L ALTERNATEUR SYNCHRONE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "L ALTERNATEUR SYNCHRONE"

Transcription

1 L ALTERNATEUR SYNCHRONE I) Définition et intérêt : 1) Définition : Un alternateur synchrone = machine électrique tournante en mode génératrice et produisant de l énergie électrique alternative. Nous étudierons le cas d un alternateur synchrone triphasé : l induit peut être câblé en Y ou en. 2) Intérêt : Convertie de la puissance méca. en puissance électrique. Principe simple et rendement très important ( 100 %) Peut être intégré dans des systèmes embarqués et dans des installations de puissance Sa taille est négligeable par rapport à la puissance délivrée Ex : un alternateur de centrale = plusieurs dizaines de MVA pour un diamètre de plusieurs dizaines de mètre L alternateur est la base de presque toute la production d énergie électrique mondiale II) Principe de fonctionnement : 1) Production d une f.e.m sinusoïdale dans une bobine : Soit une bobine plate de N spires dans un champ d induction magn. avec une vitesse angulaire ω. Ce champ magn. tournant pourra être obtenu par la rotation d un aimant ou d un électro-aimant : Avec Bm : la valeur efficace du champ d induction magn. tel que : Ox, Bm = ω. t Et le flux d induction : Φ t = Bm. 2. S. N. sin (ω. t), Avec S : section de la bobine. Par suite, comme t = dφ, on obtient e t = Bm. 2. S. N. ω. cos (ωt) dt e t = e. 2. cos (ωt) ; Avec e = Bm. S. N. ω Notons qu une période correspond à une rotation du champ magn. d un tour. 2) Principe de la production de forces électromotrices triphasées équilibrées : Soit trois bobines identiques décalées entre elles de 120 et soumise au même champ tournant. A ces décalages correspondent des retards de phase de 2π 3 et de 4π 3 d où : e 1 t = e. 2. cos (ωt) e 2 t = e. 2. cos (ωt 2π 3 ) e 3 t = e. 2. cos ωt + 2π 3 = e. 2. cos (ωt 4π 3 ) On choisie l origine des phases horizontale et le sens direct dans le sens trigonométrique. De plus, on constate que les 3 f.e.m produites par le champ magn. d intensité constante forment un système triphasé équilibré.

2 III) Technologie de l alternateur synchrone : 1) Les circuits électriques : Le rotor est l inducteur : c est lui que va absorber la puissance mécanique : Le rotor-inducteur de l alternateur peut être constitué par un aimant permanent = rotor brushless Le rotor-inducteur peut aussi être constitué d un bobinage que l on fait parcourir par un courant continu = rotor bobiné. Cependant, ce dernier doit être alimenté en courant durant son mouvement : il sera donc confronté au problème des balais et du collecteur. Ainsi, le cas de l alternateur brushless correspondra à une simplification de ce cas général. le courant inducteur = courant d excitation Par son principe de fonctionnement le rotor-inducteur est aussi appelé roue polaire. Le stator est l induit : il produit la puissance électrique. Il est constitué de 3 bobinages décalés de 2π 3, afin de créer des f.e.m ayant ce même décalage. Pour améliorer le fonctionnement du stator il suffit de mettre 2 bobinages par phase : cela permet de profiter au maximum du champ magn. et d augmenter ainsi le rendement de conversion (sans changer les fréquences des f.e.m). Si l un des 2 bobinages induits = pôle nord pour le rotor alors l autre présente le pôle sud : paire de pôle. Remarque : Les champs induits tournent dans le stator à la même vitesse que le rotor. C est pour cela que l alternateur est dit synchrone. Sa vitesse de rotation est notée : n S (tr. s 1 ) 2) Les paires de pôles : p : nombre de paires de pôles f = p. n S f : fréquence (Hz) En jouant sur le nombre de paires de pôles, il sera possible de s adapter à toutes les situations : - Les centrales thermiques ou à vapeur = alternateur tournant à des vitesses rapides ( tr/min) - Les centrales hydroélectriques = alternateur tournant à vitesse lente (qq centaine de tr/min) On peut constater que le rotor porte le même nombre de paires de pôles que le stator. 3) Symboles électriques : Avec : GS : Génératrice synchrone : Courant continu

