Formulaire BTS. BTS Électrotechnique Formulaire Physique Appliquée

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Formulaire BTS. BTS Électrotechnique Formulaire Physique Appliquée"

Transcription

1 Formulaire BTS Mécanique...1 Mécanique des fluides...3 Électrothermie...4 Loi de l'électricité...5 Valeur moyenne et efficace...5 Puissance...6 Système du premier Ordre...7 Magnétisme...8 Machine synchrone...9 Hacheur...10 Machine Asynchrone...1 Transformateur monophasé...14 Redressement monophasé /16 Bernard STRAUDO

2 Mécanique Puissance Énergie P = dw dt Énergie mécanique E M =E C +E P P = T Ω Poids = mg g = 9,81 m.s - Translation a= dv v= dx dt dt Pour une accélération constante x= 1 at v 0 t x 0 v=v 0 t x 0 Principe fondamental de la dynamique de translation (PFDT), ou relation fondamentale de la dynamique (RFD) ou deuxième loi de Newton F = m a Dans le cas où a=0, le solide est soit immobile soit est en mouvement rectiligne uniforme (première loi de Newton). Travail Énergie cinétique W = F dl E C =1/mv² Énergie potentiel pour le champ gravitationnel E P = mgz Puissance P= mv Troisième loi de Newton Tout corps A exerçant une force sur un corps B subit une force d'intensité égale, de même direction mais de sens opposé, exercée par le corps B. Rotation J : Moment d inertie (kg.m²) T : Moment du couple de force (N.m) Ω : vitesse de rotation (rad/s) v = Ω R v : vitesse linéaire (m/s) R rayon (m) a= d R a :accélération linéaire (m.s dt - ) Principe fondamental de la dynamique T =J Ω t Énergie cinétique E C =1/ JΩ² Moment d inertie de quelques solides : Cylindre : plein ½ MR² Barre : 1/1 ML² Sphère : /5 MR² Cas d un réducteur J 1 N 1 ²=J N Rapport de réduction : k=n/n1 /16 Bernard STRAUDO

3 Mécanique des fluides L e débit volumique en m 3.s -1 Le débit massique q m en kg.s -1 Masse volumique :kg.m -3 q V = V t q m = m t ρ= m v q V = vs S section en m v vitesse m.s -1 q m = ρ q v Pression p= F S 1 bar =10 5 Pa 1 atm= Pa V : volume de fluide (m 3 ) t : temps (s) m : masse de fluide (kg) p : pression en (Pa) F : la force en N S la section en m² Théorème de Bernoulli 1 ρ v v 1 ρg z z 1 p p 1 = P q V Les indices 1 et correspondent à deux lieux choisis. Le fluide s'écoule de 1 vers. P> Pompe P<0 Turbine P=0 pas de machine v : vitesse du fluide (m/s) z : altitude (m) p : pression du fluide (Pa) P : puissance échangée q V : débit volumique (m 3.s -1 ) Nombre de Reynolds R= v d v cinematique 1 Re<000 laminaire Re>3000 turbulent Pertes de Charges ΔJ = λ v l d Dues à la longueur des canalisations ( v v ) + ρg ( z z ) ρ p p1 + ρδj = P q v v cinematique : viscosité cinématique d : diamètre de la canalisation (m) v : vitesse du fluide (m/s) 1 λ= 100 Re λ= 64 Re Pertes accidentelles : dues aux coudes, vannes, Té... 0, 5 avec en laminaire Turbulent 3

4 Électrothermie Température T = t +73,5 T en K et t CT en K (Kelvin), t en C (degré Celsius) 0 K est la température la plus basse, correspond à aucune agitation électronique Différents mode de transfert de la chaleur Convection : transport de l énergie par déplacement d un fluide, déplacement de matière. Conduction : transport de l énergie sans déplacement de matière, seulement l agitation de particules. Rayonnement : transport d énergie par les ondes électromagnétiques. C est le seul transfert possible dans le vide. m est la masse en kg c : chaleur massique du matériaux C Th : J/ C capacité thermique E th =C Th ( θ) C th = mc Capacité thermique P=C Th dt dt Chaleur massique Q = m L Q en joule (J) L est la chaleur latente massique de changement d'état en J kg - 1. Résistance thermique P R th = θ Rth : résistance thermique ( C/W) P : puissance fournie (W) θ : écart de température Résistance thermique d une cloison R = e / λ e est l'épaisseur en mètres et λ est la Conductivité thermique (W m -1 K -1 ) Attention ici R est m².k/w h coefficient d'échange et S surface d'échange R THT = 1/ (S 1 h 1 ) + R th + 1/(S h ) 4

5 Loi de l'électricité Loi des nœuds La somme des courants entrants dans un nœud est égale à la somme des courants sortants de ce nœud. Loi des mailles La somme algébrique des tensions dans une maille est égale zéro. La loi des mailles et des nœuds sont valables avec les valeurs instantanées. En régime alternatif sinusoïdal Nous devons utiliser les nombres complexes ou les vecteurs de Fresnel. Composants élémentaires (dans tous les régimes) u=l di dt Pour une inductance u = R i Pour une résistance i=c du dt Pour un condensateur La valeur moyenne de la dérivée d'une grandeur périodique est nulle (u L et i C ) En sinusoïdal - dipôle purement résistif : Z = [R;0] = R - dipôle purement inductif : Z = [Lω ; 90 ] = j Lω 1 - dipôle purement capacitif : Z =[ ; 90 ] C Valeur moyenne et efficace Valeur moyenne < u >= 1 T T 0 u t dt ou < u >= surface T Mesurée en position DC Valeur efficace (RMS Root Mean Square) U = 1 surfacede u 0 T T Mesurée en position AC+DC (multimètre RMS) T u t dt= < u > Ou U = U = <u> U 1 U U 3... U n valeur efficace de l'harmonique de rang n 5

