17/07/2013. Décisionnel dans le Nuage. Laboratoire ERIC. Section 1. Équipe d Accueil Décisionnel dans le Nuage.

Dimension: px
Commencer à balayer dès la page:

Download "17/07/2013. Décisionnel dans le Nuage. Laboratoire ERIC. Section 1. Équipe d Accueil 3083. Décisionnel dans le Nuage."

Transcription

1 Master 2 FDGC-ECD Année Laboratoire ERIC Équipe d Accueil 3083 et Jérôme Darmont eric.univ-lyon2.fr/~jdarmont/ Section Décisionnel dans le Nuage 2 Le meilleur des mondes Du décisionnel à papa datawarehousing0.wikispaces.com propriétaires Utilisateurs bien identifiés cloudcomputingadvices.com Stockage «in house» Dimensionnement a priori investissement initial important 3 4 à la Cloud BI! Vers le décisionnel à la demande propriétaires situationnelles ETL Entrepôt dans le nuage Analyses [collaboratives] [Production collaborative] danbrint.wordpress.com Élasticité et paiement à la demande investissement graduel 5 6

2 7/07/203 Nouvelles données nouveaux usages Scénario écolo Association qui surveille les activités de pêche Self-service BI complexes ouvertes Personal BI Crowd sourcing Règlements Statistiques Géolocalisation Observations de terrain Masses de données situationnelles Cloud intelligence 7 Nouveaux problèmes! 8 Déjà de quoi jouer! Conception - Analyse Confidentialité Centrée utilisateur Disponibilité Fusion tables Bottom up Stockage Elasticité des sources Nuage Technologie Modèle économique Accepter une perte de contrôle 9 0 Architecture des services Pour voir plus loin A. Abello J. Darmont L. Etcheverry M. Golfarelli J.N. Mazon F. Naumann T.B. Pedersen S. Rizzi J. Trujillo P. Vassiliadis G. Vossen "Fusion Cubes: Towards Self- Business Intelligence" International Journal of Data Warehousing and Mining Vol. 9 No Schéma extensible Instances extensibles Drill beyond (données situationnelles) Quasi temps réel 2 2

3 Architecture fonctionnelle Recherche par mots clés Contraintes de qualité Évaluation de la qualité Réécriture des requêtes Amélioration itérative de précision et rappel Partage et réutilisation des mappings Mise en valeur des éléments importants Filtrage en fonction de la qualité Requêtes Sources Mappings Cubes 3 Utilisateur non expert Problèmes ouverts Le décisionnel en poche Analyses à la demande Requêtage façon moteur de recherche Drill-beyond Quasi temps réel Collaboratif Technos Entrepôts de données / OLAP Web sémantique Gestion de documents Fouille de données Ingénierie sociale Modèle de données avancé algèbre de requêtes Equilibre entre partage et confidentialité des données Formalisation de l intelligence collaborative interfaces Modèle économique 4 Jusqu ici tout va bien Section 2 des dans le Nuage Collaboration avec V. Attasena N. Harbi et G. Gavin Transfert réseau Fournisseur d accès ED Transfert réseau 5 6 Plus dure sera la chute Solution Cloud computing Intruders Cloud service provider policies Characteristics of cloud architecture Inside-Intruders Outside-Intruders provider staffs & other customers Policies for Control & modification policies Virtual Virtual Grid taking benefit machine Established on network technology technology technology network Accidental plan Intentional plans s network electrical failure C Delete unmodify C2 C3 C4 C5 & unaccess Data loss & damage Data loss & damage Data alteration & damage Data alteration & damage data down Data transfer bottlenecks Data pilfering Data pilfering down Data availability Data integrity Data privacy Cloud security issues 7 8 3

