Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre Définition TABLE DES MATIÈRES 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les quadrilatères. Table des matières. 1 Polygones. Paul Milan. Professeurs des écoles le 29 septembre 2009. 1.1 Définition TABLE DES MATIÈRES 1"

Transcription

1 TABLE DES MATIÈRES 1 Les quadrilatères Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Polygones Définition Différentes sortes de polygones Parallélogramme Définitions Application Le losange Le rectangle Le carré Les autres quadrilatères Le trapèze Définition Le trapèze rectangle Le trapèze isocèle Le cerf-volant Définition Le cerf-volant isocèle Isocervolant Polygones 1.1 Définition Un polygone est une ligne brisée fermée possèdant n segments appelés côtés. On a alors les noms suivants selon le nombre de côtés. Tous les polygones réguliers ne sont pas constructibles à la règle et au compas

2 1.2 DIFFÉRENTES SORTES DE POLYGONES 2 n Nom constructible 3 triangle oui 4 quadrilatère oui 5 pentagone oui 6 hexagone oui 7 heptagone non 8 octogone oui 9 enéagone non 10 decagone oui 11 hendecagone non 12 dodécagone oui 1.2 Différentes sortes de polygones 1. Un polygone croisé est un polygone dont au moins deux côtés sont sécants. 2. Un polygone convexe est un polygone non croisé dont les angles formés par deux côtés consécutifs sont inférieurs à 180 (angles saillants) ou si les diagonales sont toutes situées à l intérieur du polygone. Si au moins un angle est supérieur à 180 (angle rentrant) ou si au moins une diagonale est à l exterieur du polygone, le polygone est concave. 3. Un polygone étoilé est un polygone dont les angles formés par deux côtés consécutifs sont alternativement saillant et rentrant. 4. Un polygone régulier est un polygone dont les côtés ont même longueur et qui est inscriptible dans un cercle. Par exemple le triangle équilatéral et le carré.

3 3 2 Parallélogramme 2.1 Définitions Il existe 6 définitions, toutes équivaventes, du parallélogramme. Définition 1 Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux parallèles. Définition 2 Un parallélogramme est un quadrilatère dont les côtés opposés sont deux à deux de même longueur. Définition 3 Un parallélogramme est un quadrilatère dont deux côtés sont parallèles et de même longueur. Définition 4 Un parallélogramme est un quadrilatère dont les diagonales se coupent en leur milieu. Définition 5 Un parallélogramme est un quadrilatère dont deux angles consécutifs quelconques sont supplémentaires. Définition 6 Un parallélogramme est un quadrilatère dont les angles opposés sont égaux deux à deux. Un parallélogramme admet un point de symétrie : l intersection des diagonales appelée centre du parallélogramme.

4 2.2 APPLICATION Application Soit A, B, C, D, E et F six points tels que ABCD et AECF soient des paralléogrammes. Démontrer que le quadrilatère EBFD est un parallélogramme. Faisons une figure : On trace un parallélogramme ABCD, on place le point E, puis on détermine F tel que AECF soit un parallélogramme. Soit I 1 le centre de ABCD. Comme ABCD est un parallélogramme, les diagonales se coupent en leur milieu donc I 1 est le milieu de [AC] et [BD]. Soit I 2 le centre de AECF. Comme AECF est un parallélogramme, les diagonales se coupent en leur milieu donc I 2 est le milieu de [AC] et [EF]. Comme I 1 et I 2 sont le milieu de [AC], on en déduit que I 1 = I 2. Comme I 1 = I 2 alors [BD] et [EF] ont le même milieu. Les diagonales de EBFD se coupent en leur milieu donc EBFD est un parallélogramme. 2.3 Le losange Les 4 définitions sont équivalentes. Définition 7 Un losange est un quadrilatère dont les 4 côtés sont de même longueur. Définition 8 Un losange est un quadrilatère dont les diagonales se coupent en leur milieu perpendiculairement. Définition 9 Un losange est un parallélogramme dont deux côtés consécutifs sont de même longueur.

5 2.4 LE RECTANGLE 5 Définition 10 Un losange est un parallélogramme dont les digonales sont perpendiculaires Un losange possède un centre de symétrie : le centre du losange et un axe de symétrie : les diagonales. Les diagonales sont les bissectrices des angles formés par 2 côtés consécutifs. 2.4 Le rectangle Les 4 définitions sont équivalentes. Définition 11 Un rectangle est un quadrilatère qui a trois angles droits. Définition 12 Un rectangle est un quadrilatère dont les diagonales sont de même longueur et qui se coupent en leur milieu. Définition 13 Un rectangle est un parallélogramme qui a 1 angle droit. Définition 14 Un rectangle est un parallélogramme dont les diagonales sont de même longueur. Un rectangle possède un centre de symétrie : le centre du rectangle et deux axes de symétrie : les médiatrices des côtés. Comme les diagonales sont de même longueur et se coupent en leur milieu, un rectangle est inscriptible dans un cercle. 2.5 Le carré Les trois définitions sont toutes équivalentes. Définition 15 Un carré est un losange et un rectangle.