6 Puissance P puissance active en W Q puissance réactive en VAR S puissance apparente en VA u et i valeurs instantanées et U et valeurs efficaces Dans tout les cas P =<p> =<ui> S =U Cas particuliers Si une des deux grandeurs est constante : P= <u> <i> En régime sinusoïdal monophasé: P= U cos φ Q= U sin φ S =U En régime sinusoïdal triphasé équilibrée : (U tension composée courant de phase) P= 3 U cos φ Q= 3 U sin φ S = 3 U Si une des deux grandeurs est sinusoïdale (l'indice 1 représente le fondamental) P =U 1 cos φ 1 Q = U 1 sin φ 1 S =U Puissance dans les composants élémentaires Composant P Q Résistance P = R ² = U²/R >0 0 nductance 0 Q = X ² = U² / X >0 Condensateur 0 Q = - X ² = - U² / X <0 Puissance déformante (D) en VA S= P Q D Cas où les deux grandeurs possèdent des harmoniques P = U 1 1 cos φ 1 + U cos φ + U 3 3 cos φ 3 + φ 1 déphasage entre U 1 et 1 S = U 6

7 Système du premier Ordre Système régie par des équations différentielles de la forme : dg dt t g =G g =G 1 e G p = G 1 p Démonstration Sans second membre : dg dt g=0 g=k e Solution particulière avec second membre : t dg dt Solution générale avec second membre : g=g K e t ax' bx=0 x=k e b a t dg g=g pour =0 g=g dt Si le condition initiale sont tel que g(0)=0 alors g=g 1 e t/ Courbe pour t=τ g = 0,63 G 1 pour t=3τ g = 0,95 G 0,63 pour t=5τ g = 0,999 G coefficient de la tangente en zéro : 1/τ Calcul d'un temps t= ln 1 g G Utilisation Mécanique : J d dt = T avect =k Electrothermie : mc dt +(T-Ta) dt =P Electricité Circuit RL série U=L di dt Ri 7

8 Magnétisme B champ magnétique en Tesla (T) Φ flux magnétique en Weber (Wb) S surface en m² Champ magnétique crée par un courant Le passage d un courant dans un circuit crée un champ magnétique proportionnel à la valeur de l intensité de ce courant. Flux magnétique φ =B S cos α = B. S α angle entre B et la normale à S Force électromotrice induite (e) e= d E en Volt (V) dt Loi de Laplace B α B F Règle de la main droite : F = B l sin α F force en Newton (N) intensité en Ampère (A) B champ magnétique en Tesla (T) α angle entre le champ et le conducteur traversé par le courant B F F pousse -> Pouce intensité -> ndex B Magnétique -> Majeur. Loi d'hopkinson avec R= l S = R 0 R Φ = N Théorème d'ampère H induction magnétique en A/m H. dl= i µ perméabilité magnétique (H/m) B = µ H µ 0 = 4 π 10-7 H/m B champ magnétique (T) 8

9 Machine synchrone n S = F p F fréquence (Hz) p nombre de paire de pôle n S vitesse de synchronisme E =KNφΩ Ν nombre de conducteur actif par phase. φ flux (Wb) Ω vitesse (rad/s) K coefficient de Kapp (entre, et,6) Modèle pour une phase couplage étoile (Y) r est souvent petit devant X S X S = L S ω Alternateur ou Génératrice Synchrone (GS) E J U X U R V d où V = E S (r + jx S ) V = E s U R U X P ABSORBEE = π n T M + u EX i EX P UTLE = 3 U cos φ Moteur Synchrone (MS) E J U X U R V V = E S + (r + jx S ) V = E s U R U X P ABSORBEE = 3 U cos φ + u EX i EX P UTLE = n T M Décalage interne : déphasage entre E et V Essais Alternateur non saturé Détermination de r La méthode Volt-ampéremétrique en continu sera utilisée : r= U C C Détermination de X S L inducteur de l alternateur sera court-circuité d où : de plus cc = k e E S aura été déterminée par l essai à vide. Z S = E S cc X S = Z S r Alternateur saturé X S devra être calculé pour chaque point de fonctionnement. Pertes Pertes Joule dans l inducteur P JR = u EX i EX = r EX i EX ² Pertes Joule dans l induit P JS = 3 R a où R a est la résistance mesurée entre deux bornes de l induit celui-ci couplé. Pertes constantes Pc Les pertes constantes sont les pertes magnétiques et mécaniques. 9/16 Bernard STRAUDO

10 Hacheur série Hacheur V nterrupteur commandé M Uch u ch Conduction interrompue Le rapport cyclique est temps où l' int errupteur est passant α = la période Pour une conduction ininterrompue i imax imin αt T < u = V et U = V iˆ + i Dans la charge <i ch > = Dans la diode <i D > = α <i CH > Dans l interrupteur <i H > = (1-α) <i CH > i H Ondulation en courant Δi= i i Δi= V 1 α α et Lf Δi MAX = V 8 Lf pour = 1 i D ich Pour un conduction interrompue α fixé par la commande et β-α par la charge. <u CH >= (VTα+(T-Tβ)E)/T= Vα+(1-β)E α ( β α ) V i ch = Lf v ch E αt βt T 10/16 Bernard STRAUDO

11 Hacheur parallèle i V E u ch Conduction ininterrompue u = V = ( 1 α ) U C H U C V = 1 α u Ch i αt T Conduction interrompue u Ch V E u β = V = ( β α ) UC + (1 β V U C = V β α H ) 11/16 Bernard STRAUDO