4 KEYS DATA WAREHOUSE DATA WAREHOUSE KEYS 7/07/203 Comment faire? Partager pour mieux cacher Synchronous Asynchronous Semi-synchronous Adil Shamir "How to share a secret" Communications of the ACM 22() 979 -anonymization -diversity Homomorphic encryption (HE) Partially HE Data anonymization Fully HE Data replication Related works Data encryption Incremental encryption Data verification Secret sharing Secret sharing (SS) Multi-secret sharing (MSS) Inner code verifying Outer code verifying Verify secret sharing (VSS) Partage :tpoints polynôme f(x) de degré t- Secret = terme constant Chaque donnée x i est transformée en npartages f(x i ) Reconstruction : interpolation de Lagrange Un seul polynôme p(x) tel que degré(p(x)) < tet p(x i ) = f(x i ) Secret = p(0) A Data Availability I Data Integrity P Data Privacy A Data Analysis t = Repartons dans les nuages Notre procédé de Multi-Secret Sharing ED Fournisseur... Sharing process Utilisateur ED ED 2 Fournisseur 2 MSSS Provider MSSS Volume de données ED n Fournisseur n Provider Provider 2 Provider Provider 2 Provider 2 Transfer _ 2 22 Notre procédé de Multi-Secret Sharing Partageons une base de données Reconstructing process 336 Mo/s t = 3... Original data id name salary sex 24 Bob 2450 M Encrypted data at id name salary sex 24 (72)()() (50) (6) 25 (44)(00)(50)(33) (72) (44) Provider MSSS Provider 2 2 Provider Transfer Provider Verify encrypted data _ MSSS Provider Requêtes A 25 Anna 3000 F select avg(salary) from customer At : select avg(salary) from customer select id salary from customer where sex = M At : select id salary from customer where sex = 6 Encrypted data at id name salary sex 24 (50)(6)(50) () (33) 25 (83)(22)()(44) (00) (83) Encrypted data at id name salary sex 24 (72)()() (50) (6) 25 (44)(00)(50)(33) (72) (44)

5 Confidentialité? Probabilité de casser le secret en dérobant x partages : P! "#$ Disponibilité A et intégrité I? Disponibilité Par construction jusqu à n t fournisseurs peuvent être défaillants Intégrité : signatures (fonctions de hachage) Fiabilité des fournisseurs Intégrité des données partagées Volume de données : % & % '()*+ - %.2 Complexité de décryptage par force brute :! "#$ (environ 2 semaines pour un entier sur un PC standard avec t= 3) Et ensuite? Partage des données Risque de perte ou de vol des données Section 3 de l Accès aux stockées dans le Nuage OLAP partagées Collaboration avec B. Bachelet S. Bimonte et L. d Orazio Payer plus pour gagner plus de perfs Soyons terre à terre! L infonuagique d un point de vue économique Fournisseur d accès ED Index Caches Vues matérialisées Partitionnement Élasticité Paiement à la demande Coût global = Coût transfert + Coût calcul + Coût stockage

6 Sélection de vues à matérialiser Problématique et contributions Optimisation multicritère Modèles de tarification flexibles Modèles de coût pour la matérialisation des vues Modèle détaillé du processus d optimisation D: Ensemble de données Q: Charge de requêtes A: Réponse aux requêtes Coût de transfert 0 " %2 30 " % 40 " 2 ascendant 50 " 627 descendant Volume EC2 Coût 0 Go Go 0 Go 0 To 02 $ / Go 0 To 40 To 009 $ / Go 3 32 Coût de calcul Coût de stockage S3 > A > Temps de :: ; 90 <.= < 7 ;$ <$ Coût de location Q = {Q i } / i=..n Q : Charge de requêtes IC = {IC j } / j=..n IC : Configuration d instances de calcul Volume Coût 0 To To 040 $ / Go To 450 To 025 $ / Go > D Coût de stockage Durée de stockage 0 ' % 3 := ' B % C.6% C 7 C$ Taille des données D = {D k } / k=..n D : stockées par périodes de temps Coût de calcul avec vues matérialisées Coût de stockage avec VM Temps de traitement 0 8 E90 3F6E7.= G 7. HI Coût de location Coût de stockage Durée de stockage 0 ' %E 3= ' 6B % 4B6E77. F E 3 F J*K8 E 4F L)" E 4F L);>" E Taille des données Exécution requêtes Matérialisation Maintenance Q: Charge de requêtes V: Ensemble de vues matérialisées IC: Configuration d instances de calcul D: Ensemble de données V: Ensemble de vues matérialisées

