La Rosace. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosacebruno LAMBERT RAR Wallon Garges lès Gonesse

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "La Rosace. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosacebruno LAMBERT RAR Wallon Garges lès Gonesse"

Transcription

1 La Rosace Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 1/21

2 Sommaire La Rosace De la rosace à la division du cercle en 6 parties égales et figures associées Activité : Rosace hexagone et étoile Activité en 6ème : la rosace à 6 pétales Figure associée : l'étoile des neiges...4 a)programme de construction présenté sous la forme d'une BD Les trois lunes : exemple de fiche pour activité géogébra en 6ème Pavage de rosace et figures associées De la rosace à la super rosace et figures associées Super Rosace : Programme de construction en BD Super Rosace : Programme de construction Exercices de coloriage...9 a)super rosace utilisée comme traits de construction : une autre étoile...10 b)super rosace utilisée comme traits de construction : Hexagone tournant...11 c)super rosace utilisée comme traits de construction : l'étoile de Pompéï Rosace et axes de symétrie, figures associées Activité : trouver les axes de symétrie de la rosace, la super rosace, l'hexagone régulier et l'étoile à 6 branches...17 a)hexagones imbriqués b)hexagones imbriqués Références et outils Bibliographie Sites Logiciels utilisés...21 Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 2/21

3 1. De la rosace à la division du cercle en 6 parties égales et figures associées 1.1. Activité : Rosace hexagone et étoile faire dessiner la rosace sur papier blanc demander aux élèves de décrire la figure obtenue : de quoi est-elle composée? On peut espérer avoir les mots «cercle» et «bout, morceau, arc de cercle» Il peut apparaître aussi «pétale». Faire émerger les «points» : le cercle, les bouts de cercles, se coupent ils? Noter par une croix l'endroit où les cercles se coupent. On a 7 points le centre et 6 points du cercle. Construire l'hexagone en reliant les points consécutifs Institutionnaliser Connaissance : cercle et centre du cercle et surtout arc de cercle. Capacité : A partir de la construction de la rosace en reportant la longueur du rayon sur le cercle j'obtiens la division du cercle en 6 parties égales. On ne fait que reporter la longueur sans tracer les arcs, pour obtenir les 6 points le cercle divisé en 6 parties égales Le disque divisé en six parties égales : fractions en sixième 1.2. Activité en 6ème : la rosace à 6 pétales Construire une rosace à 6 pétales. Combien observe-t-on de points d'intersection? A partir de la rosace à 6 pétales construire l'hexagone régulier et l'étoile à 6 branches comme sur le modèle. rosace à 6 pétales hexagone régulier étoile à 6 branches Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 3/21

4 1.3. Figure associée : l'étoile des neiges L'objectif est d'obtenir cette figure, qu'on appellera «étoile des neiges». Observation de la figure et questions (points d'intersection) Exemple : G est le point d'intersection des segments [AC] et [BF] Complète les phrases suivantes(tu ne peux utiliser que les points A, B, C, D, E ou F pour définir les segments) H est le point d'intersection des segments [BD] et [...] I est le point d'intersection des segments [...] et [...] J est le point d'intersection... K... L... Observation de la figure et questions (polygones) Quelle est la nature du triangle ABG?... Quelle est la nature du triangle OBG?... Quelle est la nature du triangle AOG?... Quelle est la nature du triangle ABO?... Explique tes réponses et justifie par des mesures Quelle est la nature du quadrilatère DIOJ?... Explique ta réponse et justifie par des mesures repasse en rouge les côtés du quadrilatère ABDE Quelle est la nature du quadrilatère ABDE?... Explique ta réponse et justifie par des mesures Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 4/21

5 programme de construction présenté sous la forme d'une BD 1. Diviser le cercle en six parties égales 2. Construire l'étoile à 6 branches 3. Placer les points d'intersection comme sur la figure 4. Tracer au feutre les côtés du quadrilatère CHOI 5. Faire de même pour les autres quadrilatères 6. Tracer les diamètres [AD] [BE] et [CF] au feutre. Il ne reste plus qu'à gommer les côtés de l'hexagone GHIJKL Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 5/21

6 1.4. Les trois lunes : exemple de fiche pour activité géogébra en 6ème Ouvre le fichier : cercle divisé en 6 parties égales.ggb dans mes documents >géogébra_mon nom_ma classe Trace les côtés du triangle ACE :... (complète avec le nom des segments) Trace les diamètres du cercle que l'on peut obtenir avec les points de la figure :... (complète avec le nom des segments) Complète la figure sur le papier et sur l'écran Complète : G est le point d'intersection des segments [...] et [.] H... I... Définis ces nouveaux points de la même manière sur la figure géogébra à l'aide de : intersection de deux objets Rends invisible tous les segments. Pour tracer la première lune : Trace l'arc de cercle de centre F et reliant E à A Trace l'arc de cercle de centre G et reliant E à A Pour finir la figure Trace l'arc de cercle de centre et reliant à Trace l'arc de cercle de centre et reliant à Trace l'arc de cercle de centre et reliant à Trace l'arc de cercle de centre et reliant à Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 6/21

7 2. Pavage de rosace et figures associées Consigne : à partir de la première rosace, remplir la feuille de rosaces en ne gardant que les points d'intersection on obtient du papier pointé triangulaire Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 7/21

8 3. De la rosace à la super rosace et figures associées 3.1. Super Rosace : Programme de construction en BD Au lieu de tracer uniquement les arcs à l'intérieur du cercle de centre O, trace tous les cercles en entier 3.2. Super Rosace : Programme de construction Exécute le programme de construction suivant Programme de construction Placer deux points O et A Tracer le cercle (C1) de centre O et passant par A Tracer le cercle (C2) de centre A et passant par O Nommer B et F les points d'intersection de (C1) et (C2) Tracer le cercle (C3) de centre B et passant par O (C3) et (C1) se coupent en A et C, placer C Tracer le cercle (C4) de centre C et passant par O (C4) et (C1) se coupent en B et D, placer D Tracer le cercle (C5) de centre D et passant par O (C5) et (C1) se coupent en C et E, placer E Tracer le cercle (C6) de centre E et passant par O (C6) et (C1) se coupent en D et F, placer F Tracer le cercle (C7) de centre F et passant par O Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 8/21

9 3.3. Exercices de coloriage A partir de la construction de la super rosace obtenir les figures suivantes par coloriage Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace 9/21

10 a) Super rosace utilisée comme traits de construction : une autre étoile On souhaite obtenir la figure suivante : Construire la super rosace Tracer les segments nécessaires pour obtenir l'étoile. Observation de la figure et questions (segments) Ecris la liste de tous les segments qu'il faut tracer pour obtenir l'étoile Tracer le segment [.]. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace10/21

11 b) Super rosace utilisée comme traits de construction : Hexagone tournant On cherche à obtenir la figure suivante : Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace11/21

12 Construire la super rosace L'hexagone ABCDEF Et le cercle de centre O passant par G Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace12/21

13 c) Super rosace utilisée comme traits de construction : l'étoile de Pompéï Photos prises par les élèves du collège Henri Wallon en mai 2010 lors du voyage à Rome et Pompéi accompagnés par Mme Bach, M Gibrac, Mme Mollo et Mme Boullais. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace13/21

14 Etoile de Pompéi : Observation de la figure et questions Observation de la figure et questions 1. Quelle est la nature du polygone ABCDEF? 2. Quelle est la nature de ASRF? Trouve d'autres quadrilatères ayant la même nature que ASRF : 3. Quelle est la nature de BITH? Trouve d'autres quadrilatères ayant la même nature que BITH : 4. Quelle est la nature de IJU? Trouve d'autres triangles ayant la même nature que IJU : 5. trouve tous les axes de symétrie de la figure A partir de l'hexagone ABCDEF trace la super rosace. Repasse en vert les droites (JP) et (BC). Comment sont (JP) et (BC)? Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace14/21

15 Etoile de Pompéi : Construction On trace la super rosace et l'hexagone ABCDEF on trace les droites formant l'étoiles à 6 branches intérieure à l'hexagone. Les intersections de ces On obtient l'hexagone et la première couronne droites avec les cercles de la super rosace de carrés donnent les sommets des carrés Pour obtenir les triangles et losanges on construit les cercles de centre les sommets extérieurs des carrés, en reprenant toujours le même rayon. On trace les côtés des triangles et losanges. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace15/21

16 Etoile de Pompéi : extensions possibles de la figure Mosaïque en marbre et nacre de la Grande Mosquée de Damas. Gustave Le Bon : La civilisation des Arabes (1884) eurs_gif/planche_08.html Activité Colorie l'étoile de Pompéi sur chacune des figures Construis ces deux figures en partant de l'étoile de Pompéi Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace16/21

17 4. Rosace et axes de symétrie, figures associées 4.1. Activité : trouver les axes de symétrie de la rosace, la super rosace, l'hexagone régulier et l'étoile à 6 branches Sur papier calque faire construire les 4 figures à partir d'un cercle initial de même rayon. Découper chacune des figures Par pliage trouver les axes de symétrie de chacune des figures Faire superposer les 4 figures et constater que l'on a les même six axes de symétrie. On remarque que les axes de symétrie sont (AD) ; (BE) et (CF) les diamètres du cercle de départ formés à partir des sommets de l'hexagone (GJ) (HK) et (IL) les droites passant par les points d'intersection de la super rosace symétriques par rapport à O. ces trois axes passent par les milieux des côtés opposés de l'hexagone et par les points d'intersection de l'étoile à six branches Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace17/21

18 a) Hexagones imbriqués 1 On veut obtenir la figure ci contre ou selon le coloriage une des figures ci dessous. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace18/21

19 Construire l'hexagone et ses 6 axes de symétrie à Les points d'intersection des axes de symétrie et de l'hexagone donnent les sommets d'un partir de la super rosace deuxième hexagone imbriqué dans le premier Les points d'intersection des axes de symétrie et etc. du deuxième hexagone donnent les sommets d'un troisième hexagone. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace19/21

20 b) Hexagones imbriqués 2 On refais la même construction que précédemment en ajoutant les cercles circonscrits à chacun des hexagones successifs. Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace20/21

21 5. Références et outils 5.1. Bibliographie La géométrie par le dessin au cycle III Claude Hameau- Nathan Pédagogie La géométrie pour le plaisir (plusieurs tomes) J et L Denière BP 74 Malo Dunkerque Cedex Les belles figures du kangourou Patricia et Bernard Hennequin ACL éditions du Kangourou 5.2. Sites les animaux compassés : club géogébra : Logiciels utilisés géogébra : xnview : photofiltre : html paint openoffice : avec dmaths : Géométrie cycle 3 / 6ème : figures complexes observations et construction la rosace21/21

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

Géométrie. Reports et constructions d angles au compas

Géométrie. Reports et constructions d angles au compas Géométrie Reports et constructions d angles au compas 1. Reports d angles Reporter un angle, c'est partir d'un angle dessiné à un endroit sur une feuille et le redessiner à un autre endroit de la feuille

Plus en détail

Les droites, points, segments 1. Le point

Les droites, points, segments 1. Le point Les droites, points, segments 1. Le point Un point est un endroit précis du plan. On le repère avec une croix ( ). On le nomme avec une lettre majuscule. 2. La ligne et la droite Une ligne est une suite

Plus en détail

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/ SOMMAIRE GEOMETRIE GEOM http://delautrecotedubureau.eklablog.com/ N Intitulé CE2 CM1 CM2 GEOM0 GEOM1 GEOM2 GEOM3 GEOM4 GEOM5 GEOM6 GEOM7 GEOM8 GEOM9 Les instruments Points, lignes, droites et segments

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

Lire les coordonnées d un point

Lire les coordonnées d un point Lire les coordonnées d un point 1) Repérer les cases 2) Repérer les nœuds : On peut repérer les nœuds d un quadrillage avec un code. La lettre indique le code de la colonne. Le nombre indique le code de

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

Bilan de géométrie n 1 Le cercle

Bilan de géométrie n 1 Le cercle Bilan de géométrie n 1 Le cercle 1. Connaître les éléments caractéristiques d'un cercle.... / 5 Observe cette figure. Dis si ces phrases sont vraies (V) ou fausses (F).... Le cercle noir a pour centre

Plus en détail

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave Géométrie C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Dans le plan Le point p. 03 La droite p. 04 La demi-droite p. 05 Le segment de droite p. 06 Droites sécantes p. 07 Droites perpendiculaires

Plus en détail

FICHES OUTILS GEOMETRIE CE2

FICHES OUTILS GEOMETRIE CE2 FICHES OUTILS GEOMETRIE 1 Reproduire avec un calque 2 Reproduire avec un quadrillage 3 Reproduire avec un gabarit 4 Les solides 5 Figures planes et polygones 6 Parallèles et perpendiculaires 7 Cercles

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Géométrie et Mesures CM1 Période 1

Géométrie et Mesures CM1 Période 1 Géométrie et Mesures CM1 Période 1 Ecris la lettre des figures qui sont des polygones. A B En utilisant ton compas, trouve tous les segments qui ont la même longueur que le segment [AB]. C D Avec ta règle

Plus en détail

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html

Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html Nous vous proposons quelques constructions possibles de polygones réguliers à l'aide du

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE ÉPREUVE EXTERNE COMMUNE CEB2015 SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN FRANÇAIS SAVOIR ÉCOUTER français SAVOIR ÉCRIRE savoir MATHÉMATIQUES écouter GRANDEURS savoir écrire SOLIDES ET mathématiques FIGURES

Plus en détail

Unité 9 Géométrie. Droites, segments de droite et demi-droites. Droite (à l infini) Demi-droite (limitée à une extrémité et à l infini à l autre)

Unité 9 Géométrie. Droites, segments de droite et demi-droites. Droite (à l infini) Demi-droite (limitée à une extrémité et à l infini à l autre) Unité 9 Géométrie Droites, segments de droite et demi-droites Droite (à l infini) Demi-droite (limitée à une extrémité et à l infini à l autre) Segment (limité des deux côtés par des points) Droites parallèles

Plus en détail

FICHES OUTILS GEOMETRIE CM1

FICHES OUTILS GEOMETRIE CM1 FIHES OUTILS GEOMETRIE 1 Utilisation de la règle et de l équerre 2 Utilisation du compas 3 Reproduire des figures planes 4 Reconnaitre des figures planes 5 onstruire des figures géométriques 6 Les solides

Plus en détail

Géométrie - notion : Angles, cercles, triangles

Géométrie - notion : Angles, cercles, triangles Géométrie - notion : Angles, cercles, triangles 1. Angles a) Vocabulaire Angle nul : L angle nul est formé par deux demi-droites identiques et donc de même origine. Angle plat : Un angle est plat si les

Plus en détail

Une droite est une ligne qui ne s arrête jamais.

Une droite est une ligne qui ne s arrête jamais. GEOMETRIE GEOM.0 Points, lignes, droites et segments GEOM.1 Tableaux et quadrillages GEOM.2 Reproduire une figure GEOM.3 ercle et compas GEOM.4 onstruire une figure géométrique GEOM.5 Les polygones GEOM.6

Plus en détail

SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2

SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2 SOMMAIRE ÉVALUATIONS GÉOMÉTRIE CE2 1. Les angles : définir, nommer, situer un angle droit, utilisation de l équerre 2. Définition, traçage : La droite, la demi-droite, le segment, le polygone 3. Reconnaître

Plus en détail

Mon plan de travail en géométrie

Mon plan de travail en géométrie Mon plan de travail en géométrie Sommaire Programme CM1 Programme CM2 1 Tracer un cercle. 2 Tracer et reconnaître des droites parallèles. 3 Tracer et reconnaîtredes droites perpendiculaires. 4 Reconnaître,décrire,

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes :

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes : EXERIES E GÉOMÉTRIE Exercice 1. ans un triangle, tracer : a) la hauteur passant par, b) la médiane passant par, c) la bissectrice de l'angle Â, d) la médiatrice du segment []. Exercice 2. éterminer tous

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits.

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Le quadrilatère ABCD a quatre angles droits ; c'est un rectangle 1.2 rectangles

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Fiche 1 Hauteurs (GeoplanW)

Fiche 1 Hauteurs (GeoplanW) Fiche 1 Hauteurs (GeoplanW) Se remettre en mémoire les commandes de base de GéoplanW. - Savoir construire un triangle. - Savoir construire une droite passant par un sommet de ce triangle perpendiculaire

Plus en détail

Les parallélogrammes particuliers

Les parallélogrammes particuliers Les parallélogrammes particuliers I Une histoire de famille Le parallélogramme fait partie de la famille des quadrilatères: Ce sont des polygones à 4 cotés, 4 angles, 2 diagonales et c'est tout. Ils peuvent

Plus en détail

Lexique illustré de géométrie.

Lexique illustré de géométrie. 1 Lexique illustré de géométrie. LEXIQUE GÉOMÉTRIE COLLÈGE A Abscisse K Sur un axe gradué L Le point K a pour abscisse -6. Le point L a pour abscisse 3,5 Dans un repère Le point A a pour abscisse 3,5.

Plus en détail

Compétences Math CE2-CM1-CM2

Compétences Math CE2-CM1-CM2 Compétences Math CE2-CM1-CM2 MATHÉMATIQUES - NOMBRES ET CALCUL CE2 CM1 CM2 Notions abordées dans le logiciel LES NOMBRES ENTIERS JUSQU AU MILLION Connaître, savoir écrire et nommer les nombres entiers

Plus en détail

Figure 1 Figure 2 Figure 3 Figure 4

Figure 1 Figure 2 Figure 3 Figure 4 ctivité 1 : Miroir, mon beau miroir Figure 1 Figure 2 Figure 3 1. Observe les trois figures ci-dessus. a. Quel est leur point commun? Comment peux-tu le mettre en évidence? b. Trouve dans des publicités

Plus en détail

(d après La géométrie pour le plaisir - J. et L. DENIERE - Editions Kim)

(d après La géométrie pour le plaisir - J. et L. DENIERE - Editions Kim) Trace deux cercles (C) et (C') de centre et de rayons respectifs 8 cm et 9 cm. Sur le cercle (C), place un point et reporte 6 fois la longueur du rayon (8 cm). n obtient les points, B, C, D, E, F. Trace

Plus en détail

CHAPITRE 16 : GEOMETRIE DANS L ESPACE

CHAPITRE 16 : GEOMETRIE DANS L ESPACE HPITRE 16 : GEOMETRIE DNS L ESPE I) SOLIDES - REPRESENTTION EN PERSPETIVE VLIERE. 1) SOLIDES. Un solide est une figure «en relief». Un solide, au sens géométrique, est un objet limité par des surfaces

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

I- Polygones. Le mot polygone est la combinaison de deux mots Grecs et signifie plusieurs angles.

I- Polygones. Le mot polygone est la combinaison de deux mots Grecs et signifie plusieurs angles. 1- Ligne polygonale. I- Polygones. Le mot polygone est la combinaison de deux mots Grecs et signifie plusieurs angles. On considère les points puis on trace les segments On obtient une ligne polygonale

Plus en détail

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller.

5. Réponds aux questions suivantes en écrivant des phrases sous la figure que tu viens de coller. Déclic Construire-01 1. Trace un carré ABCD de 8 cm de côté. Nomme chacun des sommets de ce carré. 2. Trace les diagonales [AC] et [BD] du carré. 3. Le point O est le point d'intersection de ces deux diagonales.

Plus en détail

Outils de démonstration

Outils de démonstration Outils de démonstration Comment démonter que... Année 2009 et 2010 Classe: 4D,4A Collège Fontbruant -Comment démontrer qu un triangle est un triangle isocèle? -Comment démontrer qu un triangle est un triangle

Plus en détail

Constructions géométriques

Constructions géométriques Constructions géométriques Objectifs : - reconnaître deux droites parallèles et deux droites perpendiculaires - savoir déterminer une distance d un point à une droite - connaître les constructions géométriques

Plus en détail

Les fractions (2) Nommer les fractions simples et décimales en utilisant le vocabulaire : demi, tiers, quart, dixième, centième 7 5, 6.

Les fractions (2) Nommer les fractions simples et décimales en utilisant le vocabulaire : demi, tiers, quart, dixième, centième 7 5, 6. Les fractions () Nommer les fractions simples et décimales en utilisant le vocabulaire : demi, tiers, quart, dixième, centième et Lire des fractions. Lis à voix haute les fractions : 7, et. Écrire des

Plus en détail

Glossaire de propriétés pour la démonstration

Glossaire de propriétés pour la démonstration Glossaire de propriétés pour la démonstration non exhaustif niveau sixième niveau cinquième niveau quatrième niveau troisième Démontrer qu'un point appartient à la médiatrice d'un segment ❶ propriété :

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Ce prisme rectangulaire a 2 faces carrées congruentes et 4 faces rectangulaires congruentes.

Ce prisme rectangulaire a 2 faces carrées congruentes et 4 faces rectangulaires congruentes. 3.14a Leçon 8A: Les développements de solides EXPLORE Tu as besoin d une boîte de céréales et de ciseaux. Découpe les bords de la boîte de céréales. Tu dois pouvoir l ouvrir et l étendre à plat. Dépose

Plus en détail

VII. Lieux géométriques.

VII. Lieux géométriques. VII. Lieux géométriques.. Généralités. Définition. Un lieu géométrique est un ensemble de points qui vérifient une propriété géométrique déterminée.. Méthodes. Pour déterminer un lieu géométriques, différentes

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

Géométrie III Aires. CA et AB AB = AC

Géométrie III Aires. CA et AB AB = AC Groupe Géométrie III ires L'aire est une quantité qui mesure la taille d'un domaine du plan. Elle vérie des propriétés fondamentales qui sont très intuitives : (i) L'aire d'un rectangle de côtés l et L

Plus en détail

CHAMP CONNAISSANCES / CAPACITES TACHE / ACTIVITE EXERCICE

CHAMP CONNAISSANCES / CAPACITES TACHE / ACTIVITE EXERCICE MATHEMATIQUES CHAMP CONNAISSANCES / CAPACITES TACHE / ACTIVITE EXERCICE - Connaître, savoir écrire et nommer les nombres entiers jusqu au million. Associer l'écriture littérale et l'écriture chiffrée d'un

Plus en détail

Exemple : Le point P Pour tracer un point, je fais une petite croix et j'écris la lettre juste à côté ou au-dessous :

Exemple : Le point P Pour tracer un point, je fais une petite croix et j'écris la lettre juste à côté ou au-dessous : 1 GEOMETRIE Contenu 1. DISTINGUER : POINT, DROITE, SEGMENT, DEMI-DROITE. ALIGNEMENT DE POINTS... 2 2. DROITES, POINTS ALIGNES, SEGMENTS... 3 3. MESURER ET TRACER UN SEGMENT... 5 4. SE REPERER DANS UN QUADRILLAGE...

Plus en détail

Cycle : III Niveau : CM1/CM2 Séquence de 5 séances GEOMETRIE LES FIGURES PLANES Séance 1

Cycle : III Niveau : CM1/CM2 Séquence de 5 séances GEOMETRIE LES FIGURES PLANES Séance 1 DATE : 22 avril 2008 GEOMETRIE LES FIGURES PLANES Séance 1 Objectifs de la séquence : Je veux que mes élèves sachent résoudre des problèmes liés aux constructions de figures géométriques planes Objectif

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

Chapitre 4 - Les triangles

Chapitre 4 - Les triangles Chapitre 4 - Les triangles I- Définitions et triangles particuliers Un triangle est un polygone qui a trois côtés. Dessiner trois triangles : un quelconque (classique), un qui est équilatéral et un qui

Plus en détail

6 eme La symétrie axiale

6 eme La symétrie axiale 6 eme La symétrie axiale 1. La médiatrice d un segment On dit que est la médiatrice du segment [] si : - - - Ex 1 : Trace la médiatrice de [IJ] et [MN] puis place G pour que soit la médiatrice de [FG].

Plus en détail

«Nous allons apprendre à décrire correctement une forme en employant le vocabulaire mathématique correct.»

«Nous allons apprendre à décrire correctement une forme en employant le vocabulaire mathématique correct.» OBJECTIFS : Etre capable d établir un classement des différents quadrilatères. Etre capable d énoncer les différentes caractéristiques de chacun des quadrilatères. Etre capable de les dessiner. COMPÉTENCES

Plus en détail

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1

Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Les quadrilatères Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Polygones 1 1.1 Définition.................................. 1 1.2 Différentes sortes

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

Géométrie Année

Géométrie Année Géométrie nnée 2012-2013 Sommaire G1- Le vocabulaire de géométrie G2- Les droites perpendiculaires G3- Les droites parallèles G4- Les polygones G5- Les quadrilatères G6- Les triangles G7- Les cercles G8-

Plus en détail

BREVET BLANC. Lundi 28 Février. Mathématiques 3 ème. La calculatrice est autorisée. L épreuve dure 2 heures

BREVET BLANC. Lundi 28 Février. Mathématiques 3 ème. La calculatrice est autorisée. L épreuve dure 2 heures Mathématiques 3 ème Lundi 28 Février BREVET BLANC La calculatrice est autorisée. L épreuve dure 2 heures La rédaction et la présentation seront notées sur 4 points Page 1 Activités Numériques (12 points)

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

Quelques théorèmes de géométrie du triangle

Quelques théorèmes de géométrie du triangle Quelques théorèmes de géométrie du triangle Z, auctore 1 er novembre 2005 1 Propriété des angles Théorème 1 Dans un triangle, la somme des trois angles vaut 180. Précisément, pour un triangle, on a la

Plus en détail

Chapitre 2 Symétrie centrale.

Chapitre 2 Symétrie centrale. Chapitre 2 Symétrie centrale. 1) Symétrique d un point a) Rappel : construction du symétrique d un point par rapport à une droite. Définition : Le symétrique M d un point M par rapport à une droite D est

Plus en détail

6 ème exercices : Introduction à la géométrie

6 ème exercices : Introduction à la géométrie Droites, demi-droites et segments. Exercice 1 Réponse 1 Placer trois points A, B et C non alignés. Tracer la droite qui passe par les points B et C. Tracer le segment d extrémités A et B. Tracer la demi-droite

Plus en détail

Triangles et droites remarquables

Triangles et droites remarquables Triangles et droites remarquables chapitre 8 Te souviens-tu? 1. ; 2. ; 3. ; 4. ; 5. et ctivités 1 Découvrir l'inégalité triangulaire 1. Le voyage de lara Le trajet le plus court est celui passant par Paris.

Plus en détail

Notes de cours. Annexe A : Retour sur les formules d aire

Notes de cours. Annexe A : Retour sur les formules d aire Notes de cours Rappel : Les polygones, le périmètre et l aire 4.1 Le système international d unités (SI) 4.2 L aire d un triangle, d un rectangle et d un parallélogramme 4.3 L aire d un trapèze et d un

Plus en détail

Chapitre 2 Triangle rectangle - Cours -

Chapitre 2 Triangle rectangle - Cours - - Cours - Définition : Dans un triangle rectangle, le côté opposé à l'angle droit est appelé l'hypoténuse. C'est le côté le plus long. I. Cercle circonscrit à un triangle rectangle Rappel : Le cercle circonscrit

Plus en détail

Groupe seconde chance Feuille d exercice n 12

Groupe seconde chance Feuille d exercice n 12 Groupe seconde chance Feuille d exercice n 2 Exercice (D après CRPE Antilles Guyane 995) Monsieur Dupré achète un terrain triangulaire dont les côtés mesurent 20 m, 96 m et 72 m.. Quels sont en millimètres

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

Les programmes de géométrie plane en 2012-2013

Les programmes de géométrie plane en 2012-2013 Les programmes de géométrie plane en 2012-2013 1 Ecole primaire CYCLE 1 Dessiner un rond, un carré, un triangle 2 CYCLE 2 Les élèves enrichissent leurs connaissances en matière d orientation et de repérage.

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

Angles alternes-internes : À l'intérieur des parallèles, de part et d'autre de la sécante.

Angles alternes-internes : À l'intérieur des parallèles, de part et d'autre de la sécante. 1. Angles a) Définitions de base Angles opposés par le sommet : Angles qui ont le même sommet et dont les côtés de l'un sont dans le prolongement des côtés de l'autre angle. Lorsque deux parallèles sont

Plus en détail

Liste 2 : les exercices de construction et analyse de figures

Liste 2 : les exercices de construction et analyse de figures Liste 2 : les exercices de construction et analyse de figures Les exercices 3 et 11 qui étaient proposés dans le document de stage ne correspondant pas à l'esprit du programme car ils nécessitaient de

Plus en détail

Définition 2 Un nombre décimal est un nombre dont l écriture fractionnaire irréductible est de la forme

Définition 2 Un nombre décimal est un nombre dont l écriture fractionnaire irréductible est de la forme CORRIGE EXERCICE 1 [2 points = 0,25 7 + 0,25 suivant qu'une définition est donnée ou pas] Définition 1 Un nombre décimal est un nombre rationnel (une fraction) qui peut s écrire sous la forme d une fraction

Plus en détail

Périmètres et aires. Objectifs du chapitre. Énigme du chapitre. Comparer géométriquement des périmètres

Périmètres et aires. Objectifs du chapitre. Énigme du chapitre. Comparer géométriquement des périmètres Périmètres et aires C H A P I T R E 16 Énigme du chapitre. On partage ce champ rectangulaire en trois pacerelles de même aire. Une est triangulaire et les deux autres sont des trapèzes. 72 m 124 m 62 m

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Le Pavé droit. I. Description

Le Pavé droit. I. Description I. Description Un solide, au sens géométrique, est un objet limité par des surfaces indéformables. Ces surfaces si elles sont planes sont des faces. Mais il y a beaucoup de solides qui n'ont pas de surface

Plus en détail

Le parallélogramme au collège Translation

Le parallélogramme au collège Translation Le parallélogramme au collège Translation Dessiner un parallélogramme, théorème de Varignon, parallélogramme avec contraintes. Sommaire 1. Dessiner un parallélogramme 2. Théorème de Varignon 3. Parallélogramme

Plus en détail

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES Thème N 13: SYMTR ( 3 ) - PRLLLOGRMM (2) - MONSTRTON (2) - QURLTRS - NGLS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TVT 1: O 1 er PROPRT: n utilisant

Plus en détail

Dossier d exercices de révisions en Mathématique (Pâques-2016)

Dossier d exercices de révisions en Mathématique (Pâques-2016) Pour faire le point sur les différents points de matière, nous te proposons de remplir ce dossier. Il est important d'étudier régulièrement et de refaire un maximum d'exercices. A toi de savoir si tu as

Plus en détail

Cahier de pratique La géométrie

Cahier de pratique La géométrie Nom : Groupe : Cahier de pratique La géométrie Éléments de géométrie 1- Réponds aux questions suivantes. a) Combien de droites peut-on faire passer par un point? b) Combien de droites peut-on faire passer

Plus en détail

FICHIER > NOMBRES ET CALCUL > GÉOMÉTRIE > GRANDEURS ET MESURES > ORGANISATION ET GESTION DE DONNÉES EN 120 FICHES ÉLÈVE DE DIFFICULTÉ PROGRESSIVE

FICHIER > NOMBRES ET CALCUL > GÉOMÉTRIE > GRANDEURS ET MESURES > ORGANISATION ET GESTION DE DONNÉES EN 120 FICHES ÉLÈVE DE DIFFICULTÉ PROGRESSIVE FICHIER MATHS CE2 TOUT LE PROGRAMME DE MATHÉMATIQUES EN 120 FICHES ÉLÈVE DE DIFFICULTÉ PROGRESSIVE 11 12 1 2 9 8 3 7 6 4 > NOMBRES ET CALCUL > GÉOMÉTRIE > GRANDEURS ET MESURES > ORGANISATION ET GESTION