12 Machine Asynchrone Vitesse de synchronisme (tr/s) n S = f p f : fréquence en Hz et p : nombre de paire de pôle Glissement (sans unité): g= n n S n vitesse de rotation (même unité que n S ) n S g = 0 moteur à la vitesse de synchronisme li n y a pas de couple. g = 1 ou 100% moteur à l arrêt ou en début de démarrage Fonctionnement freinage arrêt moteur asynchrone synchronisme génératrice asynchrone n 0 n S g 1 0 Schéma équivalent et arbre des puissances R S R P JS P JR P m V R FER Xµ X' P ABS P tr P A P UTLE R /g P FS Différentes pertes P FS : Pertes fer au Stator (Déduites de la mesure à vide) P JS : Pertes Joule au Stator P JS = 3 R A =3 R J R A : résistance entre deux bornes du moteur couplé et R résistance d'un enroulement P JR : Pertes Joule au rotor P JR = g P tr = 3R' J² P M : Pertes mécaniques (Dues aux frottements) P C : Pertes constantes P C = P m + P FS Différentes puissances 1/16 Bernard STRAUDO

13 P tr : Puissance transmise au rotor P tr = P abs - ( P FS + P JS ) P tr = Tem Ω S P ta : Puissance transmise à l arbre P ta = P tr P JR = (3R'/g-3R')J² = 3(1-g)/g R'J² P ta = Tem Ω P 0 : Puissance à vide La puissance à vide est la puissance qu absorbe le moteur quand il n entraîne aucune charge. P 0 = P JS + P FS + P M P U : Puissance utile P U = T U Ω Schéma équivalent simplifié R V R FER Xµ X' R /g Courant dans la branche représentant le rotor V R = (U ou V ) R ' g P X Fer =3 R Fer 13/16 Bernard STRAUDO

14 Transformateur monophasé Rapport de transformation m= u 0 u 1 = U 0 U 1 = i 1 i = 1 = N N Schéma équivalent i Ls Rs R Fer E S v R = r + r m et L = m l + l S 1 S 1 Détermination de Rs et Ls à partir de essai en court-circuit Détermination de Rs Détermination de Xs R S = P 1CC A partir de Zs nous obtenons Xs : Z S mu = 1CC X S = ZS RS Détermination de R fer et Lμ à partir de essai à vide ls sont déterminés à partir de l essai à vide mesure de P 10, 10 et U 1. R FER = U 1 X P = U Q 10 Formule approchée de Kapp Diagramme de Kapp ΔU = (R S cos φ + X S sin φ ) U = U 0 ΔU φ déphasage de la charge U LS V E S φ Formule de Boucherot U RS U 1 = 4,44 N 1 S f B max B max valeur maximum du champ magnétique en Tesla (T) s : section du cadre magnétique en m² f : la fréquence en (Hz) 14/16 Bernard STRAUDO

15 Redressement monophasé < u CH >= U MAX U =U CH = U MAX Pour un courant parfaitement lissé dans la charge CH = <i CH > = <i>=0 k = P S =0,9 Facteur de forme : F= U < u > Taux d'ondulation : = U <u > =U U MAX MN <u > 15/16 Bernard STRAUDO

16 Machine à courant continu Schéma U E R M r ie ue nduit nducteur ou excitation Schémas équivalents Moteur Génératrice u i r E R U u i r E R U nducteur nduit nducteur nduit U = E + R U = E - R Couple électromagnétique et f.e.m : T EM = k φ E = k φ Ω K : coefficient dépendant de la machine E : Force électromotrice (V) φ : Flux magnétique sous un pôle en Weber (Wb) : intensité dans l induit (A) Ω : vitesse de rotation en rad/s T EM : Couple électromagnétique (N.m) Montage série T EM = K² Bilan des puissances Moteur P ABS = U+ui PABS P EM P Jinduit P mécanique P UTLE P EM = E = T EM Ω P Jinduit = R² P Jex = ri² Pertes collectives:p C = P mécanique + P FER P UTLE = T Ω P JEX P FER Bilan des puissances Génératrice P mécanique P ABS P EM P Jinduit P UTLE P ABS = T Ω + ui P EM = E = T EM Ω P Jinduit = R² P Jex = ri² Pertes collectives:p C = P mécanique + P FER P UTLE = U P JEX P FER 16/16 Bernard STRAUDO

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Cours d Electricité 2 Électrotechnique Le moteur asynchrone triphasé I.U.T Mesures Physiques Université Montpellier 2 Année universitaire 2008-2009 Table des matières 1 Définition et description 2 2 Principe

Plus en détail

T.P. numéro 27 : moteur asynchrone.

T.P. numéro 27 : moteur asynchrone. T.P. numéro 27 : moteur asynchrone. Buts du TP : le but de ce TP est l étude du moteur asynchrone triphasé. On étudie la plaque signalétique du moteur, puis on effectue un essai à vide et enfin un essai

Plus en détail

transformateurs : 20 A 100 A 600 V 120 V Le schéma de câblage de l'autotransformateur de rapport 600V / 720V est le suivant : 100 A 120 V

transformateurs : 20 A 100 A 600 V 120 V Le schéma de câblage de l'autotransformateur de rapport 600V / 720V est le suivant : 100 A 120 V 1 Transformateur parfait : transformateurs : 1) On désire alimenter sous une tension de 220 V un récepteur monophasé absorbant 50 A avec un facteur de puissance de 0,6 arrière (inductif). Ce récepteur

Plus en détail

Les machines électriques Électricité 2 Électrotechnique Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d Electronique du Sud Université Montpellier 2 e-mail : Christophe.Palermo@univ-montp2.fr