6 6 Définition 16 Un carré est un quadrilatère qui a ses 4 côtés de même longueur et 1 angle droit. Définition 17 Un carré est un quadrilatère dont les diagonales de même longueur, qui se coupent en leur milieu perpendiculairement. Un carré possède un centre de symétrie : le centre du carré et 4 axes de symétrie : les deux diagonales et les médiatrices des côtés. Un carré est un quadrilatère régulier. 3 Les autres quadrilatères 3.1 Le trapèze Définition Définition 18 Un trapèze est un quadrilatère qui a 2 côtés parallèles. Ces 2 côtés parallèles sont appelés les «bases» du trapèze Le trapèze rectangle Définition 19 Un trapèze rectangle est un trapèze qui possède un augle droit.

7 3.2 LE CERF-VOLANT Le trapèze isocèle Définition 20 Un trapèze isocèle est un trapèze dont les deux bases ont même médiatrice. Il possède alors un axe des symétrie. 3.2 Le cerf-volant Définition Définition 21 Un cerf-volant est un quadrilatère dont une diagonale est coupé en son milieu par la deuxième. Il peut être convexe ou concave Le cerf-volant isocèle Définition 22 Un cerf-volant isocèle est un cerf-volant dont une diagonale est la médiatrice de la deuxième. Il possède alors un axe de symétrie.

8 3.2 LE CERF-VOLANT Isocervolant Définition 23 Un isocervolant est un cerf-volant isocèle dont la diagonale médiatrice possède un angle droit.

Géométrie - notion : Angles, cercles, triangles

Géométrie - notion : Angles, cercles, triangles Géométrie - notion : Angles, cercles, triangles 1. Angles a) Vocabulaire Angle nul : L angle nul est formé par deux demi-droites identiques et donc de même origine. Angle plat : Un angle est plat si les

Plus en détail

Rappels de géométrie euclidienne. Les configurations

Rappels de géométrie euclidienne. Les configurations TABLE DES MATIÈRES 1 Rappels de géométrie euclidienne. Les configurations Paul Milan LMA Seconde le 1 er avril 01 Table des matières 1 Rappels de géométrie euclidienne 3 1.1 Euclide...................................

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Cinquième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2

Les quadrilatères. 1 Polygones Définition Différentes sortes de polygones... 2 ERNIÈRE IMPRESSIN LE 27 juin 2016 à 10:06 Les quadrilatères Table des matières 1 Polygones 2 1.1 éfinition................................. 2 1.2 ifférentes sortes de polygones..................... 2 2

Plus en détail

Unité 9 Géométrie. Droites, segments de droite et demi-droites. Droite (à l infini) Demi-droite (limitée à une extrémité et à l infini à l autre)

Unité 9 Géométrie. Droites, segments de droite et demi-droites. Droite (à l infini) Demi-droite (limitée à une extrémité et à l infini à l autre) Unité 9 Géométrie Droites, segments de droite et demi-droites Droite (à l infini) Demi-droite (limitée à une extrémité et à l infini à l autre) Segment (limité des deux côtés par des points) Droites parallèles

Plus en détail

Rappels de géométrie euclidienne. Les configurations

Rappels de géométrie euclidienne. Les configurations ERNIÈRE IMPRESSIN LE 11 mars 015 à 1:17 Rappels de géométrie euclidienne. Les configurations Table des matières 1 Rappels de géométrie euclidienne 1.1 Euclide................................... 1. Éléments

Plus en détail

Les droites, points, segments 1. Le point

Les droites, points, segments 1. Le point Les droites, points, segments 1. Le point Un point est un endroit précis du plan. On le repère avec une croix ( ). On le nomme avec une lettre majuscule. 2. La ligne et la droite Une ligne est une suite

Plus en détail

Cahier de pratique La géométrie

Cahier de pratique La géométrie Nom : Groupe : Cahier de pratique La géométrie Éléments de géométrie 1- Réponds aux questions suivantes. a) Combien de droites peut-on faire passer par un point? b) Combien de droites peut-on faire passer

Plus en détail

Outils de démonstration

Outils de démonstration Outils de démonstration Comment démonter que... Année 2009 et 2010 Classe: 4D,4A Collège Fontbruant -Comment démontrer qu un triangle est un triangle isocèle? -Comment démontrer qu un triangle est un triangle

Plus en détail

Ex 1 : Vrai ou faux CM1

Ex 1 : Vrai ou faux CM1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. b)si trois points sont sur

