Les mesures sont effectuées à la même distance des trois machines. 1) Une seule machine est en fonctionnement, l intensité acoustique est alors :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les mesures sont effectuées à la même distance des trois machines. 1) Une seule machine est en fonctionnement, l intensité acoustique est alors :"

Transcription

1 EXERCICES SUR LES FONCTIONS LOGARITHMES Exercice 1 Partie A : Calcul du niveau sonore Afin d améliorer les conditions de travail dans un atelier, l entreprise réalise une étude concernant les nuisances sonores dues au fonctionnement de trois machines identiques. Les mesures sont effectuées à la même distance des trois machines. I Le niveau sonore L d un bruit est donné par la relation : L = 10 log où : log désigne le logarithme décimal ; L est exprimé en décibels (db) ; I intensité acoustique, est exprimée en watts par mètre carré (W/m²). 1) Une seule machine est en fonctionnement, l intensité acoustique est alors : I 4 = 2 10 W/m². a) Vérifier qu alors le niveau sonore pour cette machine peut s écrire : log 2. b) Calculer la valeur de L arrondie à 0,1 db. 2) Les trois machines sont en fonctionnement. Le niveau sonore de l ensemble des trois machines est alors 87,8 db. Calculer l intensité acoustique I de l ensemble, arrondie à 10-4 W/m². Partie B : Utilisation d une échelle logarithmique Partie B1 : Tracé sur une échelle logarithmique Le port d un casque protecteur efficace permet d obtenir une diminution de la nuisance subie par l utilisateur. La diminution de la nuisance dépend du temps pendant lequel le casque est porté. Le tableau suivant a été établi : x : temps de port, en pourcentage du temps d exposition ,5 99,9 y : diminution de la nuisance, en db ) Placer les points de coordonnées (x ; y) dans le plan rapporté au repère orthogonal pour lequel : en abscisses, on a le temps de port, en pourcentage du temps d exposition sur une échelle logarithmique : en ordonnées, on a la diminution de la nuisance sur une échelle linéaire avec pour unité graphique 2 cm pour 5 db. 2) Soit la droite donnant la tendance de la nuisance subit par l utilisateur. Tracer la droite. Exercices sur les fonctions logarithmes 1/12

2 Partie B2 : Lecture sur une échelle logarithmique La courbe plus complète de cette diminution de la nuisance, en fonction du temps pendant lequel le casque est porté, est représenté ci-dessous. Le temps de port du casque est exprimé en pourcentage du temps d exposition, sur une échelle logarithmique. Pour les deux questions suivantes, les traits de construction doivent apparaître sur la représentation graphique suivante. Exercices sur les fonctions logarithmes 2/12

3 1) Le casque est porté pendant 90 % du temps d exposition. Déterminer la diminution de la nuisance. 2) On désire obtenir une diminution de la nuisance de 20 db. Déterminer graphiquement le pourcentage de temps de port du casque. Exercice 2 (D après sujet de Bac Pro Artisanat et métier d art Session septembre 2002) La «droite de TAYLOR» permet de modifier : la vitesse de coupe en fonction du temps ; le temps en fonction de la vitesse de coupe ; de prévoir le changement ou l affûtage d un outil. En utilisant «la droite de Taylor» dans le repère à échelles logarithmiques ci-dessous, déterminer graphiquement en laissant les traits de construction apparents : 1) Le temps de coupe pour une vitesse de 300 m/min. 2) La vitesse de coupe pour un temps de coupe de 10 min T durée de vie (min) Vc Vitesse de coupe (m/min) (D après sujet de Bac Pro productique mécanique option usinage Session 2004) Exercices sur les fonctions logarithmes 3/12

4 Exercice 3 Dans le repère ci-après, on se propose de représenter le profil du pare-brise et du capot d une automobile. Partie 1 : Equation de droite (profil du pare-brise) 1) Dans le repère, placer les points B (7,5 ; 6) et C (12,2 ; 8,7) 2) Tracer le segment [BC]. 3) L'équation de la droite (BC) est de la forme y = ax + b a) Déterminer les valeurs de a et b. Donner les résultats arrondis à b) Donner l'équation de la droite. Partie 2 : Droite représentative d'une fonction (1 er tracé intermédiaire pour obtenir la représentation du profil du capot) Soit la fonction f définie sur l'intervalle [1 ; 7,5] par : f(x) = 0,03 x + 3,72 1) Tracer la courbe (C 1 ) représentative de la fonction f sur l'intervalle [1 ; 7,5]. 2) f est-elle une fonction affine ou linéaire? Justifier votre réponse. Partie 3 : Etude d'une fonction logarithme : (2 ème tracé intermédiaire pour obtenir la représentation du profil du capot) Soit la fonction g définie sur l'intervalle [1 ; 7,5] par : g(x) = ln x 1) Utilisation des propriétés de la fonction logarithme On donne ln 2 0,693 ln 3 1,098 Calculer ln 6 à partir de ln 2 et ln 3. On posera le calcul et on donnera le résultat arrondi à ) Donner la dérivée et le tableau de variation de g sur l'intervalle [1 ; 7,5] a) Compléter le tableau ci-dessous. (Donner les valeurs arrondies à 10-1 ) x 1 1, ,5 g(x) 0,7 1,1 b) Tracer la courbe (C 2 ) représentative de la fonction g dans le repère précédent. Exercices sur les fonctions logarithmes 4/12

5 x Partie 4 : Représentation du profil du capot Le profil du capot est obtenu par la représentation de la somme des fonctions f et g. (f étant la fonction définie dans la partie 2). A partir des courbes (C 1 ) et (C 2 ) construire la courbe (C) représentative de f + g sur le repère. (D après sujet de Bac Pro M.S.M.A. Session 1999) Exercices sur les fonctions logarithmes 5/12

6 Exercice 4 Partie 1 Le sonomètre est un appareil qui permet de mesurer le niveau sonore atteint par une machine. Le résultat est donné en décibels. Le décibel a pour symbole db. Le graphique ci dessous est extrait d une documentation sur le bruit éditée par l INRS : Institut National de Recherche et de Sécurité. Il donne le niveau sonore, avec une certaine précision, atteint quand on augmente le nombre de machines identiques fonctionnant simultanément. 1) Lecture du document Compléter le tableau récapitulatif des données. Nombre de machines identiques fonctionnant simultanément 1 10 Niveau sonore atteint (db) Augmentation du niveau sonore par rapport au niveau sonore d une seule machine (en db) 0 2) Étude d une fonction On considère la fonction f définie pour tout x de l intervalle [1 ;10], par f ( x) = 10logxoù log désigne la fonction logarithme décimal. a) Compléter le tableau de valeurs. x valeur de f(x) arrondie à 0,1 b) Sachant que la fonction logarithme décimal est une fonction croissante dans l intervalle [1 ;10], reproduire sur votre copie le tableau suivant après l avoir complété. Exercices sur les fonctions logarithmes 6/12

7 x 1 10 sens de variation de la fonction log sens de variation de la fonction f c) Dans le plan rapporté au repère orthonormal (Ox, Oy) donné tracer la courbe représentative de la fonction f. y 5 1 x O 1 5 d) Dans le même plan rapporté au repère (Ox, Oy), placer les points A, B, C, D, E, F et G de coordonnées respectives : (1 ; 0), (2 ; 3), (3 ; 5), (4 ; 6), (5 ; 7), (6 ; 8) et (10 ; 10). 3) Utilisation d une modélisation On considère que la fonction f modélise la situation de départ concernant l augmentation du niveau sonore. Ce qui signifie que, pour n machines identiques fonctionnant en même temps, l augmentation, en db, du niveau sonore par rapport au niveau sonore, en db, d une seule de ces machines est telle que = f(n). a) À l aide de l étude précédente, indiquer, parmi la liste suivante, l arrondi pratiqué par le concepteur du document INRS : arrondi à 10-2, à 10-1, à l unité, à la dizaine. Exercices sur les fonctions logarithmes 7/12

8 b) Par une lecture graphique, en utilisant la courbe représentative de la fonction f, donner une évaluation, en db, de l augmentation du niveau sonore pour 9 machines identiques fonctionnant simultanément par rapport au niveau sonore, en db, d une seule de ces machines ; laisser apparents les traits nécessaires à cette lecture. c) Calculer l augmentation du niveau sonore pour 9 machines identiques fonctionnant simultanément par rapport au niveau sonore, en db, d une seule de ces machines ; exprimer le résultat arrondi à 0,01 db. Partie 2 Dans la même documentation de l INRS, on trouve l information suivante : Les niveaux sonores en décibels ne s additionnent pas. Pour connaître le niveau sonore résultant de plusieurs sources différentes, on peut utiliser un tableau ou un diagramme. Différence (*) entre les niveaux sonores de 2 éléments (en db) Valeur à ajouter au niveau le plus élevé (en db) ,55 2,10 1,75 1,2 0,78 0,52 0,41 0,35 0,27 0,23 Valeur à ajouter au niveau le plus Exemple : Supposons qu en un lieu donné, deux machines de niveau sonore 81 db et 87 db fonctionnent en même temps. La différence des niveaux est de 6 db. Dans le tableau on lit que pour une différence de 6 db, il faut ajouter 1 db au niveau le plus élevé, ce qui donne un niveau sonore de 88 db. (*) La différence est la différence entre le niveau sonore le plus élevé et le niveau le plus bas. 1) En utilisant le document précédent, déterminer par une lecture graphique et un calcul simple : a) le niveau sonore atteint quand on fait fonctionner ensemble deux tronçonneuses dont les niveaux sonores sont respectivement 100 db pour l une et 104 db pour l autre, b) le niveau sonore atteint quand on fait fonctionner ensemble 2 machines identiques dont le niveau sonore commun est 87 db. Exercices sur les fonctions logarithmes 8/12

9 2) On se propose de retrouver par un calcul la valeur, en db, du niveau sonore résultant (88) trouvée dans l exemple présenté dans le document précédent. A cet effet : a) Calculer la valeur de 10 log(10 (0,1 87) + 10 (0,1 81) ), b) Donner le résultat arrondi à 0,01 puis à l unité. Exercice 5 (D après sujet de Bac Pro M.E.M.A.T.T.P.J. Session 2002) -4 2 Une scie produit une intensité sonore I = 7 10 W/m à une distance de 10 m. L'intensité sonore varie comme l'inverse du carré de la distance d entre la source et le récepteur. k La relation est I = (k étant une constante) 2 d 1) Calculer la valeur de la constante k. 2) On se propose d'étudier la variation de l'intensité I en fonction de la distance d sur l'intervalle [ 3 ; 15] 0,07 I = 2 d a) Remplir le tableau de valeurs à 10-4 près. d (m) I (W/m 2 ) b) Tracer la courbe représentative de la fonction I sur l'intervalle [ 3 ; 15 ] Echelles : axe des abscisses : 1 cm pour 1 m axe des ordonnées : 1 cm pour W/m 2 c) Déterminer graphiquement le sens de variation de cette fonction sur l'intervalle [ 3 ; 15 ]. d) Déterminer graphiquement à quelle distance se trouve-t-on quand l'intensité reçue est -4 2 de W/m. e) Vérifier ce résultat par le calcul. 3) Le niveau L d'intensité acoustique est donné par la relation suivante : L = 10log I avec I 0 = W/m 2 I en W/m 2 et L en db I 0 a) Calculer au décibel près, le niveau L d'intensité acoustique pour une intensité sonore -4 2 I = 7 10 W/m. Sachant que le seuil de tolérance est de 85 db, le port du casque est-il souhaitable? b) Calculer l'intensité sonore I correspondant à un niveau d'intensité acoustique de 90 db. A quelle distance de la scie se trouve-t-on alors? (Donner le résultat au mètre près) Exercices sur les fonctions logarithmes 9/12