Plus en détail

Repère : Session : 2001 Durée : 2 H 30 Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES

Repère : Session : 2001 Durée : 2 H 30 Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES - La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l appréciation des copies. - Conformément au dispositions

Plus en détail

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU

CONVERTIR L ENERGIE MACHINES A COURANT CONTINU CONVERTIR L ENERGIE MACHINES A COURANT CONTINU Les machines à courant continu sont réversibles. Elles peuvent devenir génératrices ou moteur. Energie mécanique GENERATRICE CONVERTIR L ENERGIE Energie électrique

Plus en détail

PUISSANCE ELECTRIQUE

PUISSANCE ELECTRIQUE PUISSANCE ELECTRIQUE I COURANT CONTINU 1 absorbée par un récepteur 2 Puissance thermique et effet Joule 3 Bilan des puissances a) Conducteur ohmique Conducteur P abs Ohmique P ut = P j le rendement est

Plus en détail

Les hacheurs à liaison directe

Les hacheurs à liaison directe es hacheurs à liaison directe Exercice IX Un hacheur quatre quadrants alimente l induit d une machine à courant continu à aimants permanents. a charge mécanique accouplée sur l arbre de la machine n est

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Energétique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE

Plus en détail

TUTORAT D'ELECTROTECHNIQUE

TUTORAT D'ELECTROTECHNIQUE DRIEU Samuel GARIT Florent TUTORAT D'ELECTROTECHNIQUE Etude d'un véhicule électrique Nous allons ici étudier un véhicule tout électrique mue par une machine électrique. Dans une première partie, nous étudierons

Plus en détail

Etude d'un monte-charge

Etude d'un monte-charge BTS ELECTROTECHNIQUE Session 1998 3+

Plus en détail

Le moteur asynchrone triphasé

Le moteur asynchrone triphasé Le moteur asynchrone triphasé 1 ) Généralités Le moteur asynchrone triphasé est largement utilisé dans l'industrie, sa simplicité de construction en fait un matériel très fiable et qui demande peu d'entretien.

Plus en détail

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/

Electrotechnique. Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ Electrotechnique Fabrice Sincère ; version 3.0.5 http://pagesperso-orange.fr/fabrice.sincere/ 1 Sommaire 1 ère partie : machines électriques Chapitre 1 Machine à courant continu Chapitre 2 Puissances électriques

Plus en détail

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2

CHAPITRE IX. Modèle de Thévenin & modèle de Norton. Les exercices EXERCICE N 1 R 1 R 2 CHPITRE IX Modèle de Thévenin & modèle de Norton Les exercices EXERCICE N 1 R 3 E = 12V R 1 = 500Ω R 2 = 1kΩ R 3 = 1kΩ R C = 1kΩ E R 1 R 2 U I C R C 0V a. Dessiner le générateur de Thévenin vu entre les

Plus en détail

LES DIODES. I La diode à jonction. I.1 Constitution. Elle est réalisée par une jonction PN. Symbole : Composant physique : Polytech'Nice Sophia 1

LES DIODES. I La diode à jonction. I.1 Constitution. Elle est réalisée par une jonction PN. Symbole : Composant physique : Polytech'Nice Sophia 1 I La diode à jonction I.1 Constitution Elle est réalisée par une jonction PN. Symbole : Composant physique : Polytech'Nice Sophia 1 I.2 Caractéristique d'une diode Définition : c'est le graphique qui donne

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

TRAVAUX DIRIGES Equipements Electriques La machine à courant continu

TRAVAUX DIRIGES Equipements Electriques La machine à courant continu Ingénieur Manager Entrepreneur TRAVAUX DIRIGES Equipements Electriques La machine à courant continu ITEEM 1ere année 1 Les exercices encadrés seront fait en TD. Il est vivement conseillé de préparer les

Plus en détail

TRAVAUX DIRIGÉS MOBILITÉ ÉLECTRIQUE

TRAVAUX DIRIGÉS MOBILITÉ ÉLECTRIQUE TRAVAUX DIRIGÉS MOBILITÉ ÉLECTRIQUE REDRESSEURS HACHEURS ONDULEURS pour l association CONVERTISSEURS MACHINES VARIATION de VITESSE DUT GEii 2 ème année Module AT 11 T.D. 1 - ÉTUDE D UN REDRESSEUR ALIMENTANT

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Servomoteurs numériques à courant alternatif MKD MKD041 6-1. Description Symbole Unité Données

Servomoteurs numériques à courant alternatif MKD MKD041 6-1. Description Symbole Unité Données Servomoteurs numériques à courant alternatif MKD MKD041 6-1 6 MKD041 6.1 Données techniques MKD041 Type du moteur Description Symbole Unité Données MKD041B-144 Vitesse de rotation nom. moteur 1) n min

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

27/31 Rue d Arras 92000 NANTERRE Tél. 33.(0)1.47.86.11.15 Fax. 33.(0)1.47.84.83.67

27/31 Rue d Arras 92000 NANTERRE Tél. 33.(0)1.47.86.11.15 Fax. 33.(0)1.47.84.83.67 Caractéristiques standards MODELE Puissance secours @ 50Hz Puissance prime @ 50Hz Moteur (MTU, 16V4000G61E ) Démarrage électrique, alternateur de charge 24 V, régulation Elec Alternateur (LEROY SOMER,

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE S e s s i o n 2 0 0 8 PHYSIQUE APPLIQUÉE Série : Spécialité : Sciences et Technologies industrielles Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'usage

Plus en détail

Chapitre 5 : Le travail d une force :

Chapitre 5 : Le travail d une force : Classe de 1èreS Chapitre 5 Physique Chapitre 5 : Le travail d une force : Introduction : fiche élève Considérons des objets qui subissent des forces dont le point d application se déplace : Par exemple

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES «Génie Électronique» Session 2012 Épreuve : PHYSIQUE APPLIQUÉE Durée de l'épreuve : 4 heures Coefficient : 5 Dès que le sujet vous est

Plus en détail

TABLE DES MATIERES. Mécanique du solide... 17 I. Introduction...17 II. Définitions...17 III. Energies...21 IV. Les lois de la mécanique...