Plus en détail

L essentiel des propriétés utiles aux démonstrations

L essentiel des propriétés utiles aux démonstrations L essentiel des propriétés utiles aux démonstrations Sésamath Troisième L essentiel des propriétés utiles aux démonstrations http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Illustrations

Plus en détail

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème

COLLEGE ROLAND DORGELES 75018 PARIS. GEOMETRIE EN 3ème COLLEGE ROLAND DORGELES 75018 PARIS GEOMETRIE EN 3ème Démontrer qu'un point est le milieu d un segment... 2 Démontrer qu'un point est le centre du cercle circonscrit d un triangle... 3 Démontrer qu'un

Plus en détail

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu.

Symétrie Axiale. La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Symétrie Axiale 1 Médiatrice d un segment. 1 a Définition La médiatrice d un segment est LA droite qui coupe perpendiculairement ce segment en son milieu. Exemple : (d) est la médiatrice du segment [AB]

Plus en détail

Repères dans le plan - configurations planes

Repères dans le plan - configurations planes Repères dans le plan - configurations planes ) Repères dans le plan : a) notion de repère dans un plan : Définition : Un repère est constitué d'un point origine, de deux droites orientées et graduées (axes).

Plus en détail

Les parallélogrammes particuliers

Les parallélogrammes particuliers Les parallélogrammes particuliers I Une histoire de famille Le parallélogramme fait partie de la famille des quadrilatères: Ce sont des polygones à 4 cotés, 4 angles, 2 diagonales et c'est tout. Ils peuvent

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 Ex 1 : Vrai ou faux a)une droite est limité par deux points En géométrie, il faut être attentif lors de la lecture des consignes et très

Plus en détail

I- Polygones. Le mot polygone est la combinaison de deux mots Grecs et signifie plusieurs angles.

I- Polygones. Le mot polygone est la combinaison de deux mots Grecs et signifie plusieurs angles. 1- Ligne polygonale. I- Polygones. Le mot polygone est la combinaison de deux mots Grecs et signifie plusieurs angles. On considère les points puis on trace les segments On obtient une ligne polygonale

Plus en détail

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d.

I. Définition : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la symétrie axiale d axe d. I. Définition : M M' N M est le point symétrique de M par rapport à la droite d signifie que : - [MM ] est perpendiculaire à d. - Le milieu de [MM ] est sur d. On dit que M est le symétrique de M par la

Plus en détail

Glossaire de propriétés pour la démonstration

Glossaire de propriétés pour la démonstration Glossaire de propriétés pour la démonstration non exhaustif niveau sixième niveau cinquième niveau quatrième niveau troisième Démontrer qu'un point appartient à la médiatrice d'un segment ❶ propriété :

Plus en détail

Fichier de géométrie

Fichier de géométrie Fichier de géométrie Sommaire F1 F2 F3 F4 Périmètres Aires Volumes Tableaux de conversions F5 F6 Comment démontrer que deux droites sont parallèles Comment démontrer que deux droites sont perpendiculaires

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. b)on nomme un segment entre Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points

Plus en détail

Notes de cours. Annexe A : Retour sur les formules d aire

Notes de cours. Annexe A : Retour sur les formules d aire Notes de cours Rappel : Les polygones, le périmètre et l aire 4.1 Le système international d unités (SI) 4.2 L aire d un triangle, d un rectangle et d un parallélogramme 4.3 L aire d un trapèze et d un

Plus en détail

Lire les coordonnées d un point

Lire les coordonnées d un point Lire les coordonnées d un point 1) Repérer les cases 2) Repérer les nœuds : On peut repérer les nœuds d un quadrillage avec un code. La lettre indique le code de la colonne. Le nombre indique le code de

Plus en détail

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE

CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE CHAPITRE 13 : SYMETRIE AXIALE ET AXES DE SYMETRIE I) SYMETRIE AXIALE. 1) SYMETRIQUE D UN POINT PAR RAPPORT A UNE DROITE. a) Définition. On dit que A est le symétrique de A par rapport à (d). Remarque :

Plus en détail

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes :

EXERCICES DE GÉOMÉTRIE. Exercice 2. Déterminer tous les axes et centres de symétrie des gures suivantes : EXERIES E GÉOMÉTRIE Exercice 1. ans un triangle, tracer : a) la hauteur passant par, b) la médiane passant par, c) la bissectrice de l'angle Â, d) la médiatrice du segment []. Exercice 2. éterminer tous

Plus en détail

Angle inscrit et angle au centre Géométrie Exercices corrigés

Angle inscrit et angle au centre Géométrie Exercices corrigés Angle inscrit et angle au centre Géométrie Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : angle inscrit dans un cercle (reconnaissance d un

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits.

Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Chapitre24 Parallélogrammes particuliers 1. Rectangles 1.1 Définition Un rectangle est un quadrilatère qui a quatre angles droits. Le quadrilatère ABCD a quatre angles droits ; c'est un rectangle 1.2 rectangles

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre...

Définition : Un quadrilatère est une figure géométrique qui a quatre côtés.. Il peut se nommer :. R, O, S et E sont les quatre... Définition et vocabulaire : Définition : Un quadrilatère est une figure géométrique qui a quatre côtés. Vocabulaire : R. Ce quadrilatère est un quadrilatère non croisé.. Il peut se nommer :. R,, S et E

Plus en détail

Des clés pour démontrer :

Des clés pour démontrer : es clés pour démontrer : I- omment démontrer que trois points sont alignés. hypothèses Un angle plat. Soit : = 180 () (d ) ; ( ) // d Si l angle est plat, alors les trois points, et sont alignés Par un

Plus en détail

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté.

GEOMETRIE CM2. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. Gé1 Points alignés et droites Pour représenter un point, on dessine une croix et on lui donne une lettre qu on écrit à côté. x I x K x F Une droite est un alignement infini de points. On la désigne par

Plus en détail

Angles alternes-internes : À l'intérieur des parallèles, de part et d'autre de la sécante.

Angles alternes-internes : À l'intérieur des parallèles, de part et d'autre de la sécante. 1. Angles a) Définitions de base Angles opposés par le sommet : Angles qui ont le même sommet et dont les côtés de l'un sont dans le prolongement des côtés de l'autre angle. Lorsque deux parallèles sont

Plus en détail

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES

Thème N 13: SYMETRIE ( 3 ) - PARALLELOGRAMME (2) - DEMONSTRATION (2) - QUADRILATERES - ANGLES Thème N 13: SYMTR ( 3 ) - PRLLLOGRMM (2) - MONSTRTON (2) - QURLTRS - NGLS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * TVT 1: O 1 er PROPRT: n utilisant

Plus en détail

DROITES REMARQUABLES DU TRIANGLE

DROITES REMARQUABLES DU TRIANGLE Exercices 1/8 01 Donner la définition d une : - médiane - médiatrice - hauteur - bissectrice 02 Nommer les droites suivantes : (AC) : (BC) : (BD) : (BE) :. 03 Compléter les phrases relatives aux propriétés

Plus en détail

POLYGONES REGULIERS. Pentagone régulier Hexagone régulier Octogone régulier

POLYGONES REGULIERS. Pentagone régulier Hexagone régulier Octogone régulier I- Définition: On dit qu'un polygone est régulier si: - tous ses côtés ont la même longueur - tous ses angles sont égaux POLYGONES REGULIERS II- Exemples: 1) Un polygone régulier à 3 côtés est un triangle

Plus en détail

Chapitre 4 - Les triangles

Chapitre 4 - Les triangles Chapitre 4 - Les triangles I- Définitions et triangles particuliers Un triangle est un polygone qui a trois côtés. Dessiner trois triangles : un quelconque (classique), un qui est équilatéral et un qui

Plus en détail

Lexique illustré de géométrie.

Lexique illustré de géométrie. 1 Lexique illustré de géométrie. LEXIQUE GÉOMÉTRIE COLLÈGE A Abscisse K Sur un axe gradué L Le point K a pour abscisse -6. Le point L a pour abscisse 3,5 Dans un repère Le point A a pour abscisse 3,5.

Plus en détail

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave

Géométrie C.M.1. Ecole primaire de Provenchères sur Fave Géométrie C.M.1 Ecole primaire de Provenchères sur Fave Sommaire Dans le plan Le point p. 03 La droite p. 04 La demi-droite p. 05 Le segment de droite p. 06 Droites sécantes p. 07 Droites perpendiculaires

Plus en détail

Une droite est une ligne qui ne s arrête jamais.

Une droite est une ligne qui ne s arrête jamais. GEOMETRIE GEOM.0 Points, lignes, droites et segments GEOM.1 Tableaux et quadrillages GEOM.2 Reproduire une figure GEOM.3 ercle et compas GEOM.4 onstruire une figure géométrique GEOM.5 Les polygones GEOM.6

Plus en détail

Petit lexique de géométrie

Petit lexique de géométrie Petit lexique de géométrie à l usage des élèves de sixième et de cinquième M. PARCABE Petit lexique de géométrie à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain-Fournier

Plus en détail

Le parallélogramme. nul aigu droit obtus plat plein

Le parallélogramme. nul aigu droit obtus plat plein RPPEL : LE VOULIRE ES NGLES Rappel : selon sa mesure un angle peut-être : Le parallélogramme saillant rentrant nul aigu droit obtus plat plein ngles opposés par le sommet : ngles adjacents : éfinition

Plus en détail

Réponse. Réponse. Réponse

Réponse. Réponse. Réponse Exercice 1 La médiatrice d un segment est la droite qui est perpendiculaire à ce segment et qui passe par son milieu. Justifier avec rigueur l affirmation suivante : La droite (d) est la médiatrice du

Plus en détail

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H.