10 I x 10-4 (W/m²) d(m) (D après sujet de Bac Pro Aménagement finition Session 2001) Exercices sur les fonctions logarithmes 10/12

11 Exercice 6 Le coefficient d absorption α varie avec la fréquence (exprimée en hertz) du son émis. Une série de mesures a permis d établir le tableau de valeurs suivant : La valeur de la fréquence est notée f. I) Représentation graphique f α 0,67 0,75 0,92 1,00 Deux représentations graphiques vont être réalisées en utilisant deux repères différents. 1) Premier cas : placer les points de coordonnées (f ; α), dans le plan rapporté au repère cartésien ci-dessous (papier millimétré). 2) Deuxième cas : placer les points de coordonnées (f ; α), dans le plan rapporté au repère cartésien ci-dessous (papier semi-logarithmique). 3) Indiquer le cas où les quatre points sont alignés. 4) Tracer la droite joignant ces quatre points. Exercices sur les fonctions logarithmes 11/12

12 II) Modélisation mathématique On modélise la détermination du coefficient d absorption α à partir de la fréquence f par la fonction g. g est la fonction définie pour tout nombre réel f appartenant à l intervalle [250 ; 4 000] par : g( f) = 0,12 ln f où ln symbolise la fonction logarithme népérien On a doncα = 0,12 ln f. On considère α 1 tel que α 1 = g(1 000).. 1) Calculer α 1 arrondi à ) Déterminer graphiquement une valeur de α 1 arrondie à 10-2 en faisant apparaître les tracés qui permettent la lecture graphique. (D après sujet de Bac Pro E.O.G.T. Session 2001) Exercices sur les fonctions logarithmes 12/12

Exercices en cours de formation

Exercices en cours de formation Exercices en cours de formation Exercice 1 Pour mesurer le niveau sonore d un bruit, on utilise fréquemment le nombre N appelé «niveau de puissance» et exprimé en décibels (db) donné par la relation :

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME

TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Baccalauréat Professionnel SYSTÈMES ÉLECTRONIQUES NUMÉRIQUES Champ professionnel : Alarme Sécurité Incendie SOUS - EPREUVE E12 TRAVAUX PRATIQUES SCIENTIFIQUES SUR SYSTÈME Durée 3 heures coefficient 2 Note

Plus en détail

Bac SMS : Mathématiques Métropole Juin 2000

Bac SMS : Mathématiques Métropole Juin 2000 Bac SMS : Mathématiques Métropole Juin 2000 L'usage des calculatrices et des instruments de calcul est autorisé. Une feuille de papier millimétré est nécessaire pour le problème. EXERCICE (8 points) La

Plus en détail

Intensité sonore et niveau d intensité sonore

Intensité sonore et niveau d intensité sonore ntensité sonore et niveau d intensité sonore Dans le programme figure la compétence suivante : Connaître et exploiter la relation liant le niveau d intensité sonore à l intensité sonore. Cette fiche se

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Maintenance automobile

Maintenance automobile Baccalauréat Professionnel Maintenance automobile 1. France, juin 2005 1 2. Nouvelle Calédonie, novembre 2004 3 3. Antilles Guyane, Polynésie juin 2004 6 4. France, juin 2004, remplacement 9 5. France,

Plus en détail

BEP/CAP SECTEUR 1 PARTIE MATHEMATIQUES

BEP/CAP SECTEUR 1 PARTIE MATHEMATIQUES BEP/CAP SECTEUR 1 Académie de Rouen session 2002 PARTIE MATHEMATIQUES Exercice 1 Partie A Julien va emménager seul dans un appartement de 70 m². Il doit souscrire à EDF une certaine puissance électrique

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Correction du bac blanc CFE Mercatique

Correction du bac blanc CFE Mercatique Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009

Plus en détail

FMB 4 : ACOUSTIQUE. Hauteur d un son Les fréquences des six cordes d une guitare classique sont données dans le tableau ci-dessous :

FMB 4 : ACOUSTIQUE. Hauteur d un son Les fréquences des six cordes d une guitare classique sont données dans le tableau ci-dessous : Fiche professeur FMB 4 : ACOUSTIQUE TI-82 STATS TI-83 Plus TI-84 Plus Mots-clés : caractéristiques d un son, intensité, hauteur et timbre, niveau d intensité acoustique, période, fréquence, harmoniques,

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail

NATHALIE RODRIGUEZ avril 2014

NATHALIE RODRIGUEZ avril 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ º ºÇº NATHALIE RODRIGUEZ avril 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 C.G.O. métropole, mai 2002 9 Exercice 1 : suite géométrique, fonction exponentielle,

Plus en détail

mémo santé du bâtiment Chef d entreprise artisanales Le bruit est un son désagréable et gênant.

mémo santé du bâtiment Chef d entreprise artisanales Le bruit est un son désagréable et gênant. L'alliée de votre réussite mémo santé Chef d entreprise artisanale ATTENTION! LE BRUIT REND SOURD! Entreprises artisanales du bâtiment Le bruit est un son désagréable et gênant. Le son est le résultat

Plus en détail

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014

Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO <jiayin.gao@univ-paris3.fr> 20 mars 2014 Communication parlée L2F01 TD 7 Phonétique acoustique (1) Jiayin GAO 20 mars 2014 La phonétique acoustique La phonétique acoustique étudie les propriétés physiques du signal

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Baccalauréat technique de la musique et de la danse Métropole septembre 2008 Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque

Plus en détail

Mathématiques en Terminale ES. David ROBERT

Mathématiques en Terminale ES. David ROBERT Mathématiques en Terminale ES David ROBERT 0 0 Sommaire Suites. Activités........................................................... Suites géométriques Rappels..............................................

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Bac SMS : Mathématiques Métropole Juin 2003

Bac SMS : Mathématiques Métropole Juin 2003 Bac SMS : Mathématiques Métropole Juin 2003 L'usage des calculatrices et des instruments de calcul est autorisé. Une feuille de papier millimétré est nécessaire pour le problème. Le formulaire ociel de

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Exemples d exercices de type «bac» Série ST2S

Exemples d exercices de type «bac» Série ST2S Exemples d exercices de type «bac» Série ST2S Exercice 1 7 points On étudie le nombre de bactéries contenues dans un organisme à la suite d une infection. Il est donné, en fonction du temps (exprimé en

Plus en détail

«Tous les sons sont-ils audibles»

«Tous les sons sont-ils audibles» Chapitre 6 - ACOUSTIQUE 1 «Tous les sons sont-ils audibles» I. Activités 1. Différents sons et leur visualisation sur un oscilloscope : Un son a besoin d'un milieu matériel pour se propager. Ce milieu

Plus en détail

Baccalauréat SMS 2001 L intégrale de juin à novembre 2001

Baccalauréat SMS 2001 L intégrale de juin à novembre 2001 Baccalauréat SMS 001 L intégrale de juin à novembre 001 Antilles Guyane juin 001............................... 3 La Réunion juin 001.................................... 5 Métropole juin 001.....................................

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS

ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS Matériel : Logiciel winoscillo Logiciel synchronie Microphone Amplificateur Alimentation -15 +15 V (1) (2) (3) (4) (5) (6) ACOUSTIQUE 3 : ACOUSTIQUE MUSICALE ET PHYSIQUE DES SONS Connaissances et savoir-faire

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES.

A l'intention des collègues dont les élèves vont tester le sujet prospectif de bac ES. A l'intention des collègues dont les élèves vont tester le sujet "prospectif" de bac ES. Le sujet proposé s'inscrit dans le cadre du texte d'orientation ci-joint. L'exercice I est du type "compréhension

Plus en détail

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer.

Pour répondre à cette question on peut faire un découpage en petites surfaces plus faciles à comparer ou à déplacer. I Aire d une surface A cause du remembrement, la commune de Thérouanne propose à M. Ducheval et à M. Leboeuf d échanger leurs parcelles de terrain qui ont les formes ci-dessous. L échange est-il équitable?

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Strasbourg pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1

BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 TP A.1 Page 1/5 BACCALAURÉAT PROFESSIONNEL EPREUVE DE TRAVAUX PRATIQUES DE SCIENCES PHYSIQUES SUJET A.1 Ce document comprend : - une fiche descriptive du sujet destinée à l examinateur : Page 2/5 - une

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

ACOUSTIQUE DES CLOISONS

ACOUSTIQUE DES CLOISONS ISOLATION ACOUSTIQUE DES CLOISONS MOBILES, DÉMONTABLES ET AMOVIBLES Plafonds suspendus et barrières phoniques 1 ISOLATION ET ABSORPTION ACOUSTIQUE Ne pas confondre! Un matériau peut être caractérisé par

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

3ème CORRECTION L6-fiche d'exercices-approche DE LA NOTION DE FONCTION 2010-2011

3ème CORRECTION L6-fiche d'exercices-approche DE LA NOTION DE FONCTION 2010-2011 3ème CORRECTION L6-fiche d'exercices-approche DE LA NOTION DE FONCTION 200-20 Exercice Lire un tableau Voici un tableau de valeurs d'une fonction f: x 3 0 2 4 5 f(x) 7 2 3 5 3 6 En utilisant les données

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES

EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES GYMNASE DU BUGNON - LAUSANNE Mai 2008 EXAMEN D ADMISSION DE L ECOLE DE MATURITE 1 ère ANNEE MATHEMATIQUES Date : mai 2008 Durée : 3h Matériel mis à disposition par le gymnase : - Matériel apporté par les

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Utilisation d'allocation de registre pour optimisation de calcul acoustique probabiliste

Utilisation d'allocation de registre pour optimisation de calcul acoustique probabiliste Utilisation d'allocation de registre pour optimisation de calcul acoustique probabiliste Pierrick Brunet Encadré par Serge Guelton Etudiant à Télécom Bretagne Stage de fin d étude à Quiet Oceans Sixièmes

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Chapitre 04 - Fonctions

Chapitre 04 - Fonctions Représentation graphique de fonctions Problème Colin et Estelle jouent avec les nombres de l'ensemble { ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9}. Colin commence en écrivant un premier nombre choisi dans cet ensemble.

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Notion de fonction. Résolution graphique. Fonction affine.

Notion de fonction. Résolution graphique. Fonction affine. TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

LÈVE-PERSONNE ORIOR MISE EN SITUATION.

LÈVE-PERSONNE ORIOR MISE EN SITUATION. LÈVE-PERSONNE ORIOR MISE EN SITUATION. Le lève-personne ORIOR permet de transférer en toute sécurité dans le cadre d un usage domestique une personne à mobilité réduite d un support à un autre, d un lit

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

BREVET BLANC 2 SESSION DU 5 MAI 2009

BREVET BLANC 2 SESSION DU 5 MAI 2009 BREVET BLANC 2 SESSION DU 5 MAI 2009 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE : 2 h 00 Le candidat répondra sur une copie différente pour chaque partie. Ce sujet comporte 5 pages, numérotées de 1

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Chapitre 3 : L'oscilloscope

Chapitre 3 : L'oscilloscope Chapitre 3 : L'oscilloscope I Présentation de l'appareil A) À quoi sert un oscilloscope Coller la fiche d'exercice L'oscilloscope est un appareil permettant de visualiser directement une tension au cours

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Exercices de révision

Exercices de révision Exercices de révision EXERCICE 1 Le site (imaginaire) «www.musordi.net» propose aux internautes de télécharger des titres de musique sur leur ordinateur. Son offre commerciale pour un trimestre est la

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

LE BRUIT EN MILIEU DE TRAVAIL

LE BRUIT EN MILIEU DE TRAVAIL LE BRUIT EN MILIEU DE TRAVAIL Le bruit fait partie de la vie. D ailleurs, l absence totale de bruit est unanimement reconnue comme très difficilement supportable pour l homme. Pourtant, certaines situations

Plus en détail

NATHALIE RODRIGUEZ mars 2014

NATHALIE RODRIGUEZ mars 2014 Ä ÒÒ Ð Ù ÌË Å Ø Ñ Ø ÕÙ Áº º Ô٠˺ÁºÇº NATHALIE RODRIGUEZ mars 2014 IREM PARIS XIII - GROUPE «ENSEIGNEMENTS TECHNOLOGIQUES» Sommaire 1 I.G. Nouvelle-Calédonie, novembre 2000 13 Exercice 1 (5 pts) : calcul

Plus en détail

Les fonction affines

Les fonction affines Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition. Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Chapitre 4: Dérivée d'une fonction et règles de calcul

Chapitre 4: Dérivée d'une fonction et règles de calcul DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1)

EPREUVES AU CHOIX DU CANDIDAT. Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) 1 CYCLE MST-A 30 JUIN 2010 10 ème Promotion 2010 / 2012 CONCOURS D ENTREE A L IIA DROIT EPREUVES AU CHOIX DU CANDIDAT Durée : De 09 h 00 à 12 h 00 (Heure de Yaoundé, TU + 1) Le candidat traitera au choix

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Concours externe du CAPLP et Cafep-CAPLP. Section mathématiques-physique chimie. Exemples de sujets (Épreuves d admission)

Concours externe du CAPLP et Cafep-CAPLP. Section mathématiques-physique chimie. Exemples de sujets (Épreuves d admission) Concours externe du CAPLP et Cafep-CAPLP Section mathématiques-physique chimie Exemples de sujets (Épreuves d admission) À compter de la session 2014, les épreuves du concours sont modifiées. L arrêté

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

MathADoc Diplôme National du Brevet : Groupe Nord 2003

MathADoc Diplôme National du Brevet : Groupe Nord 2003 MathADoc Diplôme National du Brevet : Groupe Nord 2003 Activités numériques : 12 points (Amiens, Lille, Paris, Créteil, Versailles, Rouen) 1. Soit A = 8 3 5 3 20 21 Calculer A en détaillant les étapes

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

r SID \PARIS mculré JEAN MONNET Droit - Économie - Gestion FORMULAIRB .E UNIVERSITÉ Diplôme de D.A.E.IJ - Option A Année universitaire 2012-2013

r SID \PARIS mculré JEAN MONNET Droit - Économie - Gestion FORMULAIRB .E UNIVERSITÉ Diplôme de D.A.E.IJ - Option A Année universitaire 2012-2013 .E UNIVERSITÉ \PARIS r SID mculré JEAN MONNET Droit - Économie - Gestion Année universitaire 2012-2013 Diplôme de D.A.E.IJ - Option A 2ème session - Septembre 2013 Intitulé de la matière : MATHEMATIQUES

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite(u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Les fenêtres peuvent comporter une, deux ou trois vitres. L isolation phonique est-elle meilleure lorsque l on double ou triple le vitrage?

Les fenêtres peuvent comporter une, deux ou trois vitres. L isolation phonique est-elle meilleure lorsque l on double ou triple le vitrage? Les fenêtres peuvent comporter une, deux ou trois vitres. L isolation phonique est-elle meilleure lorsque l on double ou triple le vitrage? Comment isoler une pièce du bruit? À l issue de ce chapitre,

Plus en détail

= constante et cette constante est a.

= constante et cette constante est a. Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc

Plus en détail

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES)

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) Depuis sa publication en 1973, la formule de Black et Scholes s est imposée comme la référence pour la valorisation

Plus en détail