3 IV) Fonctionnement de l alternateur synchrone : 1) Schémas électriques équivalents : En condition de fonctionnement raisonnable, le comportement électrique de la machine est donné par le modèle équivalent de Behn-Eschenburg : Avec : r S : Résistance de l enroulement Pertes par échauffement dans la phase X S = L S. ω : réactance synchrone Pertes de flux magn. et réaction magn. d induit Remarque : La présence des notations V et J permettent de dresser un modèle dans le cas générale : - Si alt. monté en étoile : chaque phase délivre V et I. - Si alt. monté en triangle : chaque phase délivre U et J Dans la pratique, on préfère les alt. monté en étoile afin de créer le neutre. D après la loi des mailles : E = r S + j. X S. J + V Or les bobinages induits sont faits de façon à être très peu résistants tels que : r S X S Donc : E = j. X S. J + V 2) Détermination des grandeurs d une phase : a) Force électromotrice : K : constante de la machine = coef. de Kapp N : nombre de conducteur d une phase E = K. N. f. Φ = K. N. Φ. p. n S E : valeur efficace de la f.e.m E Φ : flux magn. La valeur efficace de la force électromotrice peut aussi être évalué par mesure à vide, car si l on supprime la charge, alors le courant J = O et donc : E = V E = V b) La réactance synchrone : La réactance synchrone se détermine elle-aussi par la mesure : si l on remplace la charge, par un courtcircuit alors la tension de sortie est annulée et le courant prend une valeur élevée de court-circuit. On obtient donc : V = 0 et J = J cc. Et ainsi : E = j. X S. J cc j. X S = E, Par suite : X J s = E cc J cc On en conclue que la réactance synchrone d une phase se mesure à l aide d un essai à vide (en circuit ouvert) suivi d un essai en court-circuit. 3) Caractéristiques de l alternateur synchrone : a) Caractéristique interne : Caractéristique interne d un alternateur = courbe (i), avec i : courant inducteur (ou d excitation) Or E s obtient à vide donc il s agit de la caractéristique V(i) effectuée : - A vitesse ou fréquence de rotation : n S = cste - A courant induit d intensité nulle : I = 0

4 b) Caractéristique en court-circuit : Caractéristique en court-circuit = courbe J cc (i) tracée : - A vitesse de rotation : n S = cste - A tension V = 0 Cette proportionnalité entre J cc et i est toujours valable dans un alternateur synchrone. c) Caractéristique externe : Caractéristique externe = caractéristique en charge de l alternateur, réalisée à l aide d une charge d impédance variable mais de cos (φ) constant. On obtient donc la courbe V(I) : - A vitesse de rotation n S = cste - A courant d excitation d intensité i = cste - Avec une charge dont cos φ = cste La courbe C 1 = charge purement résistive La courbe C 2 = charge résistive et inductive La chute de tension est d autant plus grande que la charge est inductive. La courbe C 3 = charge résistive et capacitive La chute de tension est d autant plus petite que la charge est capacitive Même si i et cos (φ) peuvent être choisis arbitrairement, la fréquence de rotation est imposée puisqu elle conditionne la fréquence f des grandeurs électriques. d) Diagramme de Behn-Eschenburg : - Lorsque V < E : l alternateur est dit sur-excité (V en avance sur J) cas d une charge inductive (a) - Lorsque V > E : l alternateur est dit sous-excité (V en retard sur J) cas d une charge capacitive (b)

5 e) Bilan des pertes et puissances : Pertes joule au rotor P JR u. i Puissance absorbée : P a = T a. Ω = 2π. n. T a Même en mode génératrice une puissance électrique u. i doit être fournie au rotor-inducteur pour créer l excitation et le champ d induction. Puissance utile : P u = I. U. 3. cos (φ) Les pertes variables : P J = P JS + P JR = 3 RI² + u. i 2 Les pertes constantes P cste = P rot + P f mesurables à vide Rendement : η = P u P a = P u P u +P JS +P JR +P cste = P a P JS P JR P cste P a f) Détermination des pertes constantes dans l alternateur : A vide : P u0 = 0, car I 0 = 0, de plus P a0 = P cste. Donc : P cste = 2π. n 0. T a0

Chapitre 6 : machine synchrone

Chapitre 6 : machine synchrone Chapitre 6 : machine synchrone Introduction I constitution 1. inducteur ou rotor 2. induit ou stator 3. symboles de l alternateur 4. exercices II Fém induites III Fonctionnement de l alternateur 1. Etude

Plus en détail

8 exercices corrigés d Electrotechnique sur l alternateur

8 exercices corrigés d Electrotechnique sur l alternateur 8 exercices corrigés d Electrotechnique sur l alternateur Exercice G01 : alternateur Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une

Plus en détail

MOTEUR / ALTERNATEUR

MOTEUR / ALTERNATEUR MOTEUR / ALTERNATEUR INTRODUCTION Les machines électriques tournantes sont des convertisseurs d énergies Energie Elec MOTEUR Energie Meca Energie Meca ALTERNATEUR Energie Elec Pertes sous forme d échauffement

Plus en détail

Machines synchrones Constitution et principe des machines - durée 2h - G. Clerc

Machines synchrones Constitution et principe des machines - durée 2h - G. Clerc Plan du cours Principe et fonctionnement Fonctionnement en alternateur Fonctionnement en moteur synchrone Transfert de puissance - Caractéristiques de Mordey Couplage d un alternateur sur le réseau 1 Notations

Plus en détail

Champs tournants. 1A 2006-2007 J. Delamare (diapositive N 1)