Plus en détail

DOCUMENTATION

DOCUMENTATION TRACER UNE ÉPURE Sommaire I. Définition... 2 II. Les outils de traçage... 2 III. La géométrie plane... 3 1. Tracé de l angle droit 2. Tracé d un angle à 60 3. Tracé d un angle quelconque 4. Tracé de la

Plus en détail

Les droites perpendiculaires (3)

Les droites perpendiculaires (3) Exercices de Géométrie Les droites perpendiculaires (3 LES FORMES GEOMETRIQUES Observe le dessin.complète le tableau avec le signe qui signifie "est perpendiculaire à". (d 1 (d 2 (d 3 (d 4 (d 6 (d 5 (d

Plus en détail

Groupe seconde chance Feuille d exercices numéro 5

Groupe seconde chance Feuille d exercices numéro 5 Groupe seconde chance Feuille d exercices numéro 5 Exercice Ecrire chacun des nombres ci-dessous sous forme d une puissance d un nombre entier. On laissera visible les étapes du calcul. = 2 0 x 4 3 = 3

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H.

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H. D 9 E EE D EUE Soit un triangle. Ses hauteurs [], [] et [] se coupent au point. es milieux de [], [] et [] sont respectivement, et, ceux de [], [] et [] sont respectivement, et. Démontre qu il existe un

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Symétrie axiale Symétrie par rapport à une droite Cours

Symétrie axiale Symétrie par rapport à une droite Cours Symétrie axiale Symétrie par rapport à une droite Cours Sont abordés dans ce cours : (cliquez sur le chapitre pour un accès direct) CHAPITRE 1 : symétrie axiale et figures symétriques par rapport à une

Plus en détail

Thème N 12: SYMETRIE AXIALE

Thème N 12: SYMETRIE AXIALE Thème N 12: SYMETRIE XILE la fin du thème, tu dois savoir : onstruire le symétrique d un point, d une droite, d un segment, d un cercle (que l axe de symétrie coupe ou non la figure). onstruire ou compléter

Plus en détail

Repères enseignants pour l évaluation au cycle 3

Repères enseignants pour l évaluation au cycle 3 NOMBRES ET CALCULS Ecrire, nommer, comparer et utiliser les nombres entiers, les nombres décimaux et quelques fractions simples Connaître, savoir écrire et nommer les nombres entiers Comparer, ranger,

Plus en détail

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Tracer un cercle. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la Tracer un cercle 1 Construire un cercle avec un compas. Utiliser le vocabulaire géométrique: centre d un cercle, rayon, diamètre. 1 Trace le cercle C de centre A et de rayon 5 cm. Le cercle C coupe la

Plus en détail

Évaluations nationales Annales CM

Évaluations nationales Annales CM Évaluations nationales Annales CM symétrie Axes de symétrie 1 / Entoure les figures pour lesquelles la droite en pointillés te semble être un axe de symétrie. (Évaluations nationales 2004) 3 / Entoure

Plus en détail

Une démonstration du théorème de Pythagore illustrée avec GEOGEBRA

Une démonstration du théorème de Pythagore illustrée avec GEOGEBRA Une démonstration du théorème de Pythagore illustrée avec GEOGEBRA Le but de cette activité est d apprendre à se servir de GEOGEBRA pour réaliser une figure qui ressemble à la figure suivante et qui illustre

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Programmation numération CM1

Programmation numération CM1 Programmation numération CM1 Les nombres entiers jusqu au milliard - Connaître, savoir écrire et nommer les nombres entiers jusqu au milliard. - Comparer, ranger, encadrer ces nombres. P1 Les nombres de

Plus en détail

PYRAMIDE ET CONE DE REVOLUTION

PYRAMIDE ET CONE DE REVOLUTION PYRAMIDE ET CNE DE REVLUTIN I) Perspective cavalière : Les solides de l espace sont représentés en perspective cavalière. Les conventions suivantes sont à respectées : - une droite est représentée par

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

Programmation annuelle MATHEMATIQUES

Programmation annuelle MATHEMATIQUES Programmation annuelle MATHEMATIQUES COMPETENCES PERIODE 1 PERIODE 2 PERIODE 3 PERIODE 4 PERIODE 5 NOMBRES ET CALCUL Les nombres entiers jusqu au milliard Connaître, savoir écrire et nommer les nombres

Plus en détail