexible www.spagobi.org

SpagoBI: la seule suite décisionnelle 100% open source, complète et flexible www.spagobi.org SpagoBI: la seule suite décisionnelle 100% open source, complète et flexible www.spagobi.org Pourquoi choisir SpagoBI? Une suite décisionnelle open source complète : Une gamme complète de fonctionnalités,

Plus en détail

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France Sommaire Cloud Computing Retours sur quelques notions Quelques chiffres Offre e need e need Services e need Store

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

Anticiper et prédire les sinistres avec une approche Big Data

Anticiper et prédire les sinistres avec une approche Big Data Anticiper et prédire les sinistres avec une approche Big Data Julien Cabot Directeur Big Data Analytics OCTO jcabot@octo.com @julien_cabot OCTO 2013 50, avenue des Champs-Elysées 75008 Paris - FRANCE Tél

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

Entreposage de données complexes pour la médecine d anticipation personnalisée

Entreposage de données complexes pour la médecine d anticipation personnalisée Manuscrit auteur, publié dans "9th International Conference on System Science in Health Care (ICSSHC 08), Lyon : France (2008)" Entreposage de données complexes pour la médecine d anticipation personnalisée

Plus en détail

Datawarehouse and OLAP

Datawarehouse and OLAP Datawarehouse and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today architecture ETL refreshing warehousing projects architecture architecture

Plus en détail

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique

Big data et données géospatiales : Enjeux et défis pour la géomatique. Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Big data et données géospatiales : Enjeux et défis pour la géomatique Thierry Badard, PhD, ing. jr Centre de Recherche en Géomatique Événement 25e anniversaire du CRG Université Laval, Qc, Canada 08 mai

Plus en détail

Architectures d'intégration de données

Architectures d'intégration de données Architectures d'intégration de données Dan VODISLAV Université de Cergy-ontoise Master Informatique M1 Cours IED lan Intégration de données Objectifs, principes, caractéristiques Architectures type d'intégration

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE

LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE LES APPROCHES CONCRÈTES POUR LE DÉPLOIEMENT D INFRASTRUCTURES CLOUD AVEC HDS & VMWARE Sylvain SIOU VMware Laurent DELAISSE Hitachi Data Systems 1 Hitachi Data Systems Corporation 2012. All Rights Reserved

Plus en détail

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES

FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES 1 FINI LA RÉCRÉ PASSONS AUX MÉGADONNÉES «Dans le concret, projets de transformation vers le BigData» V1-10/03/15 ABED AJRAOU CONNAISSEZ-VOUS PAGESJAUNES? CONNAISSEZ-VOUS PAGESJAUNES? LES MEGADONNEES RÉPONDENT

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital

Plus en détail

Gestion des Clés Publiques (PKI)

Gestion des Clés Publiques (PKI) Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des

Plus en détail

BONJOURGRID : VERSION ORIENTÉE DONNÉE & MAPREDUCE SÉCURISÉ

BONJOURGRID : VERSION ORIENTÉE DONNÉE & MAPREDUCE SÉCURISÉ Laboratoire LaTICE Univ. de Tunis INRIA LYON Avalon Team Laboratoire d Informatique de Paris Nord (LIPN) BONJOURGRID : VERSION ORIENTÉE DONNÉE & MAPREDUCE SÉCURISÉ Heithem Abbes Heithem Abbes Rencontres

Plus en détail

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data

QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data QlikView et Google Big Query : Une réponse simple, rapide et peu coûteuse aux analyses Big Data Qui sommes-nous? Société de stratégie et de consulting IT spécialisée en ebusiness, Cloud Computing, Business

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Business Intelligence

Business Intelligence Pour aller plus loin Tous les détails de l offre Microsoft Business Intelligence : www.microsoft.com/france/decisionnel Contact Microsoft France : msfrance@microsoft.com Business Intelligence Votre Infrastructure

Plus en détail

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant

Organiser vos données - Big Data. Patrick Millart Senior Sales Consultant Organiser vos données - Big Data Patrick Millart Senior Sales Consultant The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

Plus en détail

Le Cloud Computing est-il l ennemi de la Sécurité?

Le Cloud Computing est-il l ennemi de la Sécurité? Le Cloud Computing est-il l ennemi de la Sécurité? Eric DOMAGE Program manager IDC WE Security products & Solutions Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. Quelques

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Recherche d information textuelle

Recherche d information textuelle Recherche d information textuelle Pré-traitements & indexation B. Piwowarski CNRS / LIP6 Université Paris 6 benjamin@bpiwowar.net http://www.bpiwowar.net Master IP - 2014-15 Cours et travaux pratiques

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Les technologies du Big Data

Les technologies du Big Data Les technologies du Big Data PRÉSENTÉ AU 40 E CONGRÈS DE L ASSOCIATION DES ÉCONOMISTES QUÉBÉCOIS PAR TOM LANDRY, CONSEILLER SENIOR LE 20 MAI 2015 WWW.CRIM.CA TECHNOLOGIES: DES DONNÉES JUSQU'À L UTILISATEUR

Plus en détail

Cloud Privé / Public / Hybrid. Romain QUINAT vente-privee.com

Cloud Privé / Public / Hybrid. Romain QUINAT vente-privee.com Cloud Privé / Public / Hybrid Romain QUINAT vente-privee.com Vente-privee.com Société Française implantée dans 8 pays : FR, DE, ES, IT, BE, AU, NL, UK (+US en joint-venture avec American Express) 1700

Plus en détail

Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS. Salon du Big Data 11 mars 2015

Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS. Salon du Big Data 11 mars 2015 Stephan Hadinger, Sr. Mgr Solutions Architecture, AWS Salon du Big Data 11 mars 2015 Accélération de l innovation +500 +280 Amazon EC2 Container Service +159 AWS Storage Gateway Amazon Elastic Transcoder

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE. Database as a Service (DBaaS)

FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE. Database as a Service (DBaaS) FOURNIR UN SERVICE DE BASE DE DONNÉES FLEXIBLE Database as a Service (DBaaS) 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may

Plus en détail

Labs Hadoop Février 2013

Labs Hadoop Février 2013 SOA - BRMS - ESB - BPM CEP BAM - High Performance Compute & Data Grid - Cloud Computing - Big Data NoSQL - Analytics Labs Hadoop Février 2013 Mathias Kluba Managing Consultant Responsable offres NoSQL

Plus en détail

GEIDE MSS /IGSS. The electronic document management system shared by the Luxembourg

GEIDE MSS /IGSS. The electronic document management system shared by the Luxembourg GEIDE MSS /IGSS The electronic document management system shared by the Luxembourg Social Security Ministry and IGSS Introduction: The administrative context IGSS missions Legal and international affairs

Plus en détail

Fiche Technique Windows Azure

Fiche Technique Windows Azure Le 25/03/2013 OBJECTIF VIRTUALISATION mathieuc@exakis.com EXAKIS NANTES Identification du document Titre Projet Date de création Date de modification Fiche Technique Objectif 25/03/2013 27/03/2013 Windows

Plus en détail

Modalité de contrôle des connaissances Master 2 Informatique : spécialité IFI

Modalité de contrôle des connaissances Master 2 Informatique : spécialité IFI Modalité de contrôle des connaissances Master Informatique : spécialité IFI La deuxième année de la spécialité IFI est constituée de plusieurs parcours identifiés, chacun sous la responsabilité d un enseignant-

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

SQL Server 2012 et SQL Server 2014

SQL Server 2012 et SQL Server 2014 SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation

Plus en détail

Qualité et ERP CLOUD & SECURITY (HACKING) Alireza MOKHTARI. 9/12/2014 Cloud & Security

Qualité et ERP CLOUD & SECURITY (HACKING) Alireza MOKHTARI. 9/12/2014 Cloud & Security Qualité et ERP CLOUD & SECURITY (HACKING) Alireza MOKHTARI 9/12/2014 Cloud & Security Sommaire Rappel court de Cloud Pour quoi cette sujet est important? Données sensibles dans le Cloud Les risques Top

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft

Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft Microsoft et le Cloud Computing Quelle approche? Le Cloud, un accélérateur de la transformation Un modèle

Plus en détail

Entrez dans l ère du Numérique Très Haut Débit

Entrez dans l ère du Numérique Très Haut Débit MIPE Juin 2012 - Nantes http://www.network-th.fr - 0811 560 947 1. Le Très Haut Débit sur Fibre Optique au prix d une SDSL : Mythe ou Réalité? 2. Sauvegarder, Sécuriser, Protéger, Superviser : Délégueznous

Plus en détail

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13

L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com. Tuesday, July 2, 13 L écosystème Hadoop Nicolas Thiébaud ni.thiebaud@gmail.com HUG France 250 membres sur la mailing liste 30 présentations 9 meetups organisés, de 20 à 100 invités Présence de Cloudera, MapR, Hortonworks,

Plus en détail

Cartographie des solutions BigData

Cartographie des solutions BigData Cartographie des solutions BigData Panorama du marché et prospective 1 1 Solutions BigData Défi(s) pour les fournisseurs Quel marché Architectures Acteurs commerciaux Solutions alternatives 2 2 Quels Défis?

Plus en détail

BI2 : Un profil UML pour les Indicateurs Décisionnels

BI2 : Un profil UML pour les Indicateurs Décisionnels BI2 : Un profil UML pour les Indicateurs Décisionnels Sandro Bimonte Irstea, TSCF, 9 Av. Blaise Pascal, 63178, Aubière, France sandro.bimonte@irstea.fr Thème de Recherche MOTIVE www.irstea.fr 2 Plan Motivations

Plus en détail

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca

Une brève introduction aux Données Massives - Challenges et perspectives. Romain Picot-Clémente Cécile Bothorel Philippe Lenca Une brève introduction aux Données Massives - Challenges et perspectives Romain Picot-Clémente Cécile Bothorel Philippe Lenca Plan 1 Big Data 2 4Vs 3 Hadoop et son écosystème 4 Nouveaux challenges, nouvelles

Plus en détail

SÉMINAIRES RÉGIONAUX 2012

SÉMINAIRES RÉGIONAUX 2012 SÉMINAIRES RÉGIONAUX 2012 SÉMINAIRES RÉGIONAUX 2012 1 Le PI System à l heure de la mobilité et de l infonuagique. Présenté par : Laurent Garrigues Directeur de produits [mɔbilite] nom féminin 1. Capacité

Plus en détail

Business Intelligence

Business Intelligence avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................

Plus en détail

Sauvegarde EMC pour solutions SAP HANA prêtes pour le datacenter. EMC Data Domain avec DD Boost

Sauvegarde EMC pour solutions SAP HANA prêtes pour le datacenter. EMC Data Domain avec DD Boost EMC pour solutions SAP HANA prêtes pour le datacenter EMC Data Domain avec DD Boost 1 Informations d entreprise Big Data Informations provenant des partenaires Informations «publiques» Informations structurées

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste Christian Soutou Avec la participation d Olivier Teste SQL pour Oracle 4 e édition Groupe eyrolles, 2004, 2005, 2008, 2010, is BN : 978-2-212-12794-2 Partie III SQL avancé La table suivante organisée en

Plus en détail

EMC Forum 2014. EMC ViPR et ECS : présentation des services software-defined

EMC Forum 2014. EMC ViPR et ECS : présentation des services software-defined EMC Forum 2014 EMC ViPR et ECS : présentation des services software-defined 1 2 3 4 5 Software is Eating the World Marc Andreessen co-fondateur de Netscape Les entreprises qui utilisent efficacement le

Plus en détail

Algorithmique et systèmes répartis

Algorithmique et systèmes répartis Algorithmique et systèmes répartis Tendances et avenir Gérard Padiou Département Informatique et Mathématiques appliquées ENSEEIHT 30 novembre 2012 Gérard Padiou Algorithmique et systèmes répartis 1 /

Plus en détail

SQL Server 2008 R2 Best practices. Copyright WaveSoft [2013] n Azur 0810 001 274

SQL Server 2008 R2 Best practices. Copyright WaveSoft [2013] n Azur 0810 001 274 SQL Server 2008 R2 Best practices Copyright WaveSoft [2013] n Azur 0810 001 274 PLAN - Les éditions de SQL Server 2008 - Installation de SQL Server - Gestion de la mémoire et des processeurs - Les plans

Plus en détail

GPC Computer Science

GPC Computer Science CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE lalevee@emse.fr @p_lalevee A3.01 0442616715 C YUGMA yugma@emse.fr A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site

Plus en détail

OFFRE DE FORMATION L.M.D.

OFFRE DE FORMATION L.M.D. REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE OFFRE DE FORMATION L.M.D. MASTER PROFESSIONNEL ET ACADEMIQUE Systèmes d Information

Plus en détail

Virtualisation & Sécurité

Virtualisation & Sécurité Virtualisation & Sécurité Comment aborder la sécurité d une architecture virtualisée? Quels sont les principaux risques liés à la virtualisation? Peut-on réutiliser l expérience du monde physique? Quelles

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

SemWeb : Interrogation sémantique du web avec XQuery. Les membres du projet SemWeb

SemWeb : Interrogation sémantique du web avec XQuery. Les membres du projet SemWeb SemWeb : Interrogation sémantique du web avec XQuery Les membres du projet SemWeb Contexte et objectifs Le projet SemWeb s inscrit dans les efforts de recherche et de développement actuels pour construire

Plus en détail

Christophe Dubos Architecte Infrastructure et Datacenter Microsoft France chrisdu@microsoft.com

Christophe Dubos Architecte Infrastructure et Datacenter Microsoft France chrisdu@microsoft.com Christophe Dubos Architecte Infrastructure et Datacenter Microsoft France chrisdu@microsoft.com Microsoft et le Cloud Computing Quelle approche? Voyage au Cœur du Cloud Microsoft Self Service Client Délégation

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Cassandra et Spark pour gérer la musique On-line

Cassandra et Spark pour gérer la musique On-line Cassandra et Spark pour gérer la musique On-line 16 Juin 2015 @ Paris Hammed RAMDANI Architecte SI 3.0 et BigData mramdani@palo-it.com +33 6 80 22 20 70 Appelez-moi Hammed ;-) (Sidi Mo)Hammed Ramdani @smramdani

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

L Information en Temp Réel

L Information en Temp Réel L Information en Temp Réel Christophe Toulemonde Program Director Integration & Development Strategies christophe.toulemonde @metagroup.com Europe 2004 : Environnement économique Importance du pilotage

Plus en détail