Champs tournants. 1A 2006-2007 J. Delamare (diapositive N 1) I Champs tournants 1A 006-007 J. Delamare (diapositive N 1) Champ créé par un courant 1A 006-007 J. Delamare (diapositive N ) Champ créé par une phase Champ pulsant 1A 006-007 J. Delamare (diapositive

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

10 exercices corrigés d Electrotechnique sur le moteur asynchrone

10 exercices corrigés d Electrotechnique sur le moteur asynchrone 10 exercices corrigés d Electrotechnique sur le moteur asynchrone Exercice MAS01 : moteur asynchrone Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE MOTEUR ASYNCHRONE TRIPHASE GENIE ELECTRIQUE FICHE DE PREPARATION PEDAGOGIQUE Thème : MOTEUR ASYNCHRONE TRIPHASE REFERENCE PROGRAMME Article 19 OBJECTIFS DE LA SEANCE - Identifier un moteur asynchrone triphasé.

Plus en détail

TPN 3 : moteur asynchrone.

TPN 3 : moteur asynchrone. TPN 3 : moteur asynchrone. Buts du TP : le but de ce TP est l étude du moteur asynchrone triphasé. On étudie la plaque signalétique du moteur, puis on effectue un essai à vide et enfin un essai en charge

Plus en détail

9 exercices corrigés d Electrotechnique sur le transformateur

9 exercices corrigés d Electrotechnique sur le transformateur 9 exercices corrigés d Electrotechnique sur le transformateur Exercice Transfo0 : transformateur à vide Faire le bilan de puissance du transformateur à vide. En déduire que la puissance consommée à vide

Plus en détail

6 exercices corrigés d Electronique de puissance sur le redressement

6 exercices corrigés d Electronique de puissance sur le redressement 6 exercices corrigés d Electronique de puissance sur le redressement Exercice Red1 : redressement non commandé : redressement monoalternance D i u charge v La tension u est sinusoïdale alternative. D est

Plus en détail

Electrotechnique. Chapitre 4 Transformateur en régime sinusoïdal. Fabrice Sincère ; version 4.0.2. http://pagesperso-orange.fr/fabrice.

Electrotechnique. Chapitre 4 Transformateur en régime sinusoïdal. Fabrice Sincère ; version 4.0.2. http://pagesperso-orange.fr/fabrice. Electrotechnique Chapitre 4 Transformateur en régime sinusoïdal Fabrice Sincère ; version 4.0. http://pagesperso-orange.fr/fabrice.sincere/ Sommaire - Introduction - Le transformateur parfait 3- Transformateur

Plus en détail

Chapitre 3 : Le transformateur

Chapitre 3 : Le transformateur I Présentation 1. Constitution 2. Symbole et convention Chapitre 3 : Le transformateur II Transformateur parfait en sinusoïdal 1. relation entre les tensions 2. formule de Boucherot 3. les intensités 4.

Plus en détail

Cours de Physique appliquée. Le transformateur monophasé en régime sinusoïdal (50 Hz)

Cours de Physique appliquée. Le transformateur monophasé en régime sinusoïdal (50 Hz) Cours de Physique appliquée Le transformateur monophasé en régime sinusoïdal (50 Hz) Terminale TI Génie Electrotechnique Fabrice incère ; version 1.0.6 1 ommaire 1- Introduction - Le transformateur parfait

Plus en détail

Session 2004 Physique Appliquée 4 heures

Session 2004 Physique Appliquée 4 heures Session 24 Physique Appliquée 4 heures 1/8 Production d'électricité avec une éolienne Ce problème est constitué de 4 parties indépendantes. Pour les grandeurs électriques, les lettres minuscules représentent

Plus en détail

Principe de fonctionnement et constitution. Caractéristiques et relations fondamentales. Démarrage des moteurs asynchrones

Principe de fonctionnement et constitution. Caractéristiques et relations fondamentales. Démarrage des moteurs asynchrones Le moteur asynchrone Table des matières Introduction Principe de fonctionnement et constitution Caractéristiques et relations fondamentales Démarrage des moteurs asynchrones La variation de vitesse des

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRASFORMATER MOOPHASE I. PRESETATIO n transformateur est constitué d un circuit magnétique ( composé de feuilles en acier accolées ) sur lequel sont disposés deux bobinages en cuivre : le primaire et

Plus en détail

Cette puissance apparente s exprime en voltampère (VA). Papp = U1eff I1eff = U2eff I2eff

Cette puissance apparente s exprime en voltampère (VA). Papp = U1eff I1eff = U2eff I2eff Fonction alimentation en énergie électrique. Alimentation en courant continu 1 À partir du secteur EDF 1.1 Structure 1 : 1.1.1 Le transformateur Un transformateur de tension est un quadripôle qui permet

Plus en détail

F N F > I. + Alimentation. Courant (I) et tension (U) continus. Le couple utile (Cu) et la fréquence de rotation (ω) 1 PRÉSENTATION 3 SYMBOLE