TABLE DES MATIERES. Mécanique du solide... 17 I. Introduction...17 II. Définitions...17 III. Energies...21 IV. Les lois de la mécanique... Table des matières iii TABLE DES MATIERES RESUME DE COURS Grandeurs périodiques. Circuits linéaires en régime sinusoîdal... 3 I. Propriétés des grandeurs périodiques...3 II. Régime sinusoïdal...3 III.

Plus en détail

ELEC2753 Electrotechnique examen du 11/06/2012

ELEC2753 Electrotechnique examen du 11/06/2012 ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GÉNIE MÉCANIQUE SESSION 2009. Polynésie SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE

BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GÉNIE MÉCANIQUE SESSION 2009. Polynésie SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES GÉNIE MÉCANIQUE SESSION 2009 Polynésie SCIENCES PHYSIQUES ET PHYSIQUE APPLIQUÉE Durée : 2 heures Coefficient : 5 L'emploi de toutes les

Plus en détail

Puissance en monophasé : mesure des puissances active et réactive consommées par un récepteur

Puissance en monophasé : mesure des puissances active et réactive consommées par un récepteur Puissance en monophasé : mesure des puissances active et réactive consommées par un récepteur 16 2006 Bibliographie L. Quaranta, JM Donnini, Dic. physique tome 4 nouvelle édition, Pierron H. Prépa Electronique

Plus en détail

Sujets et Corrigés d Oral Blanc de Sciences Physiques et Physique Appliquée STI Génie Civil

Sujets et Corrigés d Oral Blanc de Sciences Physiques et Physique Appliquée STI Génie Civil Sujets et Corrigés d Oral Blanc de Sciences Physiques et Physique Appliquée STI Génie Civil Réalisés par Emmanuel HOURDEQUIN Professeur de Physique au lycée Livet de Nantes à partir de sujets du baccalauréat

Plus en détail

CHAPITRE III : Travail et énergie

CHAPITRE III : Travail et énergie CHPITRE III : Travail et énergie III. 1 En principe, les lois de Newton permettent de résoudre tous les problèmes de la mécanique classique. Si on connaît les positions et les vitesses initiales des particules

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Place Cormontaigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fax : 03 87 31 85 36 Sciences Appliquées. Savoir-faire expérimentaux. Référentiel : S5 Sciences Appliquées.

Plus en détail

UE 4. Evaluation des méthodes d'analyse appliquées aux sciences de la vie et de la santé. Dr Tristan Richard. L1 santé année universitaire 2011/12

UE 4. Evaluation des méthodes d'analyse appliquées aux sciences de la vie et de la santé. Dr Tristan Richard. L1 santé année universitaire 2011/12 UE 4 Evaluation des méthodes d'analyse appliquées aux sciences de la vie et de la santé Dr Tristan Richard L1 santé année universitaire 2011/12 UE 4 : Evaluation des méthodes d'analyse appliquées aux sciences

Plus en détail

EPREUVE SPECIFIQUE - FILIERE TSI PHYSIQUE. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE TSI PHYSIQUE. Durée : 4 heures SESSION 2012 TSIP003 EPREUVE SPECIFIQUE - FILIERE TSI PHYSIQUE Durée : 4 heures N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si

Plus en détail

TABLE DES MATIERES. PREAMBULE : Objectif et Motivations. CHAPITRE I : Cinématique du point matériel

TABLE DES MATIERES. PREAMBULE : Objectif et Motivations. CHAPITRE I : Cinématique du point matériel TABLE DES MATIERES I PREAMBULE : Objectif et Motivations CHAPITRE I : Cinématique du point matériel I.1 : Introduction I.2 : Cinématique à 1 dimension I.2.1 : Repérage du mobile I.2.2 : La vitesse moyenne

Plus en détail

Chapitre 10 : Mécanique des fluides

Chapitre 10 : Mécanique des fluides Chapitre 10 : Mécanique des fluides 1. Pression hydrostatique Les fluides regroupent gaz et liquides. En général, on considère des fluides incompressibles. Ce n est plus le cas en thermodynamique. Un objet

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Apprenez comment résoudre ce problème dans ce chapitre. www.copperconsultancy.com/about-us/about-copper/

Apprenez comment résoudre ce problème dans ce chapitre. www.copperconsultancy.com/about-us/about-copper/ Le solénoïde montré sur la figure a une inductance de mh et est traversé par un courant de 1 A. Le fil qui forme le solénoïde a une résistance de,5. Quelle est la différence de potentiel entre les deux

Plus en détail

RAPPEL. F em = BlI. 4. La loi de la dynamique : si la vitesse v est constante, elle implique :

RAPPEL. F em = BlI. 4. La loi de la dynamique : si la vitesse v est constante, elle implique : RAEL Quatre lois déterminent le système électromécanique : 1. La loi de Faraday : si la vitesse du conducteur est v Il aaraît une f.é.m. E : E = Blv 2. La loi de Lalace : si le courant dans le conducteur

Plus en détail

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX)

L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) L induction électromagnétique et la loi de Faraday (Tous les cours à partir du cours XIX) Le phénomène d induction électromagnétique peut être mis en évidence par les deux expériences simples suivantes.

Plus en détail

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1 1 Introduction Un convertisseur statique est un montage utilisant des interrupteurs à semiconducteurs permettant par une commande convenable de ces derniers de régler un transfert d énergie entre une source

Plus en détail

M ACHINES ASYNCHRONES

M ACHINES ASYNCHRONES O1MM 2e année M ACHINES ASYNCHRONES Cours et Problèmes Claude C HEVASSU Grégory VALENTIN version du 21 septembre 2014 Table des matières 1 Machines asynchrones 1 1.1 Symboles..................................

Plus en détail

Travaux pratiques. Module Électricité 2. Électrocinétique, circuits magnétiques, transformateur monophasé, système triphasé

Travaux pratiques. Module Électricité 2. Électrocinétique, circuits magnétiques, transformateur monophasé, système triphasé 1ère année d IUT de Mesures Physiques Travaux pratiques Module Électricité 2 Électrocinétique, circuits magnétiques, transformateur monophasé, système triphasé Arnaud MARTIN (rédaction) & Olivier BACHELIER

Plus en détail

Convertisseurs Statiques & Machines

Convertisseurs Statiques & Machines MASTER EEA Parcours CESE Travaux Pratiques Convertisseurs Statiques & Machines EM7ECEBM V. BLEY D. RISALETTO D. MALEC J.P. CAMBRONNE B. JAMMES 0-0 TABLE DES MATIERES Rotation des TP Binôme Séance Séance

Plus en détail

Electrotechnique triphasé. Chapitre 11

Electrotechnique triphasé. Chapitre 11 Electrotechnique triphasé Chapitre 11 CADEV n 102 679 Denis Schneider, 2007 Table des matières 11.1 GÉNÉRALITÉS... 2 11.1 1 DÉFINITION TENSIONS TRIPHASÉES... 2 11.1.2 COURANTS TRIPHASÉS... 2 11.1.3 AVANTAGE

Plus en détail

Le moteur à courant continu à aimants permanents

Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Le moteur à courant continu à aimants permanents Principe, caractéristiques Alimentation, variation de vitesse Puissance, rendement Réversibilité Cette

Plus en détail

VENTELEC RENOUVELER L AIR

VENTELEC RENOUVELER L AIR OBJECTIF Etudier l influence du Variateur de vitesse, sur le banc moto-ventilateur, en phase de démarrage et en régime établi (volet totalement OUVERT). Mettre en œuvre les mesureurs et leurs accessoires.

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

Université libanaise. Synchrocoupleur Automatique

Université libanaise. Synchrocoupleur Automatique Université libanaise Faculté de génie III Beyrouth Hadath Département électricité et électronique Informatique Industrielle Projet de fin d étude Synchrocoupleur Automatique Préparé par : Hassan Dawood------------------------------------Mohamad

Plus en détail

Electrotechnique: Electricité Avion,

Electrotechnique: Electricité Avion, Electrotechnique: Electricité Avion, La machine à Courant Continu Dr Franck Cazaurang, Maître de conférences, Denis Michaud, Agrégé génie Electrique, Institut de Maintenance Aéronautique UFR de Physique,

Plus en détail

ANALYSE HARMONIQUE SUR RESEAU EDF. Enoncé des Travaux Pratiques

ANALYSE HARMONIQUE SUR RESEAU EDF. Enoncé des Travaux Pratiques Lycée Edouard Belin 70 000 VESOUL BTS Electrotechnique Essai de système Première partie: ANALYSE HARMONIQUE SUR RESEAU EDF SOMMAIRE Electrotechnique. Enoncé du T.P effectué en BTS Deuxième partie: harmoniques.

Plus en détail

Amélioration de la commande P&O par une détection synchrone du courant de batterie

Amélioration de la commande P&O par une détection synchrone du courant de batterie Revue des Energies Renouvelables ICESD 11 Adrar (2011) 113-121 Amélioration de la commande P&O par une détection synchrone du courant de batterie R. Merahi * et R. Chenni Département d Electrotechnique,

Plus en détail

EXERCICE I. Altitude en mètre

EXERCICE I. Altitude en mètre EXERCICE I L exercice I est composé de 4 problèmes indépendants. La disparition des ampoules à incandescence s explique par le très mauvais rendement de cette technologie (de l ordre de 5 %). Ces ampoules

Plus en détail

ALIMENTATIONS A DECOUPAGE

ALIMENTATIONS A DECOUPAGE Polytech'Nice 4 ème Année T.P. d'electronique TP N 6 AIMENTATIONS A DECOUPAGE I. e mécanisme de régulation à découpage e but de cette manipulation est la compréhension du mécanisme de régulation par découpage.

Plus en détail

ANALYSES TEMPORELLE ET SPECTRALE APPAREILS USUELS

ANALYSES TEMPORELLE ET SPECTRALE APPAREILS USUELS Charges non linéaires BUT : - Observer le courant i ( t ) absorbé par différentes charges non linéaires alimentées par une tension monophasée 230 V / 50 Hz - Relever le Taux de distorsion harmonique du

Plus en détail

TRANSFERT DE CHALEUR

TRANSFERT DE CHALEUR TP - L3 Physique - Plate-forme TTE - C.E.S.I.R.E. - Université Joseph Fourier - Grenoble TRANSFERT DE CHALEUR Document à lire avant de commencer TOUT TP de Thermodynamique Ce document est un résumé des

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

IB IL 24 DO 16-PAC. Données de base. Référence: 2861292

IB IL 24 DO 16-PAC. Données de base. Référence: 2861292 Données de base IB IL 24 DO 16-PAC Référence: 2861292 Module Inline de sorties tout-ou-rien, complet avec accessoires (connecteurs et porte-étiquette), 16 sorties, 24 V DC, 500 ma, raccordement à 3 fil

Plus en détail

WWW.ELCON.SE Multichronomètre SA10 Présentation générale

WWW.ELCON.SE Multichronomètre SA10 Présentation générale WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé

Plus en détail

L ALLUMAGE. Rappel : Rôle du circuit d allumage : Amorcer à un instant bien précis la combustion du mélange air/carburant contenu dans le cylindre.

L ALLUMAGE. Rappel : Rôle du circuit d allumage : Amorcer à un instant bien précis la combustion du mélange air/carburant contenu dans le cylindre. L ALLUMAGE Rappel : Rôle du circuit d allumage : Amorcer à un instant bien précis la combustion du mélange air/carburant contenu dans le cylindre. - 1 - Création de l arc électrique : L arc électrique

Plus en détail

TP N 01 : Redressement non commandé - Montage monophasé mono alternance

TP N 01 : Redressement non commandé - Montage monophasé mono alternance Université Djillali LIABES Sidi Bel-Abbes Faculté de sciences de l Ingénieur - Département d Electrotechnique - Licence ELM ETT Module Electronique de puissance TP N 01 : Redressement non commandé - Montage

Plus en détail

CHAPITRE XII : L'induction électromagnétique et les inducteurs

CHAPITRE XII : L'induction électromagnétique et les inducteurs CHAPITRE XII : L'induction électromagnétique et les inducteurs XII. 1 Nous avons vu dans le chapitre XI qu'un courant produisait un champ magnétique. A la suite de cette observation, les scientifiques

Plus en détail

Mathématiques pour les Sciences de la Vie Introduction du cours

Mathématiques pour les Sciences de la Vie Introduction du cours Mathématiques pour les Sciences de la Vie Introduction du cours Automne 2011 Resp : S. Mousset Université Claude Bernard Lyon I France Table des matières 1 Présentation de l UE 2 Abrégé de langage mathématique...

Plus en détail

Le GBF Générateur basse fréquence

Le GBF Générateur basse fréquence Le GBF Générateur basse fréquence Il génère des signaux alternatifs ( carré, sinusoïdale et triangulaire ) en sa sortie ( output- 50 ) Pour chaque signal, on peut modifier : l amplitude ( en agissant sur

Plus en détail

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE Spé ψ 1-11 Devoir n ÉLECTROMAGNÉTISME LINDAGE ELECTROMAGNETIQUE Ce problème s intéresse à certains aspects du blindage électromagnétique par des conducteurs La section A rassemble quelques rappels destinés

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

MOTEURS ASYNCHRONES TRIPHASES FERMES AUTOVENTILES A USAGE GENERAL TYPE ASU

MOTEURS ASYNCHRONES TRIPHASES FERMES AUTOVENTILES A USAGE GENERAL TYPE ASU MOTEURS ASYNCHRONES TRIPHASES FERMES AUTOVENTILES A USAGE GENERAL TYPE ASU La série de moteurs fermés à usage général est destinée aux usages industriels, comme par exeple la commande des machines-outis,des

Plus en détail

pendule pesant pendule élastique liquide dans un tube en U

pendule pesant pendule élastique liquide dans un tube en U Chapitre 2 Oscillateurs 2.1 Systèmes oscillants 2.1.1 Exemples d oscillateurs Les systèmes oscillants sont d une variété impressionnante et rares sont les domaines de la physique dans lesquels ils ne jouent

Plus en détail

Règles à respecter impérativement :

Règles à respecter impérativement : Précautions TP conversion d énergie 1A Les sources d énergie continues ou alternatives utilisées en Electrotechnique ou Electronique de Puissance sont souvent des sources de tension non limitées en courant

Plus en détail

Bloc d'extension de contacts

Bloc d'extension de contacts Gertebild ][Bildunterschrift Kontakterweiterungen Bloc d'extension de contact pour une augmentation et un renforcement du nombre de contacts de sécurité Homologations Zulassungen Caractéristiques de l'appareil

Plus en détail

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014

Travaux pratiques d électronique, première séance. Circuits passifs. S. Orsi, A. Miucci 22 septembre 2014 Travaux pratiques d électronique, première séance Circuits passifs S. Orsi, A. Miucci 22 septembre 2014 1 Révision 1. Explorez le protoboard avec le voltmètre. Faites un schéma des connexions. 2. Calibrez

Plus en détail

Chargement blocs de 3 rangées. Transfert

Chargement blocs de 3 rangées. Transfert I- DESCRIPTION: Le système d encaissage permet de remplir, par du produit en boîtes, des caisses en carton qui seront transférées vers un magasin de stockage à l aide d un monte-charge. Il comporte : -

Plus en détail

Modélisation et simulation des systèmes électriques Modélisation d une chaîne de traction d un véhicule électrique

Modélisation et simulation des systèmes électriques Modélisation d une chaîne de traction d un véhicule électrique Modélisation et simulation des systèmes électriques Modélisation d une chaîne de traction d un véhicule électrique 1 A But On souhaite développer le modèle et la commande d une chaîne de traction reposant

Plus en détail

ETUDE D UNE CHAINE CINEMATIQUE

ETUDE D UNE CHAINE CINEMATIQUE E2 ETUDE D UN OUVRAGE Cours 1BI S2 : Utilisation de l énergie S2.1 : Machines électromagnétiques ETUDE D UNE CHAINE CINEMATIQUE 1. TRANSMISSION PAR POULIES COURROIES. 1.1. Fonction : Transmettre par adhérence,

Plus en détail

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE

IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE IU DE NÎMES DÉPAREMEN GEII ÉLECRONIQUE DE PUISSANCE AMÉLIORAION DU FACEUR DE PUISSANCE Yaël hiaux yael.thiaux@iut-nimes.fr 13 septembre 013 able des matières 1 Généralités 3 1.1 Historique........................................

Plus en détail

Sondes de température à plongeur

Sondes de température à plongeur 1 782 1782P01 Symaro Sondes de température à plongeur QAE2164... QAE2174... Sondes actives pour la mesure de la température de l'eau dans les canalisations et réservoirs Alimentation 24 V~ ou 13,5...35

Plus en détail

Vérin pneumatique cylindrique, alésage Ø 8 25 mm Simple effet selon DIN ISO 6432

Vérin pneumatique cylindrique, alésage Ø 8 25 mm Simple effet selon DIN ISO 6432 Vérin pneumatique cylindrique, alésage Ø 25 mm Simple effet selon DIN ISO 6432 Caractéristiques techniques de la série HE Codification de commande HE-16-025 Série Alésage Ø Course (mm) Type de construction

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

MATURITA DES SECTIONS BILINGUES FRANCO-TCHEQUES ET FRANCO-SLOVAQUES EXAMEN DE MATURITA BILINGUE. Année scolaire 2009/10 Session de mai 2010

MATURITA DES SECTIONS BILINGUES FRANCO-TCHEQUES ET FRANCO-SLOVAQUES EXAMEN DE MATURITA BILINGUE. Année scolaire 2009/10 Session de mai 2010 MATURITA DES SECTIONS BILINGUES FRANCO-TCHEQUES ET FRANCO-SLOVAQUES EXAMEN DE MATURITA BILINGUE Année scolaire 009/10 Session de mai 010 EPREUVE DE PHYSIQUE Durée : 3 heures Le sujet est constitué de cinq

Plus en détail

Pinces ampèremétriques pour courant AC/DC

Pinces ampèremétriques pour courant AC/DC Pinces ampèremétriques pour courant AC/DC La série EN est destinée à mesurer des courants alternatifs et continus en utilisant la technologie à effet Hall. Les courants mesurés vont de quelques milliampères

Plus en détail

Circuits intégrés micro-ondes

Circuits intégrés micro-ondes Chapitre 7 Circuits intégrés micro-ondes Ce chapitre sert d introduction aux circuits intégrés micro-ondes. On y présentera les éléments de base (résistance, capacitance, inductance), ainsi que les transistors

Plus en détail

Les Contrôles Non Destructifs

Les Contrôles Non Destructifs Les Contrôles Non Destructifs 1 Méthodes de maintenance MAINTENANCE d'après l'afnor CORRECTIVE PREVENTIVE PALLIATIVE Dépannage (Défaillance partielle) CURATIVE Réparation (Défaillance totale) SYSTEMATIQUE

Plus en détail

Charges électriques - Courant électrique

Charges électriques - Courant électrique Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant

Plus en détail

Moteurs pas à pas Michel ABIGNOLI Clément GOELDEL Principe des moteurs pas à pas Structures et modèles de description Alimentation Commande

Moteurs pas à pas Michel ABIGNOLI Clément GOELDEL Principe des moteurs pas à pas Structures et modèles de description Alimentation Commande Moteurs pas à pas par Michel ABIGNOLI Professeur d Université à l ENSEM (École Nationale Supérieure d Électricité et de Mécanique de Nancy) et Clément GOELDEL Professeur d Université à la Faculté des Sciences

Plus en détail

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction

Athénée Royal de Pepinster. Electrotechnique. La diode à jonction La diode à jonction I Introduction La diode est le semi-conducteur de base. Son fonctionnement est assimilable à celui d un interrupteur qui ne laisse passer le courant que dans un seul sens. C est la

Plus en détail

MESURE DES TENSIONS ET DES COURANTS

MESURE DES TENSIONS ET DES COURANTS Chapitre 7 MESURE DES TENSIONS ET DES COURANTS I- MESURE DES TENSIONS : I-1- Généralités : Pour mesurer la tension UAB aux bornes d un récepteur, il faut brancher un voltmètre entre les points A et B (

Plus en détail

BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel

BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES. Étude d un Système Technique Industriel BACCALAURÉAT SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité génie électronique Étude des Systèmes Techniques Industriels SYSTÈME DE DISTRIBUTION AUTOMATIQUE DE BOISSONS CHAUDES ES 7600 NECTA-WITTENBORG.

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BT 23 Dans ce sujet, on étudiera un éhicule électrique selon différents aspects : énergie apportée, conertisseur statique, motorisation, capteur de itesse des roues et conditionnement de cette information.

Plus en détail

Electricité-Electronique

Electricité-Electronique Chapitre 1 Electricité-Electronique Question 1. A. Dans les conditions normales de température et de pression, la vitesse de propagation du son dans le vide est voisine de 300 000 km/s Faux : D'une part

Plus en détail

Récapitulatif. Fiche technique 70.7030 (95.6530) Page 1/10. dtrans T03 J Type 707030/...

Récapitulatif. Fiche technique 70.7030 (95.6530) Page 1/10. dtrans T03 J Type 707030/... JUMO GmbH & Co. KG Adresse de livraison : Mackenrodtstraße 14, 3039 Fulda, Allemagne Adresse postale : 303 Fulda, Allemagne Téléphone : 49 1 0030 Télécopieur : 49 1 00307 EMail : mail@jumo.net Internet

Plus en détail

Directives d utilisation

Directives d utilisation Directives d utilisation 30072-450-08 11/98 Variateur de vitesse VSD07 Manuel d installation et d opération DANGER TENSION DANGEREUSE Lisez et comprenez ce bulletin dans son intégralité avant d installer

Plus en détail