7 Processus d optimisation Problèmes d optimisation Sélection de vues (algorithme existant) Trouver un ensemble de vues matérialisées V V cand V all Programme linéaire MV Minimiser T proc Contrainte : C C max MV2 Minimiser C Contrainte : T proc T max V cand V MV3 Minimiser α T proc + ( -α) C Environnement expérimental Paramètres Star Schema Benchmark : 55 Go 4 séries de requêtes Période d expérimentation : -24 [2] (mois) VM VM2 VM3 VM20 P P2 P2 2 Go RAM 8 Go disque Hadoop Pig 0.9. Quadri-pros 800 MGhz 96 Go RAM Nombre de nœuds :5-20 [0] Fréquence de la charge :-5 [4] (par semaine) Résultats expérimentaux Bilan et perspectives Gain de performance :0 % Nouveaux modèles de coût (facturation dans le nuage) Processus d optimisation multicritère Matérialisation de vues toujours avantageuse Enrichissement des modèles de coût Extension à d autres modèles de tarification Intégration des phases de sélection de vues et d optimisation Exploitation d autres techniques d optimisation Gain de coût :30 % Objectifs d optimisation non contradictoires Expériences à plus grande échelle Algorithmes d optimisation plus performants

8 Pour aller plus haut! Cloud Intelligence Workshop eric.univ-lyon2.fr/cloud-i/ Journée eric.univ-lyon2.fr/~jdn/ Cloud Computing Research Group liris.cnrs.fr/cloud/wiki Projet IA REQUEST «BigData BigAnalytics» 43 8

EGC'2012 Fouille de Données Complexes

EGC'2012 Fouille de Données Complexes EGC'2012 Fouille de Données Complexes complexité liée aux données multiples et massives Kawthar Karkouda, Nouria Harbi, Jérôme Darmont Gérald Gavin Laboratoire Eric Université Lumière Lyon 2 nouria.harbi@univ-lyon2.fr

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Fouillez facilement dans votre système Big Data. Olivier TAVARD

Fouillez facilement dans votre système Big Data. Olivier TAVARD Fouillez facilement dans votre système Big Data Olivier TAVARD A propos de moi : Cofondateur de la société France Labs Développeur (principalement Java) Formateur en technologies de moteurs de recherche

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Cours No 8 - Entrepôt de données XML

Cours No 8 - Entrepôt de données XML B. Amann - Cours No 8 - Entrepôt de données XML 1 Slide 1 Cours No 8 - Entrepôt de données XML Système d information et Web Le Web Slide 2 applications ad hoc recherche manuelle navigation mises à jour

Plus en détail

Évolution de modèle dans les entrepôts de données : existant et perspectives

Évolution de modèle dans les entrepôts de données : existant et perspectives EDA'07 3èmes journées francophones sur les Entrepôts de Données et l'analyse en ligne Poitiers, 7 et 8 Juin 2007 Évolution de modèle dans les entrepôts de données : existant et perspectives Cécile Favre,

Plus en détail

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA

Masses de données. 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Masses de données 1. Introduction 2. Problématiques 3. Socle de formation (non présenté) 4. Liens avec Formation INSA Rédacteurs : Mjo Huguet / N. Jozefowiez 1. Introduction : Besoins Informations et Aide

Plus en détail

L ÉCHANGE DE DONNÉES TEMPS RÉEL

L ÉCHANGE DE DONNÉES TEMPS RÉEL Talented Together L ÉCHANGE DE DONNÉES TEMPS RÉEL Retours d expériences avec Talend Julien DULOUT Manager Sopra Consulting Expert des offres BI, MDM & BigData Ludovic MONNIER Architecte Sopra Expert EAI

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Système d administration autonome adaptable: application au Cloud

Système d administration autonome adaptable: application au Cloud Système d administration autonome adaptable: application au Cloud Alain TCHANA - atchana@enseeiht.fr IRIT/ENSEEIHT, Equipe SEPIA Directeur de thèse : Daniel HAGIMONT et Laurent BROTO Rapporteurs : Jean-Marc

Plus en détail

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Évolution de schémas dans les entrepôts de données mise à jour de hiérarchies de dimension pour la personnalisation des analyses Thèse présentée par Cécile FAVRE pour obtenir le titre de Docteur en Informatique

Plus en détail

Chapitre 2 : Conception de BD Réparties

Chapitre 2 : Conception de BD Réparties 2/22 Chapitre 2 : Conception de BD Réparties 2/22 Introduction Une BDR diffère d'une BD centralisée avec certains concepts nouveaux qui sont particuliers à la répartition des données.. Méthode de conception

Plus en détail

La tête dans les nuages

La tête dans les nuages 19 novembre 2010 La tête dans les nuages Démystifier le "Cloud Computing" Jean Bernard, Directeur, Gestion des services Radialpoint SafeCare Inc. Au sujet de Radialpoint Radialpoint offre des solutions

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

. Ce module offre la gamme de requête et d analyse la plus évoluée et la plus simple d utilisation du marché.