F N F > I. + Alimentation. Courant (I) et tension (U) continus. Le couple utile (Cu) et la fréquence de rotation (ω) 1 PRÉSENTATION 3 SYMBOLE COURS TSI : CI-3 CORRIGÉ E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le

Plus en détail

CH9 : Les onduleurs autonomes

CH9 : Les onduleurs autonomes BTS électrotechnique 2 ème année - Sciences physiques appliquées CH9 : Les onduleurs autonomes Enjeu : motorisation des systèmes Problématique : Quelle stratégie adopter pour faire varier la vitesse des

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Le transport et la distribution de l énergie électrique s effectuent actuellement avec les tensions suivantes :

Le transport et la distribution de l énergie électrique s effectuent actuellement avec les tensions suivantes : ENERGIE ET PUISSANCE ELECTRIQUE 1 MISE EN SITUATION La bonne gestion de l énergie électrique est un problème complexe, elle contribue aux performances de l industrie. Par une bonne gestion de l énergie,

Plus en détail

Machine synchrone - C33 / 1 C33 - Machine Synchrone (MS) Moteur synchrone Transmissions mécaniques synchrones Constitution

Machine synchrone - C33 / 1 C33 - Machine Synchrone (MS) Moteur synchrone Transmissions mécaniques synchrones Constitution G. Pinson - Physique Appliquée Machine synchrone - C33 / 1 C33 - Machine ynchrone (M) Moteur synchrone Transmissions mécaniques synchrones (transmissions de couple) : - Transmissions par engrenages ou

Plus en détail

Principe de commande en position d un moteur à courant continu. Ampli de puissance. Boucle de retour. M pas à pas. Ampli de puissance

Principe de commande en position d un moteur à courant continu. Ampli de puissance. Boucle de retour. M pas à pas. Ampli de puissance Source : Guide du technicien en électrotechnique, éd. Hachette Technique. Remarque : un certain nombre d illustrations de ce cours sont issues de la référence ci-dessus. 1. Introduction Les moteurs pas

Plus en détail

BTS ÉLECTROTECHNIQUE CENTRALE HYDROELECTRIQUE

BTS ÉLECTROTECHNIQUE CENTRALE HYDROELECTRIQUE BTS ÉLECTROTECHNIQUE SUJET 0 ÉPREUVE E4.1 Étude d un système technique industriel : Pré étude et modélisation -----------------------------------------------------------------------------------------------

Plus en détail

Machine Synchrone. Alternateur synchrone

Machine Synchrone. Alternateur synchrone Machine ynchrone Alternateur synchrone Champ tournant Alternateur : principe de fonctionnement tructure du rotor (induit) tructure du stator (inducteur) Alternateur en charge «Champ tournant» Théorème

Plus en détail

COURS : LES MOTEURS ASYNCHRONES

COURS : LES MOTEURS ASYNCHRONES BTS ATI1 CONSTRUCTION ELECTRIQUE COURS : LES MOTEURS ASYNCHRONES Durée du cours : 1 heure Objectifs du cours : Acquérir les connaissances de base sur les actionneurs électriques. Capacités : Analyser un

Plus en détail

Chapitre 16 Machine à savons Variation de vitesse

Chapitre 16 Machine à savons Variation de vitesse 16 Machine à savons Variation de vitesse Chapitre 16 Machine à savons Variation de vitesse INTRODUCTION 2 TRAVAIL PERSONNEL 1. Choix d un moto réducteur 3 2. Choix d un variateur de vitesse 7 DOCUMENTS

Plus en détail

LA MACHINE SYNCHRONE

LA MACHINE SYNCHRONE LA MACHNE YNCHRONE. GÉNÉRALTÉ UR LA MACHNE YNCHRONE. Puissance mécanique Alternateur ou génératrice synchrone Puissance électrique Moteur synchrone La machine synchrone est une machine réversible. Elle

Plus en détail

8 Exercices corrigés sur l alternateur

8 Exercices corrigés sur l alternateur 8 Exercices corrigés sur l alternateur Exercice 1: Un alternateur hexapolaire tourne à 1000 tr/min. Calculer la fréquence des tensions produites. Même question pour une vitesse de rotation de 100 tr/min.

Plus en détail

Etude de système/modélisation BTS 2 SOUS SYSTEME: Machine synchrone Durée : 4 Etude de l alternateur connecté au réseau

Etude de système/modélisation BTS 2 SOUS SYSTEME: Machine synchrone Durée : 4 Etude de l alternateur connecté au réseau Etude de système/modélisation BTS 2 SOUS SYSTEME: Machine synchrone Durée : 4 Etude de l alternateur connecté au Séquences réseau Domaine électrotechnique : - Réversibilité des convertisseurs électromécaniques.