Ses hauteurs [AP], [BQ] et [CR] se coupent au point H. D 9 E EE D EUE Soit un triangle. Ses hauteurs [], [] et [] se coupent au point. es milieux de [], [] et [] sont respectivement, et, ceux de [], [] et [] sont respectivement, et. Démontre qu il existe un

Plus en détail

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle.

Propriété : Les médiatrices des cotés d un triangle sont concourantes : Leur point de concours est le centre du cercle circonscrit au triangle. MISE U POINT ES NOTIONS E GEOMETRIE I. Triangles : 1. roites remarquables : a. Médiatrices d un triangle : Médiatrice d un segment : La médiatrice d un segment est la droite perpendiculaire à ce segment

Plus en détail

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS

Thème N 17 : ANGLE INSCRIT - ANGLE AU CENTRE POLYGONES REGULIERS Thème N 17 : NGLE INSRIT - NGLE U ENTRE PLYGNES REGULIERS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Pour prendre un bon départ Exercice n 1 : n considère

Plus en détail

Propriétés des Quadrilatères Page 1??

Propriétés des Quadrilatères Page 1?? Propriétés des Quadrilatères Page 1?? ) Parallélogramme éfinition d un Parallélogramme: Un parallélogramme est un quadrilatère convexe qui a ses côtés opposés de même longueur Propriétés d un Parallélogramme

Plus en détail

Chapitre : Les parallélogrammes. Définition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles.

Chapitre : Les parallélogrammes. Définition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. hapitre : Les parallélogrammes I Généralités éfinition : Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. ( ) // ( ) et ( ) // ( ) est un parallélogramme II iagonales Propriété

Plus en détail

FICHES OUTILS GEOMETRIE CE2

FICHES OUTILS GEOMETRIE CE2 FICHES OUTILS GEOMETRIE 1 Reproduire avec un calque 2 Reproduire avec un quadrillage 3 Reproduire avec un gabarit 4 Les solides 5 Figures planes et polygones 6 Parallèles et perpendiculaires 7 Cercles

Plus en détail

TD d exercices sur les vecteurs et la géométrie analytique.

TD d exercices sur les vecteurs et la géométrie analytique. TD d exercices sur les vecteurs et la géométrie analytique. Exercice 1 : (Brevet 2006) 1) Placer les points A (-3 ; 1), B (-l,5 ; 2,5) et C (3 ; -2) dans un repère orthonormé (O, I, J). 2) Montrer que

Plus en détail

CHAPITRE VI. Utiliser les propriétés d un parallélogramme relatives à ses côtés, ses diagonales ou ses angles

CHAPITRE VI. Utiliser les propriétés d un parallélogramme relatives à ses côtés, ses diagonales ou ses angles HPITRE VI PRLLÉLGRMMES MPÉTENES ÉVLUÉES NS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences

Plus en détail

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX

THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX THEME 2 : DEMONSTRATION - TRIANGLE DROITE DES MILIEUX Pour prendre un bon départ Initiation à la démonstration 1 ) Lire la partie A de la synthèse : «Notion de démonstration» 2 ) Complète les raisonnements

Plus en détail

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes :

Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : Exercice 1 : Citer les propriétés qui permettent de justifier chacune des affirmations suivantes : 1) ABCD est un parallélogramme donc les longueurs AB et CD sont égales. 2) MINE est un losange donc les

Plus en détail

De la symétrie centrale au parallélogramme

De la symétrie centrale au parallélogramme La géométrie en 5 doit nous permettre de passer de l identification perceptive (la reconnaissance par la vue) de figures et de configurations à leur caractérisation par des propriétés (passage du dessin

Plus en détail

Droites remarquables d un triangle

Droites remarquables d un triangle Droites remarquables d un triangle 1. Médiatrices d un triangle 1.1. Médiatrice d un segment 1.1.1. Définition La médiatrice d un segment est la droite qui passe par le milieu du segment et qui est perpendiculaire

Plus en détail

Droites parallèles et perpendiculaires Groupe 1

Droites parallèles et perpendiculaires Groupe 1 Droites parallèles et perpendiculaires Groupe 1 Objectif: reconnaître et tracer des droites parallèles et perpendiculaires. 1. Trace la droite perpendiculaire à la droite d et qui passe par le point C.