. Ce module offre la gamme de requête et d analyse la plus évoluée et la plus simple d utilisation du marché. La connaissance des facteurs-clés de réussite constitue un élément déterminant pour l amélioration des performances. Divalto intègre en standard, systématiquement Hyperion Intelligence. Ce module offre

Plus en détail

Les raisons du choix d un WMS en mode hébergé!

Les raisons du choix d un WMS en mode hébergé! Les raisons du choix d un WMS en mode hébergé! Tout le monde connait maintenant les avantages d une solution de gestion d entrepôt (WMS) : productivité accrue, accès en temps réel à l'information, précision

Plus en détail

Intégration d'applications d'entreprise (INTA)

Intégration d'applications d'entreprise (INTA) Master 2 SITW - Recherche Intégration d'applications d'entreprise (INTA) Dr. Djamel Benmerzoug Email : djamel.benmerzoug@univ-constantine2.dz Maitre de Conférences A Département TLSI Faculté des NTIC Université

Plus en détail

Modèles de Coût pour la Sélection de Vues Matérialisées dans le Nuage, Application aux Services Amazon EC2 et S3

Modèles de Coût pour la Sélection de Vues Matérialisées dans le Nuage, Application aux Services Amazon EC2 et S3 Modèles de Coût pour la Sélection de Vues Matérialisées dans le Nuage, Application aux Services Amazon EC2 et S3 Romain Perriot, Jérémy Pfeifer, Laurent d Orazio, Bruno Bachelet, Sandro Bimonte, Jérôme

Plus en détail

Data Mining, fouille de données: Concepts et techniques. Marius Fieschi Faculté de Médecine de Marseille

Data Mining, fouille de données: Concepts et techniques. Marius Fieschi Faculté de Médecine de Marseille Data Mining, fouille de données: Concepts et techniques Marius Fieschi Faculté de Médecine de Marseille Data Mining, fouille de données: Concepts et techniques Ce cours est très proche du cours diffusé

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Application de K-means à la définition du nombre de VM optimal dans un cloud

Application de K-means à la définition du nombre de VM optimal dans un cloud Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Sécurisation du stockage de données sur le Cloud Michel Kheirallah

Sécurisation du stockage de données sur le Cloud Michel Kheirallah Sécurisation du stockage de données sur le Cloud Michel Kheirallah Introduction I Présentation du Cloud II Menaces III Exigences de sécurité IV Techniques de sécurisation 2 26/02/2015 Présentation du Cloud

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et

Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et Organisation du parcours M2 IR Les unités d enseignements (UE) affichées dans la partie tronc commun sont toutes obligatoires, ainsi que le stage et l'anglais. L'étudiant a le choix entre deux filières

Plus en détail

A N N E X E S A P P E N D I C E S

A N N E X E S A P P E N D I C E S OBLIGATIONS ALIMENTAIRES MAINTENANCE OBLIGATIONS Doc. prél. No 9 - annexes Prel. Doc. No 9 - appendices Juin / June 2004 A N N E X E S TRANSFERT DE FONDS ET UTILISATION DES TECHNOLOGIES DE L INFORMATION

Plus en détail

Business Intelligence (BI) Stratégie de création d un outil BI

Business Intelligence (BI) Stratégie de création d un outil BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information indispensable, sous plusieurs

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

Découverte et investigation des menaces avancées INFRASTRUCTURE

Découverte et investigation des menaces avancées INFRASTRUCTURE Découverte et investigation des menaces avancées INFRASTRUCTURE AVANTAGES CLÉS Infrastructure RSA Security Analytics Collecte distribuée grâce à une architecture modulaire Solution basée sur les métadonnées

Plus en détail

Pilot4IT Monitoring : Mesurez la qualité et la performance perçue de vos applications.

Pilot4IT Monitoring : Mesurez la qualité et la performance perçue de vos applications. Pilot4IT Monitoring : Mesurez la qualité et la performance perçue de vos applications. La supervision est la «surveillance du bon fonctionnement d un système ou d une activité». Elle permet de surveiller,

Plus en détail

Entrez dans l ère du Numérique Très Haut Débit

Entrez dans l ère du Numérique Très Haut Débit MIPE Juin 2012 - Nantes http://www.network-th.fr - 0811 560 947 1. Le Très Haut Débit sur Fibre Optique au prix d une SDSL : Mythe ou Réalité? 2. Sauvegarder, Sécuriser, Protéger, Superviser : Délégueznous

Plus en détail

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA

DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA SI 2.0 DATA ANALYST UTILISER PIG, HIVE ET IMPALA AVEC HADOOP DE CLOUDERA REF : SICL001 DUREE : 4 JOURS TARIF : 2 695 HT Public Analystes de données, business analysts, développeurs et administrateurs.

Plus en détail

Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft

Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft Du Datacenter au Cloud Quels challenges? Quelles solutions? Christophe Dubos Architecte Microsoft Microsoft et le Cloud Computing Quelle approche? Le Cloud, un accélérateur de la transformation Un modèle

Plus en détail

SharePoint Server 2013 Déploiement et administration de la plate-forme

SharePoint Server 2013 Déploiement et administration de la plate-forme Présentation des technologies SharePoint 1. Historique des technologies SharePoint 13 1.1 SharePoint Team Services v1 14 1.2 SharePoint Portal Server 2001 14 1.3 Windows SharePoint Services v2 et Office

Plus en détail

Acteos Points de Vente Acteos PPS

Acteos Points de Vente Acteos PPS Acteos Points de Vente Acteos PPS Christian Zelle Directeur R&D, Acteos 06.05.2010 1 Agenda Motivation ACTEOS PPS La solution ACTEOS PPS ACTEOS PPS dans le contexte du «Flowcasting» 2 Motivation Les problématiques

Plus en détail

BONJOURGRID : VERSION ORIENTÉE DONNÉE & MAPREDUCE SÉCURISÉ

BONJOURGRID : VERSION ORIENTÉE DONNÉE & MAPREDUCE SÉCURISÉ Laboratoire LaTICE Univ. de Tunis INRIA LYON Avalon Team Laboratoire d Informatique de Paris Nord (LIPN) BONJOURGRID : VERSION ORIENTÉE DONNÉE & MAPREDUCE SÉCURISÉ Heithem Abbes Heithem Abbes Rencontres

Plus en détail

Présentation de la gamme des PGI/ERP modulaires Wavesoft

Présentation de la gamme des PGI/ERP modulaires Wavesoft Solutions ouvertes pour esprits ouverts Présentation de la gamme des PGI/ERP modulaires Wavesoft Sommaire WaveSoft en quelques chiffres Positionnement des Éditions (Gammes) Standard Professionnelle Entreprise

Plus en détail

BASES DE DONNÉES AVANCÉES

BASES DE DONNÉES AVANCÉES L3 Informatique Option : ISIL BASES DE DONNÉES AVANCÉES RAMDANI MED U-BOUIRA M. R A M D A N I @ U N I V - B O U I R A. D Z P E R S O. L I V E H O S T. F R Cours 5 : Evaluation et optimisation des requêtes

Plus en détail

4. Gestion des données urbaines dans les nuages informatiques

4. Gestion des données urbaines dans les nuages informatiques 4. Gestion des données urbaines dans les nuages informatiques Brève histoire des nuages informatiques Modèles de service et de déploiement Technologie clé : la virtualisation IaaS : les points de vue utilisateur

Plus en détail

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull

BI Haute performance. Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull BI Haute performance Jean-François Vannier Responsable Infrastructures Décisionnelles, Bull Bull aujourd'hui - La seule expertise 100% européenne des infrastructures et des applications critiques - Une

Plus en détail

Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri

Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri Séminaire Partenaires Esri France 7-8 juin 2011 - Paris Cloud Computing Stratégie Esri Gaëtan LAVENU Plan de la présentation Evolution des architectures SIG Qu'est ce que le Cloud Computing? ArcGIS et

Plus en détail

PoWA 3 Optimisations avancées de PostgreSQL Ronan Dunklau - Julien Rouhaud

PoWA 3 Optimisations avancées de PostgreSQL Ronan Dunklau - Julien Rouhaud PoWA 3 Optimisations avancées de PostgreSQL Ronan Dunklau - Julien Rouhaud Dalibo - www.dalibo.org 24 septembre 2015 - PostgreSQL Session #7 [ 1 / 43 ] License Create Commons BY-NC-SA Vous êtes libre de

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

Titre : La BI vue par l intégrateur Orange

Titre : La BI vue par l intégrateur Orange Titre : La BI vue par l intégrateur Orange Résumé : L entité Orange IT&L@bs, partenaire privilégié des entreprises et des collectivités dans la conception et l implémentation de SI Décisionnels innovants,

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

BIG DATA en Sciences et Industries de l Environnement

BIG DATA en Sciences et Industries de l Environnement BIG DATA en Sciences et Industries de l Environnement François Royer www.datasio.com 21 mars 2012 FR Big Data Congress, Paris 2012 1/23 Transport terrestre Traçabilité Océanographie Transport aérien Télémétrie

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Cloud Computing : Généralités & Concepts de base

Cloud Computing : Généralités & Concepts de base Cloud Computing : Généralités & Concepts de base Les 24èmes journées de l UR-SETIT 22 Février 2015 Cette oeuvre, création, site ou texte est sous licence Creative Commons Attribution - Pas d Utilisation

Plus en détail

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr

VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr VirtualScale L expert infrastructure de l environnement Open source HADOOP Sofiane Ammar sofiane.ammar@virtualscale.fr Avril 2014 Virtualscale 1 Sommaire Les enjeux du Big Data et d Hadoop Quels enjeux

Plus en détail

QU EST-CE QUE LE DECISIONNEL?

QU EST-CE QUE LE DECISIONNEL? La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce

Plus en détail

HADOOP ET SON ÉCOSYSTÈME

HADOOP ET SON ÉCOSYSTÈME HADOOP ET SON ÉCOSYSTÈME Mars 2013 2012 Affini-Tech - Diffusion restreinte 1 AFFINI-TECH Méthodes projets Outils de reporting & Data-visualisation Business & Analyses BigData Modélisation Hadoop Technos

Plus en détail

L Information en Temp Réel

L Information en Temp Réel L Information en Temp Réel Christophe Toulemonde Program Director Integration & Development Strategies christophe.toulemonde @metagroup.com Europe 2004 : Environnement économique Importance du pilotage

Plus en détail

Système d information : démystification, facteur de croissance et conduite du changement

Système d information : démystification, facteur de croissance et conduite du changement Système d information : démystification, facteur de croissance et conduite du changement Patrick CONVERTY Directeur Commercial www.cibeo-consulting.com Approche globale de la performance Stratégie Système

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Fiche Produit. Plateforme de sauvegarde en marque blanche Kiwi Business

Fiche Produit. Plateforme de sauvegarde en marque blanche Kiwi Business Révision d avril 2012 Fiche Produit Plateforme de sauvegarde en marque blanche Kiwi Business La solution Kiwi Business a été spécialement conçue pour répondre aux besoins les plus exigeants en termes de

Plus en détail

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html

Vous trouvez plus d information sur AREL. ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html ainsi que sur : http://www.eisti.fr/ mma/html-iad/iad.html Option Deux thèmes : La recherche opérationnelle : Traiter des problèmes d optimisation, d aide à la décision et d évaluation de performances

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

TP1_1 DE BUSINESS INTELLIGENCE ISIMA 3 ÈME ANNÉE ZZ3 F3

TP1_1 DE BUSINESS INTELLIGENCE ISIMA 3 ÈME ANNÉE ZZ3 F3 TP1_1 DE BUSINESS INTELLIGENCE ISIMA 3 ÈME ANNÉE ZZ3 F3 05/10/2015 Plan du TP 2 Présentation et but de ce TP (15 min) Présentation de Talend Open Studio et ateliers (2H) Présentation de BIRT et ateliers

Plus en détail

Perspectives pour l entreprise. Desktop Cloud. JC Devos IBM IT Architect jdevos@fr.ibm.com. 2010 IBM Corporation

Perspectives pour l entreprise. Desktop Cloud. JC Devos IBM IT Architect jdevos@fr.ibm.com. 2010 IBM Corporation Perspectives pour l entreprise Desktop Cloud JC Devos IBM IT Architect jdevos@fr.ibm.com Principe technique Disposer d un poste de travail virtuel accessible par la plupart des terminaux disponibles Ce

Plus en détail

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype

Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype Anne Tchounikine, Maryvonne Miquel, Usman Ahmed LIRIS CNRS UMR 5205, INSA-Université de Lyon, France 1 Motivations Motivé

Plus en détail

Présentation de l offre produit de Business Objects XI

Présentation de l offre produit de Business Objects XI Conseil National des Assurances Séminaire - Atelier L information au service de tous Le 09 Novembre 2005 Présentation de l offre produit de XI Amar AMROUCHE Consultant Avant Vente aamrouche@aacom-algerie.com

Plus en détail

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France

e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France e need L un des premiers intégrateurs opérateurs Cloud Computing indépendants en France Sommaire Cloud Computing Retours sur quelques notions Quelques chiffres Offre e need e need Services e need Store

Plus en détail

La solution pour gérer vos connaissances techniques et scientifiques

La solution pour gérer vos connaissances techniques et scientifiques La solution pour gérer vos connaissances techniques et scientifiques La solution pour gérer, sécuriser et réutiliser vos connaissances techniques et scientifiques TEEXMA est le premier outil collaboratif

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Londres 1854 Des problèmes (re)connus Faire plus avec moins Tendances et défis «BYOD» WIN INTUNE «Nouveaux paradigmes» «Big Data» «Cloud» Windows Server Gestion Sys. Center Identité & Virt CLOUD OS Microsoft

Plus en détail

Séminaire Cloud Computing

Séminaire Cloud Computing Séminaire Cloud Computing Stéphane Mouton SST Department manager Faculté Polytechnique / UMons Mons, 15/03/2016 Centre d Excellence en Technologies de l Information et de la Communication Plan Une définition?

Plus en détail

GPC Computer Science

GPC Computer Science CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE lalevee@emse.fr @p_lalevee A3.01 0442616715 C YUGMA yugma@emse.fr A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site

Plus en détail

Outils intelligents au service de l Ingénierie. Fbi Fabrice Bouget Jean Luc Hoffert TECHNIP

Outils intelligents au service de l Ingénierie. Fbi Fabrice Bouget Jean Luc Hoffert TECHNIP Outils intelligents au service de l Ingénierie Intégration et Développements Fbi Fabrice Bouget Jean Luc Hoffert TECHNIP 1 Introduction Offshore wind Offshore Onshore Subsea Présentation de développements

Plus en détail

Contact. entreprise. Appsfinity Gmbh Neuhofstrasse 3a CH 6340 Baar (ZG)

Contact. entreprise. Appsfinity Gmbh Neuhofstrasse 3a CH 6340 Baar (ZG) Contact entreprise. Appsfinity Gmbh Neuhofstrasse 3a CH 6340 Baar (ZG) Tel: +41 415 520 504 Email: sales@onlogis.com Visibilité et controle sur vos opérations, n importe où et à tout moment... Onlogis

Plus en détail

Intégration de données

Intégration de données Intégration de données Dan VODISLAV Université de Cergy-Pontoise Master Informatique M2 Plan Objectifs, principes, enjeux, applications Architectures d intégration de données Médiateurs et entrepôts Traitement

Plus en détail

AXIAD Conseil pour décider en toute intelligence

AXIAD Conseil pour décider en toute intelligence AXIAD Conseil pour décider en toute intelligence Gestion de la Performance, Business Intelligence, Big Data Domaine d expertise «Business Intelligence» Un accompagnement adapté à votre métier dans toutes

Plus en détail

Les services d externalisation des données et des services. Bruno PIQUERAS 24/02/2011

Les services d externalisation des données et des services. Bruno PIQUERAS 24/02/2011 Les services d externalisation des données et des services Bruno PIQUERAS 24/02/2011 1 1 Introduction Différents types d externalisation de données : Les données sauvegardées Les données bureautiques Les

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

Sécuristation du Cloud

Sécuristation du Cloud Schémas de recherche sur données chiffrées avancés Laboratoire de Cryptologie Thales Communications & Security 9 Avril 215 9/4/215 1 / 75 Contexte Introduction Contexte Objectif Applications Aujourd hui

Plus en détail

Marché Public en procédure adaptée : Infrastructure Informatique régionale hébergée CAHIER DES CHARGES ET DES CLAUSES TECHNIQUES

Marché Public en procédure adaptée : Infrastructure Informatique régionale hébergée CAHIER DES CHARGES ET DES CLAUSES TECHNIQUES GROUPEMENT DE COMMANDES CA54, CA55, CA57, CA88, CRAL Marché Public en procédure adaptée : Infrastructure Informatique régionale hébergée CAHIER DES CHARGES ET DES CLAUSES TECHNIQUES Etabli en application

Plus en détail

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1

Big Data. Cyril Amsellem Consultant avant-vente. 16 juin 2011. Talend 2010 1 Big Data Cyril Amsellem Consultant avant-vente 16 juin 2011 Talend 2010 1 Big Data Architecture globale Hadoop Les projets Hadoop (partie 1) Hadoop-Core : projet principal. HDFS : système de fichiers distribués