Plus en détail

Chapitre 20 Machine à bâtons Variateur vitesse MCC

Chapitre 20 Machine à bâtons Variateur vitesse MCC Chapitre 20 Machine à bâtons Variateur vitesse MCC INTRODUCTION 2 TRAVAIL PERSONNEL 1. Principe du moteur à courant continu 5 2. Synoptique et schéma fonctionnel 6 3. La carte de puissance 7 4. La carte

Plus en détail

L allumage transistorisé

L allumage transistorisé Critique de l allumage classique par rupteur et condensateur Détérioration de la portée des contacts du rupteur malgré la présence du condensateur. Mauvais contact, défaut de passage du courant primaire

Plus en détail

Electronique de puissance

Electronique de puissance Electronique de puissance Chapitre 0 Introduction Quatre types de conversion de l'énergie électrique : 1- Conversion alternatif / continu (AC / DC) Montage redresseur - non commandé (à diodes) - commandé

Plus en détail

LA MACHINE A COURANT CONTINU

LA MACHINE A COURANT CONTINU LA MACHINE A COURANT CONTINU I) Définition : Une machine à courant continu est une machine électrique tournante mettant en jeu des tensions et des courants continus. II) Principe de fonctionnement : Dans

Plus en détail

CIRCUITS RLC (corrigé)

CIRCUITS RLC (corrigé) IUITS (corrigé) Exercice 1 : Etude d un circuit en transitoire E K On considère le circuit suivant : e générateur est considéré comme parfait de f.é.m. E. Initialement la bobine n est traversée par aucun

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

CHAPITRE 10 INDUCTION ELECTROMAGNETIQUE

CHAPITRE 10 INDUCTION ELECTROMAGNETIQUE CHAPITRE 10 IDUCTIO ELECTROMAGETIQUE I) Flux 1) Définition Soit un contour fermé délimitant une surface S. On choisit un sens positif de parcours le long de ce contour. Ceci détermine la normale orientée

Plus en détail

Chapitre 2 : systèmes triphasés

Chapitre 2 : systèmes triphasés Chapitre : systèmes triphasés I Introduction. pourquoi. le réseau de distribution II Etude des tensions simples. définition. équations. vecteurs de Fresnel III tensions composées. définition. vecteurs

Plus en détail

Notation complexe des grandeurs électriques

Notation complexe des grandeurs électriques Notation complexe des grandeurs électriques A une différence de potentiel sinusoïdale : u(t) = U max sin( 2 π F t + φ ) est associée le nombre complexe U ou encore u(t) = U max sin( ω t + φ ) avec ω =

Plus en détail

Les moteurs à courant continu

Les moteurs à courant continu I)- GENERALITES Les moteurs à courant continu Les moteurs à courant continu à excitation séparée sont encore utilisés assez largement pour l'entraînement à vitesse variable des machines. Très facile à

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

I. Signal périodique CARACTÉRISTIQUES D UN SIGNAL. 1. Période, fréquence. 2. Signal sinusoïdal

I. Signal périodique CARACTÉRISTIQUES D UN SIGNAL. 1. Période, fréquence. 2. Signal sinusoïdal CARACTÉRISTIQUES D UN SIGNAL I. Signal périodique 1. Période, fréquence La période T d un signal est la plus petite durée au bout de laquelle le signal se reproduit identique à lui-même. s(t + T ) = s(t)

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

Circuit RLC série Etude de la résonance d intensité

Circuit RLC série Etude de la résonance d intensité Circuit RLC série Etude de la résonance d intensité Lors d une séance de Travaux Pratiques, on dispose du matériel suivant : un GBF, un voltmètre numérique et un oscilloscope bicourbe un condensateur de

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE

UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE UNIVERSITE E SIDI BEL ABBES 2010 /2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Licence : TDEE TD de machines synchrones Dr. BENDAOUD Exercice N 1 : Alternateur Un alternateur

Plus en détail

Convertir l énergie électrique : Les différents types de moteurs et leur commande

Convertir l énergie électrique : Les différents types de moteurs et leur commande Convertir l énergie électrique : Les différents types de moteurs et leur commande Cours Bras robotisé Fonction : Critères de choix des moteurs : Moteurs utilisés : Un servomoteur est un moteur électrique

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

Le contrôle d un moteur à induction. Guy Gauthier ing. Ph.D. Juillet 2011. Le contrôle des moteurs asynchrones en vitesse

Le contrôle d un moteur à induction. Guy Gauthier ing. Ph.D. Juillet 2011. Le contrôle des moteurs asynchrones en vitesse Le contrôle d un moteur à induction Guy Gauthier ing. Ph.D. Juillet 2011 Le contrôle des moteurs asynchrones en vitesse La vitesse d un moteur à induction s écrit comme suit: Elle dépend de: Glissement

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

PC A DOMICILE - 779165576 WAHAB DIOP LSLL

PC A DOMICILE - 779165576 WAHAB DIOP LSLL E, A (1) P9- AUTO- PC A DOMICIE TAVAUX DIIGES TEMINAE S 1 Une bobine de longueur = 1 m, comportant N = 1600 spires de rayon = 0 cm, assimilable à un solénoïde est parcourue par un courant d intensité I