Plus en détail

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3

Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 3 (Aix-Marseille - 2006) Géométrie : corrigé fiche 3 Exercice 4 (Aix Marseille 1996) 1. Rappel : tracé de l hexagone. On place un point, qu on nomme O. On trace un cercle de centre O, de rayon

Plus en détail

Géométrie plane, notions de base : points, droites, angles, cercles, polygones (triangles, quadrilatères,...), polygones réguliers

Géométrie plane, notions de base : points, droites, angles, cercles, polygones (triangles, quadrilatères,...), polygones réguliers Géométrie plane, notions de base : points, droites, angles, cercles, polygones (triangles, quadrilatères,...), polygones réguliers Denis Vekemans 1 Droites, demi-droites, segments (définitions) Ces notions

Plus en détail

2. Repère du plan Coordonnées d un. point Configurations planes

2. Repère du plan Coordonnées d un. point Configurations planes . Repère du plan oordonnées d un point onfigurations planes ctivité introductive : Démonter avec les milieu D est le trapèze ci-contre telle que ( D )//() D et sont les milieu respectifs des segments []

Plus en détail

BASES DE LA GEOMETRIE.

BASES DE LA GEOMETRIE. SECTION 19 : BASES DE LA GEOMETRIE. exo 1. COURS. I- Triangles. 1 ) Triangles particuliers. sommet principal Si un triangle est isocèle alors il a deux côtés de même longueur. Si un triangle est isocèle

Plus en détail

NOM : DROITE DES MILIEUX 4ème

NOM : DROITE DES MILIEUX 4ème Exercice 1 Soit ABCD un carré de côté 8cm. On appelle I le milieu de [AB] et L le milieu de [DA]. 1) Faire une figure. 2) Montrer que les droites (IL) et (BD) sont parallèles. 3) En utilisant les propriétés

Plus en détail

Chap 5 : A la règle, à l équerre, au compas et au rapporteur

Chap 5 : A la règle, à l équerre, au compas et au rapporteur Chap 5 : A la règle, à l équerre, au compas et au rapporteur A la fin du chapitre, tu dois être capable de : 6 G 7 : Tracer, par un point donné, la perpendiculaire ou la parallèle à une droite donnée (usage

Plus en détail

Compétence 1. Réaliser des tracés géométriques

Compétence 1. Réaliser des tracés géométriques c1problemesconstruiresite gysgp6ak3cp6tzphblxci0pedb181848_in.doc - 1 - ompétence 1 Réaliser des tracés géométriques Savoir en jeu dans les activités Définitions et propriété de base de géométrie, quadrilatères,

Plus en détail

Devoir Surveillé n 8.

Devoir Surveillé n 8. 5 ème B Devoir Surveillé n 8. Mathématiques NOM : PRENOM : DATE : Durée : 1 heure. Usage de la calculatrice : interdite. Les questions sont interdites pendant l évaluation. Le devoir doit être rédigé au

Plus en détail

6 eme La symétrie axiale

6 eme La symétrie axiale 6 eme La symétrie axiale 1. La médiatrice d un segment On dit que est la médiatrice du segment [] si : - - - Ex 1 : Trace la médiatrice de [IJ] et [MN] puis place G pour que soit la médiatrice de [FG].

Plus en détail

MATHEMATIQUES. Premier Cycle CINQUIEME

MATHEMATIQUES. Premier Cycle CINQUIEME MATHEMATIQUES Premier Cycle CINQUIEME 33 INTRODUCTION - En classe de 5 ème les activités numériques constituent une consolidation des acquis de la classe de 6 ème, tout en introduisant de nouvelles notions

Plus en détail

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/

SOMMAIRE GEOMETRIE GEOM. http://delautrecotedubureau.eklablog.com/ SOMMAIRE GEOMETRIE GEOM http://delautrecotedubureau.eklablog.com/ N Intitulé CE2 CM1 CM2 GEOM0 GEOM1 GEOM2 GEOM3 GEOM4 GEOM5 GEOM6 GEOM7 GEOM8 GEOM9 Les instruments Points, lignes, droites et segments

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Chapitre n 8 : «Parallélogrammes particuliers»

Chapitre n 8 : «Parallélogrammes particuliers» Chapitre n 8 : «Parallélogrammes particuliers» I. Rappels Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles. Construction au compas Dans un parallélogramme : les côtés opposés sont

Plus en détail

Le parallélogramme au collège Translation

Le parallélogramme au collège Translation Le parallélogramme au collège Translation Dessiner un parallélogramme, théorème de Varignon, parallélogramme avec contraintes. Sommaire 1. Dessiner un parallélogramme 2. Théorème de Varignon 3. Parallélogramme

Plus en détail

Les triangles. CAS PARTICULIERS : Propriété 2 (admise) : Si les points A, B et C sont alignés dans cet ordre, alors AC=AB+BC.