Plus en détail

Architecture et moyens de traitements : travaux et perspectives

Architecture et moyens de traitements : travaux et perspectives Masses de Données en Astronomie 10-11 avril 2006 Architecture et moyens de traitements : travaux et perspectives Journée Calculs Réunion et finale Données MDAdistribués Strasbourg André Schaaff 10 et 611

Plus en détail

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -"Big Data par l'exemple" -Julien DULOUT

20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013. 20 ans du SIAD -Big Data par l'exemple -Julien DULOUT 20 ans du Master SIAD de Toulouse - BigData par l exemple - Julien DULOUT - 22 mars 2013 20 ans du SIAD -"BigData par l'exemple" -Julien DULOUT Qui a déjà entendu parler du phénomène BigData? Qui a déjà

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD

WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD WD et le logo WD sont des marques déposées de Western Digital Technologies, Inc, aux États-Unis et dans d'autres pays ; absolutely WD Re, WD Se, WD Xe, RAFF et StableTrac sont des marques de Western Digital

Plus en détail

Clusters for Application Service Providers. T. Monteil, J.M. Garcia P. Pascal, S. Richard

Clusters for Application Service Providers. T. Monteil, J.M. Garcia P. Pascal, S. Richard Clusters for Application Service Providers (www.laas.fr/casp) T. Monteil, J.M. Garcia P. Pascal, S. Richard 1 Généralités Le monde du calcul dans un environnement ASP Les ASP : Application Service Provider

Plus en détail

Méthodologie de conceptualisation BI

Méthodologie de conceptualisation BI Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information

Plus en détail

Utilisation du cloud computing pour l infrastructure fédérale de données géographiques suisse : 4 années d expérience

Utilisation du cloud computing pour l infrastructure fédérale de données géographiques suisse : 4 années d expérience armasuisse Utilisation du cloud computing pour l infrastructure fédérale de données géographiques suisse : 4 années d expérience Les rencontres de SIG-la-lettre / 3 avril 2012 Hanspeter Christ et Alain

Plus en détail

ParAdmin: Un Outil d'assistance à l'administration et Tuning d'un Entrepôt de Données

ParAdmin: Un Outil d'assistance à l'administration et Tuning d'un Entrepôt de Données Laboratoire d Informatique Scientifique et Industrielle École Nationale Supérieure de Mécanique et d Aérotechnique, avenue Clément Ader - BP 49-8696 Futuroscope cedex - France ParAdmin: Un Outil d'assistance

Plus en détail

Cluster de stockage NAS sur SYRHANO. TutoJRES 14 / Stockage - 01/12/2010 Alain BIDAUD - CRIHAN

Cluster de stockage NAS sur SYRHANO. TutoJRES 14 / Stockage - 01/12/2010 Alain BIDAUD - CRIHAN Cluster de stockage NAS sur SYRHANO TutoJRES 14 / Stockage - 01/12/2010 Alain BIDAUD - CRIHAN Service de stockage SYRANO Plan Contexte utilisateur bref historique besoins exprimés Cluster de stockage ISILON

Plus en détail

Sauvegarde EMC pour solutions SAP HANA prêtes pour le datacenter. EMC Data Domain avec DD Boost

Sauvegarde EMC pour solutions SAP HANA prêtes pour le datacenter. EMC Data Domain avec DD Boost EMC pour solutions SAP HANA prêtes pour le datacenter EMC Data Domain avec DD Boost 1 Informations d entreprise Big Data Informations provenant des partenaires Informations «publiques» Informations structurées

Plus en détail

Unique centre Oracle university en Algérie. Catalogue de formation Oracle 2016. Catalogue des formations Oracle

Unique centre Oracle university en Algérie. Catalogue de formation Oracle 2016. Catalogue des formations Oracle Unique centre Oracle university en Algérie Catalogue de formation Oracle 2016 Catalogue des formations Oracle 2016 ITCOMP, PARTENAIRE PRIVILEGIE D ORACLE Forte de ses certifications accumulées au cours

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université

Plus en détail

Big Data par l exemple

Big Data par l exemple #PARTAGE Big Data par l exemple Alexandre Chauvin Hameau Directeur de la production Malakoff Médéric @achauvin CT BIG DATA 10/12/2015 Soyons pragmatiques BIG DATA beaucoup de bruit pour des choses finalement

Plus en détail