Plus en détail

Chapitre 5 : Moteur asynchrone

Chapitre 5 : Moteur asynchrone Chapitre 5 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit 3. Symboles 4. plaque signalétique II / Principe de fonctionnement

Plus en détail

PRODUCTION D'ELECTRICITE AVEC UNE EOLIENNE

PRODUCTION D'ELECTRICITE AVEC UNE EOLIENNE DSN (Ratt) BTS Electrotechnique 16 mars 1 PRODUCTION D'ELECTRICITE AVEC UNE EOLIENNE Pour les grandeurs électriques, les lettres minuscules représentent les grandeurs instantanées, les lettres majuscules

Plus en détail

LA MACHINE A COURANT CONTINU

LA MACHINE A COURANT CONTINU LA MACHNE A CORAN CONN 1. RÉSENAON 1. Définition ne machine à courant continu est un convertisseur d énergie. Elle eut fonctionner en moteur ou en génératrice, on dit que c est une machine réversible.

Plus en détail

TP Machine Synchrone 1ère année - Option 2009-

TP Machine Synchrone 1ère année - Option 2009- TP n 3 : ALTERNATEUR SYNCHRONE Selon la salle de TP, B01 ou B11, les machines, les appareils de mesure et les montages seront différents. En raison du nombre de machines disponibles la plupart des tables

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

TECHNOLOGIE D ELECTRICITE LE MOTEUR PAS A PAS. Lycée L.RASCOL 10, rue de la République BP 218. 81012 ALBI CEDEX GJC

TECHNOLOGIE D ELECTRICITE LE MOTEUR PAS A PAS. Lycée L.RASCOL 10, rue de la République BP 218. 81012 ALBI CEDEX GJC TECHNOLOGIE D ELECTRICITE LE MOTEUR PAS A PAS GJC Lycée L.RASCOL 10, rue de la République BP 218. 81012 ALBI CEDEX SOMMAIRE PRINCIPE MOTEUR A AIMANTS PERMANENTS Constitution Fonctionnement MOTEUR A RELUCTANCE

Plus en détail

La machine à courant continu (MCC) Année 2006/2007

La machine à courant continu (MCC) Année 2006/2007 La machine à courant continu (MCC) Année 2006/2007 Ventilateur nduit bobiné nducteur Balais Collecteur Composition On distingue les éléments suivants: Les pôles inducteurs avec leurs enroulements (ou leurs

Plus en détail

Classe de terminale STL : Fiche de PHYSIQUE N 9 PHYSIQUE ELECTROMAGNETISME Loi de Laplace + -

Classe de terminale STL : Fiche de PHYSIQUE N 9 PHYSIQUE ELECTROMAGNETISME Loi de Laplace + - Classe de terminale TL : iche de HUE 9 HUE ELECTROAGETE Loi de Laplace 1) Expérience a) Dispositif expérimental A'' K A' A + - A C'' C' C A''A' et C''C' : rails en cuivre immobiles et parallèles. AC :

Plus en détail

Capteurs de vitesse et de

Capteurs de vitesse et de Page 1 sur 6 Capteurs de vitesse et de position 07/12/2000 Patrick ABATI 1. Tachymétrie ( génératrice tachymétrique ) Elle délivre une tension proportionnelle à sa vitesse de rotation. Son principal domaine

Plus en détail

LES MILIEUX FERROMAGNETIQUES

LES MILIEUX FERROMAGNETIQUES LES MILIEUX FERROMAGNETIQUES LES SOURCES DU CHAMP MAGNETIQUE Un champ magnétique est créé par une distribution de courants électriques. Intensité du champ magnétique crée par un conducteur rectiligne :

Plus en détail

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN

REPONDRE DIRECTEMENT SUR LA COPIE D EXAMEN Examen partiel Durée Documents : heures. : non autorisés sauf une feuille A4-manuscrite REONDRE DIRECTEMENT SUR LA COIE D EXAMEN NOM RENOM SIGNATURE EXERCICE 1 (5 points) : On relève avec l oscilloscope

Plus en détail

TP 7 : MOTEUR ASYNCHRONE À CAGE: Essai à vide et caractéristiques

TP 7 : MOTEUR ASYNCHRONE À CAGE: Essai à vide et caractéristiques TP 7 : MOTEUR ASYNCHRONE À CAGE: Essai à vide et caractéristiques Objectifs du TP : asynchrone. - exploiter les mesures des essais en continu, à vide et en charge - relever quelques caractéristiques du

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

APPLICATIONS DIRECTES

APPLICATIONS DIRECTES PSI FEUILLE D EXERCICES DE SCIENCES PHYSIQUES N 23 11/02/2017 2016/2017 Thème: Conversion électro-magnéto-mécanique (1) APPLICATIONS DIRECTES 1. Electroaimant de levage On considère l électroaimant représenté