Les triangles. CAS PARTICULIERS : Propriété 2 (admise) : Si les points A, B et C sont alignés dans cet ordre, alors AC=AB+BC. Les triangles. Activité avec des spaghettis cassées en 3 parties. Peut-on toujours construire un triangle? Activité : les triangles sont-ils constructibles. I- Construction d un triangle. a. Inégalité

Plus en détail

I.1 ) LES EXERCICES. ENONCES.

I.1 ) LES EXERCICES. ENONCES. 1 Seconde. Géométrie plane. Exercices et problèmes I.1 ) LES EXERCICES. ENONCES. Exercice n 1 ABC, AC et AE sont trois triangles équilatéraux disposés comme sur la figure ci-contre émontrer que le triangle

Plus en détail

Géométrie - notion : Solides de l espace

Géométrie - notion : Solides de l espace Géométrie - notion : Solides de l espace 1. Généralités a) Définition Un solide est une portion d espace délimitée et envisagée comme un tout déformable (dictionnaire Petit Larousse). b) Classification

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

vraiment? Le raisonnement géométrique SAÉ 13 : J ai un doute SAÉ 14 : Des extraterrestres, , puis les points B et C sur la droite d 2

vraiment? Le raisonnement géométrique SAÉ 13 : J ai un doute SAÉ 14 : Des extraterrestres, , puis les points B et C sur la droite d 2 SÉ : J ai un doute Le raisonnement géométrique xemple de production attendue Pour démontrer que la somme des mesures des angles intérieurs d un triangle est 80, on peut partir des énoncés suivants. ) Par

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN. savoir écrire mathématiques grandeurs HISTORIQUE ET GÉOGRAPHIQUE ÉPREUVE EXTERNE COMMUNE CEB2015 SOLIDES ET FIGURES LIVRET 3 LUNDI 15 JUIN FRANÇAIS SAVOIR ÉCOUTER français SAVOIR ÉCRIRE savoir MATHÉMATIQUES écouter GRANDEURS savoir écrire SOLIDES ET mathématiques FIGURES

Plus en détail

Géométrie. Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures

Géométrie. Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures Géométrie Polygones à plus de 4 côtés, polygones réguliers inscrits dans des cercles, constructions et mesures 1. Polygones Un polygone est une figure plane limitée uniquement par des segments, une figure

Plus en détail

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme

S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes. Un quadrilatère qui a deux côtés parallèles est un parallélogramme CRPE Mise en route 1. Trouver l intrus. Justifier. 2. Voici des polygones convexes S12. Autour des POLYGONES Quadrilatères et polygones réguliers convexes 1 2 3 4 5 6 7 8 Lesquels sont : des quadrilatères?

Plus en détail

Définition 2 Un nombre décimal est un nombre dont l écriture fractionnaire irréductible est de la forme

Définition 2 Un nombre décimal est un nombre dont l écriture fractionnaire irréductible est de la forme CORRIGE EXERCICE 1 [2 points = 0,25 7 + 0,25 suivant qu'une définition est donnée ou pas] Définition 1 Un nombre décimal est un nombre rationnel (une fraction) qui peut s écrire sous la forme d une fraction

Plus en détail

Constructions géométriques

Constructions géométriques Constructions géométriques Objectifs : - reconnaître deux droites parallèles et deux droites perpendiculaires - savoir déterminer une distance d un point à une droite - connaître les constructions géométriques

Plus en détail

Angles inscrits au collège

Angles inscrits au collège Angles inscrits au collège Angles inscrits égaux et supplémentaires, théorème limite de cocyclicité, milieux d'arcs et bissectrices, quadrilatères inscriptibles. Sommaire 1. Angles inscrits 2. Angle inscrit

Plus en détail

analytique plane 2. 2013

analytique plane 2. 2013 analytique plane 2. 2013 Maths-A TABLE DES MATIÈRES Rappels sur les vecteurs... 30 Pente d une droite... 31 Equation d une droite, première forme... 32 Equation d une droite, deuxième forme... 33 Equation

Plus en détail

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2

ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 ÉTAPE 1 : Construction de perpendicualires et de parallèles sur papier uni, introduction des propriétés 1 et 2 Exercice des 24 h du Mans Une voiture part de la ligne de départ. Elle se déplace en ligne

Plus en détail

Tangentes et raccords. 1 DÉFINITION Tangent : élément géométrique qui a un seul point de contact avec une surface ou/et une courbe

Tangentes et raccords. 1 DÉFINITION Tangent : élément géométrique qui a un seul point de contact avec une surface ou/et une courbe Tangentes Page 1 of 9 1 DÉFINITION Tangent : élément géométrique qui a un seul point de contact avec une surface ou/et une courbe 2 TYPES ET CONSTRUCTION 2.1 Droite tangente à un cercle Le rayon qui aboutit

Plus en détail

Chapitre 11 Géométrie 4. Figures usuelles

Chapitre 11 Géométrie 4. Figures usuelles I : Quelques éfinitions hapitre 11 Géométrie 4 Figures usuelles Nous avons vu au premier chapitre de géométrie la définition d'un segment. Voici donc quelques définitions supplémentaires: Ligne risée:

Plus en détail

Remarque : un point n'a pas d'épaisseur. B et C sont confondus, P et A sont distincts.

Remarque : un point n'a pas d'épaisseur. B et C sont confondus, P et A sont distincts. REGLE ET COMPAS I Utilisation d une règle sans les graduations Rappel le point est représenté par une croix ou un point. Deux points qui ne sont pas sur le même emplacement sont dit «distincts (ex. P et

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de seconde session 2012 Enoncés On demandait de résoudre trois questions

Plus en détail

FICHES OUTILS GEOMETRIE CM1

FICHES OUTILS GEOMETRIE CM1 FIHES OUTILS GEOMETRIE 1 Utilisation de la règle et de l équerre 2 Utilisation du compas 3 Reproduire des figures planes 4 Reconnaitre des figures planes 5 onstruire des figures géométriques 6 Les solides

Plus en détail

Géométrie analytique. Exercices 2MS - 3MS

Géométrie analytique. Exercices 2MS - 3MS Géométrie analytique Exercices 2MS - 3MS Géométrie analytique 2MS - 3MS 1 Table des matières 1 Exercices 2 2 Solutions 10 Géométrie analytique 2MS - 3MS 2 1 Exercices 1 La droite 1.1 Lespointsci-dessousappartiennent-ilsàladroited

Plus en détail

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB]

COURS. Demi-droite d origine Segment d extrémités Droite A et B (AB) ou (d) [AB) [AB] EC 4A : ELEMENTS DE MATHEMATIQUES PARALLELISME, PERPENDICULARITE, FIGURES PLANES ELEMENTAIRES COURS Objectifs du chapitre : Reconnaître et construire les figures de base de la géométrie Caractériser, reconnaître

Plus en détail

Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html

Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html Construction de polygones avec Géogebra Inspiration Web : http://www.abacom.com/~oraby/fr/mathematiques/index.html Nous vous proposons quelques constructions possibles de polygones réguliers à l'aide du

Plus en détail

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé.

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé. Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 Exercice 1 : (4 points) ABCDEF est un hexagone régulier de centre O. Répondre aux questions suivantes en utilisant uniquement les points de la figure. 1) Trouver

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

TRANSFORMATIONS DU PLAN

TRANSFORMATIONS DU PLAN TRANSFORMATIONS DU PLAN On appelle transformation plane (ou transformation du plan) dans lui-même tout procédé qui, à partir de n importe quel point M du plan, permet de construire un point M du plan.

Plus en détail

Fiche méthode : Vecteurs dans un repère

Fiche méthode : Vecteurs dans un repère Table des matières 1 Calcul des coordonnées 2 1.1 Cas général................................................ 2 1.2 exemple.................................................. 2 2 vecteurs égaux 2 2.1 rappels...................................................

Plus en détail

DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE. sixième. Nombres et calculs. Critères de divisibilité. Comparaison des décimaux

DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE. sixième. Nombres et calculs. Critères de divisibilité. Comparaison des décimaux DIFFÉRENTS TYPES DE RAISONNEMENT RENCONTRÉS AU COLLÈGE sixième Organisation de données Nombres et calculs Critères de divisibilité Propriétés des droites parallèles et perpendiculaires Propriétés de la

Plus en détail

SYMETRIES. 1 ) Axe de symétrie.

SYMETRIES. 1 ) Axe de symétrie. Chapitre GEOMETRIE SYMETRIES 1 ) Axe de symétrie. On dit qu une figure plane admet un axe de symétrie lorsque, si je plie ma feuille le long de l axe, alors les deux parties de la figure se superposent

Plus en détail

Géométrie et Mesures CM1 Période 1

Géométrie et Mesures CM1 Période 1 Géométrie et Mesures CM1 Période 1 Ecris la lettre des figures qui sont des polygones. A B En utilisant ton compas, trouve tous les segments qui ont la même longueur que le segment [AB]. C D Avec ta règle

Plus en détail

Symétrie axiale Page 123

Symétrie axiale Page 123 Classe de sixième CHPITRE 6 SYMETRIE XILE Symétrie axiale Page 123 Fiche d'exercices 6.1. FIGURES SYMETRIQUES Le mot symétrie vient du grec syn : "avec" et metron : "mesure". On reviendra sur le sens de

Plus en détail