Plus en détail

Redressement monophasé

Redressement monophasé Redressement monophasé Partie 1 : redressement non commandé 1 Objectif Le redressement est la conversion d'une tension alternative en une tension continue. On utilise un convertisseur alternatif-continu

Plus en détail

La fonction alimentation

La fonction alimentation Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique La fonction alimentation Domaine d application : Contrôle de l énergie Type de document : Cours Classe : Terminale Date : I Identification

Plus en détail

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE *********

ELECTROTECHNIQUE - Deuxième année - - Devoir surveillé n 1 du lundi 11 octobre CORRIGE ********* I.U.T. Formation Initiale D.U.T. GENIE ELECTRIQUE & INFORMATIQUE INDUSTRIELLE Enseignant responsable : B. DELPORTE Documents interdits Calculatrice autorisée Travail demandé : ELECTROTECHNIQUE Deuxième

Plus en détail

Principes de la conversion d énergie

Principes de la conversion d énergie CHAPITRE 4 Principes de la conversion d énergie Gérard-André CAPOLIO Conversion d'énergie 1 Machines tournantes Construction de base Les principales parties d une machine tournante sont: Corps de la machine:

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2001-2002 Devoir n 6 CONVERSION DE PUISSANCE Les trois parties sont indépendantes. PARTIE I DETERMINATION DES CARACTERISTIQUES D UN MOTEUR On considère un moteur à courant continu, bipolaire, à excitation

Plus en détail

A1 DIMENSIONNEMENT DE L'EOLIENNE

A1 DIMENSIONNEMENT DE L'EOLIENNE A1 DIMENSIONNEMENT DE L'EOLIENNE Déterminer les caractéristiques d'entrée et de sortie de la chaîne de transmission de puissance. Exploiter une documentation technique pour dimensionner un composant. Tracer

Plus en détail

Note d application. Dimensionnement de la génératrice : étude théorique

Note d application. Dimensionnement de la génératrice : étude théorique Dimensionnement de la génératrice : étude théorique Mohamed EL MAMOUNI & Lahoucine MEROUHAHEL Projet P11A08 Simulation et détermination des paramètres de fabrication optimaux d'une génératrice "plate"

Plus en détail

CHAPITRE N 4 TITRE: DEMARRAGE DES MOTEURS ASYNCHRONES

CHAPITRE N 4 TITRE: DEMARRAGE DES MOTEURS ASYNCHRONES CHAPITRE N 4 TITRE: DEMARRAGE DES MOTEURS ASYNCHRONES FONCTION : Commander la puissance par Tout Ou Rien (II 2.3.5) COMPETENCES VISEES: demarrage des moteurs_v2k6.doc - Le cahier des charges de l application

Plus en détail

FONCTION D USAGE. Le démarreur sert à lancer un moteur thermique en rotation pour le

FONCTION D USAGE. Le démarreur sert à lancer un moteur thermique en rotation pour le FONCTION DEMARRAGE FONCTION D USAGE Le démarreur sert à lancer un moteur thermique en rotation pour le faire démarrer. Il doit vaincre le couple résistant du à l inertie des pièces, aux frottements, à

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

Sais-tu l'essentiel? Partie électricité 3ème

Sais-tu l'essentiel? Partie électricité 3ème Sais-tu l'essentiel? Partie électricité 3ème Pour le savoir, essaye à chaque fin de chapitre de répondre aux exercices sur fond jaune de ton livre. Le corrigé ci-dessous te permettra de savoir si tu t'es

Plus en détail

Chelly Nizar. Travaux Dirigés Électricité Générale

Chelly Nizar. Travaux Dirigés Électricité Générale Chelly Nizar Travaux Dirigés Électricité Générale ISET Zaghouan 2011/2012 Table des matières 1 TD 1 Lois générales de l'électricité en régime continu 1/2 2 1.1 Exercice 1 : loi des n uds......................

Plus en détail

ANALYSE DES SYSTEMES ELECTRIQUES

ANALYSE DES SYSTEMES ELECTRIQUES 1 UNIVERSITÉ CHEIKH ANTA DIOP DE DAKAR Durée : 03 heures OFFICE DU BACCALAUREAT Série T2 - Coef : 3 B.P. 5005 DAKAR Fann - Sénégal Serveur Vocal : 628 05 59 Téléfax (221) 33 864 67 39 - Tél. : 33 824 95

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

Chapitre 7 : Machine à courant continu à excitation indépendante

Chapitre 7 : Machine à courant continu à excitation indépendante Chapitre 7 : Machine à courant continu à excitation indépendante I / présentation, constitution 1. rappels 2. définition 3. constitution II / fonctionnement en moteur 1. symbole 2. principe du moteur 3.

Plus en détail

DEMARRAGE D UN MOTEUR ASYNCHRONE

DEMARRAGE D UN MOTEUR ASYNCHRONE DEMARRAGE D UN MOTEUR ASYNCHRONE BUT : Le moteur asynchrone d induction possède un fort couple de démarrage, mais il a l inconvénient d absorber de à 8 fois son intensité nominale. Pour réduire cet appel

Plus en détail

3. Puissance alternative et systèmes triphasés

3. Puissance alternative et systèmes triphasés Master 1 Mécatronique J Diouri. Puissance alternative et systèmes triphasés Doc. Electrabel Puissance en alternatif Puissance instantanée [ I cos( ω t) ][ U cos( ω + )] p( t) = ui = t ϕ c c Valeur moyenne

Plus en détail

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES Sciences Appliquées, chap 7.2 MAGNÉTISME DANS LES MACHINES ÉLECTRIQUES 1 -Inducteur et induit...2 2 -Les pertes dans une machine électrique...2 3 -Le transformateur...3 4 -MCC et MCS...3 4.1 -Couple dans

Plus en détail

Machines à courant continu

Machines à courant continu Plan du cours Constitution Principe de fonctionnement en génératrice Principe de fonctionnement en moteur La réaction d induit Etude des transferts de puissance 1 Constitution bobine inducteur Une machine

Plus en détail

Circuits triphasés 1

Circuits triphasés 1 Circuits triphasés 1 Création d'un système de tensions triphasées N2 e3 e2 N1 Soit 3 bobines fixes de N spires (N1=N2=N3=N) (stator) et un aimant (rotor) entraîné àla vitesse ω. En canalisant le flux par

Plus en détail

Chapitre 3 : Le transformateur

Chapitre 3 : Le transformateur I Présentation 1. Constitution 2. Symbole et convention Chapitre 3 : Le transformateur II Transformateur parfait en sinusoïdal 1. relation entre les tensions 2. formule de Boucherot 3. les intensités 4.

Plus en détail

Module d Electricité. 1 ère partie : Electrocinétique. Fabrice Sincère (version 4.0.3) http://perso.orange.fr/fabrice.sincere

Module d Electricité. 1 ère partie : Electrocinétique. Fabrice Sincère (version 4.0.3) http://perso.orange.fr/fabrice.sincere Module d Electricité ère partie : Electrocinétique Fabrice Sincère (version 4.0.3) http://perso.orange.fr/fabrice.sincere Sommaire - Dipôles passifs -- Dipôle passif non linéaire -- Dipôle passif linéaire

Plus en détail

P13 - Mesure de puissance en e lectricite

P13 - Mesure de puissance en e lectricite - Mesure de puissance en e lectricite La puissance est une des grandeurs les plus importantes en électricité. Elle décrit le mieux les besoins énergétiques d un système. En courant continu, la puissance

Plus en détail

hapitre IV Les procédés de Freinage

hapitre IV Les procédés de Freinage C hapitre IV Les procédés de Freinage Contenu I. ITRODUCTIO... II. FREIAGE MECAIQUE... 5 II.. FREI A MAQUE DE COURAT... 5 II... Principe:... 5 II... Circuit de commande:... 6 II... Circuit de Puissance...

Plus en détail

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES

3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES 3 e ANNÉE SYSTÈMES ÉLECTRONIQUES ET ÉLECTROTECHNIQUES Durée : 4 heures L'épreuve est d'une durée de quatre heures et set constituées de deux parties indépendantes (électrotechnique et électronique). Les

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

M-S Cours - 1 MACHINE SYNCHRONE

M-S Cours - 1 MACHINE SYNCHRONE M-S Cours - 1 MACHINE SYNCHRONE - 1 - PRESENTATION : La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de

Plus en détail

I) Couplage des moteurs asynchrones à cage 1.1 Constitution. U1 V1 W1 Les moteurs asynchrones à cage fonctionnent sous 2 tensions différentes

I) Couplage des moteurs asynchrones à cage 1.1 Constitution. U1 V1 W1 Les moteurs asynchrones à cage fonctionnent sous 2 tensions différentes I) Couplage des moteurs asynchrones à cage 1.1 Constitution 6 bornes 3 enroulements 1.2 Disposition U1 V1 W1 Les moteurs asynchrones à cage fonctionnent sous 2 tensions différentes U2 V2 1.3 Couplage possible

Plus en détail

Les préactionneurs et les actionneurs électriques

Les préactionneurs et les actionneurs électriques Section : S Option : Sciences de l ingénieur Discipline : Génie Électrique Les préactionneurs et les actionneurs électriques Domaine d application : ontrôle de l énergie ype de document : ours lasse :

Plus en détail

LE TRANSFORMATEUR MONOPHASE

LE TRANSFORMATEUR MONOPHASE LE TRANSFORMATEUR MONOPHASE I) Généralité sur le transformateur : 1) Définition : Le transformateur a pour but de modifier les amplitudes des grandeurs électriques alternatives : il transforme des signaux

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail