Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments"

Transcription

1 TS Les sites () Vocablaire sel des sites Rappels de ère et complémets 4 3 Revoir le cors de ère formle explicite I Gééralités ) Défiitio Ue site mérie est e foctio : terme d idice relatio de récrrece sites compréhesio ) Notatio (les parethèses sot obligatoires) Qad il y a pas de parethèses, c est por défiir le ombre Qad il y a des parethèses, c est por défiir la foctio Exemple : ad o dit «la site est croissate», o met des parethèses 3 ) Différetes faços de défiir e site Il y e a trois pricipales ère faço : formle explicite doat le terme gééral e foctio de Exemple : e faço : par so premier terme et e relatio de récrrece (c est-à-dire e relatio liat dex termes coséctifs) (Novelle défiitio par rapport ax foctios) Exemple : 3 3 e faço : par compréhesio Exemple : 3,4596 ième décimale de II Esemble de défiitio d e site ) Remare géérale Ue site pet être défiie sr o selemet sr e partie de Détermier l esemble de défiitio d e site défiie par e formle explicite est e gééral facile E revache, c est sovet pls difficile das le cas d e site défiie par récrrece et os avos pas ecore tos les otils (raisoemet par récrrece) ) Exemples de sites défiies par e formle explicite ➀ La site telle e est défiie sr ➁ La site telle e est défiie sr o à partir de l idice ➂ La site telle e est défiie à partir de l idice 3 ) Exemples de sites défiies par récrrece ➀ 3 La site est défiie de maière évidete sr (pas de problème de défiitio) ➁ 3 La site est défiie sr mais ce est pas assi évidet e das le er exemple O pet faire raisoemet de proche e proche (i pls tard sera remplacé par raisoemet par récrrece)

2 3 ➂ ; O e pet pas calcler 3 La site est pas défiie à partir de l idice 3 (site fiie) Lorse e site est défiie par so premier terme et e relatio de récrrece d type f où f est e foctio mérie, il pet y avoir problème de défiitio sivat la valer de et l esemble de défiitio de f 4 ) Propriété d existece d e site défiie par récrrece (admise sas démostratio) f est e foctio mérie défiie sr e partie D de telle e f D D (o dit e D est stable par f) Por tot réel a D a et la relatio de récrrece f est défiie sr, la site défiie par so premier terme III Représetatios graphies ) Représetatio graphie sr axe gradé ) Représetatio graphie das repère d pla termes (droite x réelle) 3 ) Lectre graphie des termes d e site récrrete d ordre doé por tot f O trace la corbe C f d éatio lorse le repère est orthoormé) Recette : O place sr l axe des abscisses O mote js à C f O obtiet e ordoée car f O ralloge js à O redesced e abscisse ; o obtiet la valer de O recommece avec et aisi de site j O y f x et la droite d éatio y x («ère bissectrice» d repère Il s agit d e costrctio des termes d e site récrrete sas calcl Sivat les cas, o obtiet e costrctio e «marche d escalier» o «e spirale» («e escargot») i : y x C f IV Ses de variatio d e site ) Défiitios est e site O dit e est croissate por exprimer e : O dit e est strictemet croissate por exprimer e : j O i idices La site est représetée par des poits isolés («age de poits») O dit e est décroissate por exprimer e : O dit e est strictemet décroissate por exprimer e : O dit e est costate por exprimer e : O dit e est statioaire à partir de l idice por exprimer e : O dit e est mootoe por exprimer elle est soit croissate soit décroissate O dit e est strictemet mootoe por exprimer elle est soit strictemet croissate soit strictemet décroissate 3 4

3 ) NB O observera e les défiitios d e site croissate, décroissate etc fot appel à des phrases atifiées Ue site pet être mootoe à partir d certai idice 3 ) Méthodes d étde d ses de variatio d e site f croissate croissate f décroissate décroissate V Sites arithméties et géométries ) Tablea de formles Méthode par comparaiso directe Méthode par différece Méthode par otiet Méthode par étde de foctio Méthode por les sites arithméties et les sites géométries Méthode par récrrece O pose o 4 ) Bêtises à e pas faire Pricipe O compare et e tilisat les théorèmes de ragemet O étdie le sige de la différece Lorse tos les termes sot strictemet positifs, o pet comparer à Si, alors est croissate Si, alors est décroissate Lorse f où f est e foctio défiie sr +, o pet étdier le ses de variatio de f sr + et e dédire celi de O pet tiliser les règles particlières i sot doées das le paragraphe sivat (par rapport à la raiso) P : P : Commetaires Utilisatio assez limitée ; por les sites défiies par e formle explicite simple Il fat d abord vérifier e tos les termes sot de sige positif - Il fat coaître la foctio (foctio associée à la site) - Pas por les sites défiies par récrrece (voir remare das le 5 )) - Voir pls tard le chapitre sr le raisoemet par récrrece - Pratie por les sites défiies par récrrece Relatio de récrrece / Relatio etre dex termes elcoes d idices et p Sommes de termes coséctifs Formles sommatoires Ses de variatio (mootoie) r Sites arithméties raiso arithmétie (ombre fixé) p r p (e particlier por p et p r r ) Somme des termes ombre de termes er derier (ombre de termes moyee des termes extrêmes) r site strictemet croissate r site strictemet décroissate r site costate Sites géométries raiso géométrie (ombre fixé) p p Somme des termes er terme ombre de termes site strictemet décroissate site strictemet croissate site o mootoe site strictemet croissate site strictemet décroissate site o mootoe (cotraire das les dex premiers cas) Pas de tablea de variatio por les sites Ne pas dire «croissate sr» mais «croissate à partir de l idice» Ue site arithmétie est tojors mootoe Ue site géométrie de er terme différet de est mootoe si et selemet si Pas de dérivée de site doé f Le ses de variatio de f e doe pas celi de 5 6

4 ) Complémet : ombre de termes d e somme p p p termes Exemples : termes termes Applicatios : si est e SA : termes termes si est e SG de raiso : termes termes 4 ) Représetatio graphie Les poits de la représetatio graphie (age de poits) d e SA sot aligés sr e même droite Cette propriété caractérise les SA VI Sites périodies ) Défiitio O dit e site est périodie lors il existe etier p tel e p Le pls petit etier atrel p i vérifie la propriété est appelé la période de la site ) Exemple est la site défiie sr par (calcl sr les idices) VII Sites majorées, miorées, borées 3 ) Recoaître e SA o e SG ère méthode r o o r SA de raiso r SG de raiso La méthode par otiet écessite d avoir motré préalablemet e tos les termes de la site sot o ls ce i est pas tojors possible o ce i est parfois difficile e méthode a b SA de raiso b a b SG de raiso b 3 ) Idetités algébries : formles sommatoires à coaître Somme des premiers etiers atrels (SA) ( ) Somme des pissaces coséctives d même ombre différet de (SG) ) Défiitio est e site O dit e est majorée por exprimer il existe réel M tel e majorat de la site) O dit e est miorée por exprimer il existe réel m tel e miorat de la site) O dit e est borée por exprimer il existe dex réels m et M tel e ) Exercice est la site défiie sr par Démotrer e est borée Méthode : Il fat démotrer il existe dex réels m et M tels e Atremet dit, il fat ecadrer par dex ombres fixes Exploratio mérie : O pet chercher e calclat les premiers termes por avoir e idée ,, 3, 4, semble miorée par et majorée par 3 m M M (M est m (m est m M 7 8

5 Démostratio : Mioratio : Doc est miorée par ( est miorat de la site ;,5,,,,33 Majoratio : 3 Doc est majorée par 3 (3 est majorat de la site) Bila : 3 Doc la site est borée 3 ) Propriété (évidete) Tote site croissate est miorée par so premier terme Tote site décroissate est majorée par so premier terme 4 ) Méthodes por démotrer e site est miorée o majorée Por démotrer ombre m est miorat d e site : Méthode par comparaiso directe Pricipe O compare et m e tilisat les théorèmes de ragemet Méthode par différece O étdie le sige de la différece m et o motre e cette différece est positive o lle por tot etier atrel Méthode par récrrece O pose par exemple P : «m» Méthode par mioratio d e somme Voir pls tard Commetaires - Utilisatio lorse la site est défiie par e formle explicite - O tilise les théorèmes de ragemet - Pas tojors possible Assez commode e pratie lorse la site est défiie par e formle explicite Commode lorse la site est défiie par récrrece Voir pls tard Utilisatio por e site défiie sos forme d e somme Les mêmes méthodes s adaptet por démotrer ombre M est majorat d e site 5 ) Remare Ue site dot tos les termes sot positifs o ls est miorée par Ue site dot tos les termes sot égatifs o ls est majorée par 9 VIII Bila ) Q est-ce étdier e site? L étde d e site pet cosister à démotrer : e site est défiie calcler explicitemet le terme gééral étdier la mootoie étdier la covergece (voir pls tard) ) Otils d étde d e site - otils méries - otils graphies Avec tilisatio de la calclatrice (voir Appedice) o d tabler por programmer le calcl des termes et faire des représetatios graphies Sr tabler, o pet représeter age de poits IX Appedice : tilisatio de la calclatrice por les sites méries ) Por détermier les termes d e site récrrete TI 83 MODE (Se o Sit) ENTER d QUIT Y= Mi : premier idice d 7 por taper : Toche X, T,, por (Mi) : première valer de ) Por représeter e site TI 83 WINDOW Régler la feêtre d ZOOM (FORMAT) Time ENTER GRAPH Se placer e mode «site» Éditer la site Par exemple, soit la site défiie par : 4 3et et o TI : attetio, est oté exprime e foctio de Casio: o choisit d'abord le type de site à eregistrer La site est otée a Por calcler des valers TI : régler la table (TblSet) et l'afficher (Table) Casio : régler les paramètres de la Table Sr TI, les valers pevet être obtees directemet sr l'écra de calcl : (5) affiche 5 Casio Graph 35 MENU 8 (RECUR) F3 (TYPE) F ( a ) Por taper a o, F4 pis F o F F5 (RANG) (Start) EXE (Ed) EXE 3 a ) EXE ( Régler la feêtre d'affichage TI : Mi et Max sot les idices des premier et derier terme, PlotStart, l'idice d premier terme à tracer, PlotStep, le pas etre dex valers de Faire tracer le age de poits e appyat sr TRACE Casio Graph 35 SHIFT F3 (V-Widows) Régler la feêtre Retorer à la table, F6 (TABL) F6 (G-PLT)

6 IX Sommes : écritre avec le symbole ) Objectifs - modalité d écritre - commet o développe ) Exemple k5 k k Compredre e l o part de et e l o va js à 5 3 ) Exemple k k k O est obligé d écrire la somme avec des petits poits

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments

Les suites (1) Vocabulaire usuel des suites Rappels de 1 ère et compléments TS Revoir le cors de ère I Gééralités ) Défiitio Les sites () Vocablaire sel des sites Rappels de ère et complémets 3 e faço : par compréhesio Exemple : 3,4596 4 3 ième décimale de Ue site mérie est e

Plus en détail

Cours 4 SUITES DE NOMBRES RÉELS

Cours 4 SUITES DE NOMBRES RÉELS Cours 4 SUITES DE NOMBRES RÉELS A/ GÉNÉRALITÉS 1. Défiir ue suite de ombres réels Ue suite u de ombres réels, est ue foctio défiie sur N qui, à chaque etier aturel, associe u ombre oté u. Ce ombre u s

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 6 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 6 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5

Terminale S Exercices sur le chapitre 5 «Suites numériques» Page 1 sur 5 Termiale S Exercices sur le chapitre 5 «Suites umériques» Page sur 5 Gééralités sur les suites ------------------------------------------------------------------------------------------------------ Exercice

Plus en détail

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0

( ) soit vraie, et on démontre ( ) elle est vraie. ( ) est vraie pour tout entier naturel n n 0 Chapitre 1 : Les suites umériques I. Le raisoemet par récurrece 1. Présetatio Soit P( ) la propriété : «7 + 2 est divisible par 3». O veut vérifier que cette propriété est vraie pour tout etier aturel.

Plus en détail

Soit f une fonction dérivable sur R dont le tableau de variations est donné ci-dessous où a et b désignent deux réels.

Soit f une fonction dérivable sur R dont le tableau de variations est donné ci-dessous où a et b désignent deux réels. Métropole septembre 0 EXECICE 5 poits Comm à tos les cadidats Soit f e foctio dérivable sr dot le tablea de variatios est doé ci-dessos où a et b désiget de réels a + b f () Détermier le sige de f () selo

Plus en détail

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n

LFA / 1ère ES mathématiques-cours Mme MAINGUY Chapitre 7. v n LFA / ère ES mathématiqes-cors Mme MAINGUY Chapitre 7 Ch7 COURS Gééralités sr les sites I Défiitio Exemples exemple O cosidère la site défiie por par la relatio Calclos ; ; ; ; exemple O cosidère la site

Plus en détail

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ;

Les suites. Suite définie par une fonction (= Suites définies en fonction du rang n (du type ; Les sites Rappel : désige l esemble des etiers atrels, ;;;; UNE SUITE DE NOMBRES REELS EST UNE LISTE ORDONNEE DE NOMBRES REELS, FINIE OU INFINIE I ) Gééralités Notio de site Défiitio : Ue site est e foctio

Plus en détail

Suites numériques : définition générale.

Suites numériques : définition générale. 1 Suites arithmétiques Suites umériques : défiitio géérale.... Le pricipe de récurrece... 3 Suites arithmétiques... 4 Formule 1 des suites arithmétiques... 5 Appreos à compter... 6 Formule des suites arithmétiques...

Plus en détail

CORRIGÉ DE LA FEUILLE 2

CORRIGÉ DE LA FEUILLE 2 CORRIGÉ DE LA FEUILLE. Exercice Soiet u et v deux séries à termes positifs.. Si ue des séries est divergete, alors la série de terme gééral u + v est divergete C est vrai. E effet, supposos que la série

Plus en détail

Premières S A et S C : pour s entraîner pour le devoir n 8

Premières S A et S C : pour s entraîner pour le devoir n 8 Premières S A et S C : por s etraîer por le devoir 8 Savoirs et savoir faire (oveax depis le DS7) : Barycetres das l espace : Démotrer qe des poits sot coplaaires à l aide de barycetres Savoir détermier

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u

Suites généralités. u est une fonction qui à tout entier naturel n associe un nombre réel, noté u Sites gééralités A Sites mériqes Notio de site Défiitio : Ue site ( qe : : a La site se ote o avec des parethèses ( est e foctio qi à tot etier atrel associe ombre réel, oté tel Le terme iitial de la site

Plus en détail

TS Limites de suites (2)

TS Limites de suites (2) TS Limites de sites () bjectifs : mettre e place et tiliser des défiitios rigoreses des ites de sites I pproche de la défiitio d e site divergeat vers + ) pproche graphie a représeté graphiemet ci-dessos

Plus en détail

Exercices sur les suites arithmétiques (2)

Exercices sur les suites arithmétiques (2) ère S Exercices sr les sites arithmétiqes () Soit la site arithmétiqe de premier terme et de raiso Exprimer e foctio de r Soit la site arithmétiqe de premier terme 0 et de raiso Détermier tel qe 09 r Soit

Plus en détail

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points)

Contrôle du samedi 1 er octobre 2016 (2 heures) TS1. III. (4 points : 1 ) 2 points ; 2 ) 2 points) TS Cotrôle d samedi er octobre 6 ( heres) Préom et om : Note : / I ( poits : ) poit ; ) poit) O cosidère le polyôme 4 P 6 9 6 89 avec ) Démotrer qe por tot ombre complexe o a : P 6 89 III (4 poits : )

Plus en détail

LES SUITES NUMERIQUES

LES SUITES NUMERIQUES LES SUITES NUMERIQUES I. Défiitio - Vocablaire - Notatios O appelle site mériqe tote foctio d'e partie P o ide de, das est le terme d'idice de la site. C'est l'image par de (o arait p la oter () mais est

Plus en détail

Exercices sur le raisonnement par récurrence

Exercices sur le raisonnement par récurrence TS Exercices sr le raisoemet par récrrece Das tos les exercices, o veillera à respecter scrplesemet le protocole des récrreces 6 O cosidère la site déiie sr par so premier terme = et la relatio de récrrece

Plus en détail

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1.

c) représentation graphique T est la tangente à C exp au point A d abscisse 0. Une équation de T est de la forme : y = x + 1. Chapitre VI : Foctio expoetielle I. La foctio expoetielle a) Défiitio La foctio expoetielle, otée exp, est la foctio défiie sur! par exp(x) = e x, e x état l uique ombre réel strictemet positif dot le

Plus en détail

Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10

Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10 Table des matières Suites T.S. I.Suites : Le Best of du programme de 1S...1 A.Pourquoi les suites? qu'est-ce que c'est?...1 B.Défiitio et otatios...1 C.Deux faços de défiir ue suite :...2 D.Représetatio

Plus en détail

II. (1 point) u est. On considère la suite u définie sur par ses deux premiers termes u0 1 et u1 4 ainsi que par la relation de récurrence u

II. (1 point) u est. On considère la suite u définie sur par ses deux premiers termes u0 1 et u1 4 ainsi que par la relation de récurrence u TS Cotrôle d vedredi septembre (5 mites) Préom et om : Note : / II ( poit) 5 À l aide de la calclatrice, détermier la valer arrodie a cetième de S La valer arrodie a cetième de S est égale à I ( poits

Plus en détail

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR

SUITES. ) définie pour tout entier naturel n par : =. Calculer les trois premiers termes de la suite. ) définie par : MATHOVORE.FR SUITES I Calcls de termes Exercice : O cosidère la site ( ) défiie por tot etier atrel par : a) Calcler,, b) Calcler,, c) Calcler les trois premiers termes de la site 5 Exercice : O cosidère la site (

Plus en détail

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose :

TS Exercices sur les limites de suites (3) 4 Pour tout entier naturel n 1, on pose : T Exercices sr les limites de sites () Por tot etier atrel, o pose : O cosidère la site ( ) défiie sr N par so premier terme récrrece ( ) = + por tot etier atrel ) Démotrer par récrrece qe, por tot etier

Plus en détail

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999

TS DS 1 Lundi 25/09/ Recopier et compléter l algorithme dessous, pour qu il affiche la plus petite valeur de n pour laquelle u 4,999 TS DS Ldi /0/07 Exercice : sr 6 poits O cosidère la site défiie par 0 0 et por tot, 3.. Démotrer, par récrrece, qe por tot,.. Etdier le ses de variatio de la site 3. Détermier la limite de la site 4. Recopier

Plus en détail

Quelques inégalités classiques

Quelques inégalités classiques Quelques iégalités classiques O se propose de motrer, sous forme d exercices, quelques iégalités classiques. Les preuves de ces iégalités e écessitet que quelques coaissaces élémetaires.. Exercices classiques

Plus en détail

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n

Suites réelles 2. ) sur l axe des abscisses. 2) Répondre par «Vrai ou Faux» aux questions suivantes, en utilisant le graphique : a) ( ) n 4 ème aée Maths Sites réelles Septembre 9 A LAATAOUI Exercice : O cosidère la site ( ) défiie par : a) Motrer qe por tot de IN, < 4 b) Motrer qe ( ) est strictemet croissate c) E dédire qe ( ) + 4+, por

Plus en détail

Le raisonnement par récurrence, un outil puissant de démonstration

Le raisonnement par récurrence, un outil puissant de démonstration TS Le raisoemet par récurrece, u outil puissat de démostratio I. Itérêt ) Exemple 0 0 u est la suite défiie par u u 2u (suite récurrete ; suite «arithmético-géométrique» ; o e coaît pas l expressio du

Plus en détail

Les suites numériques

Les suites numériques Les sites mériqes Objectifs : - Maîtriser la otio de covergece; cas particliers de la covergece mootoe; - Maîtriser les sites récrretes + = f( avec f mootoe; cas particlier des sites géométriqes; 3- Voir

Plus en détail

LIMITES DE SUITES EXERCICES CORRIGES

LIMITES DE SUITES EXERCICES CORRIGES Exercice Détermier la limite (évetelle) des sites LIMITES DE SUITES EXERCICES CORRIGES ci-dessos : ) ) 5) 5 4 6) 8 ) 7) 5 7 4 8) 4) ( ) ) ² Exercice Motrez qe la site satisfait la relatio (R), is vos e

Plus en détail

Juin 2014 MATHEMATIQUES

Juin 2014 MATHEMATIQUES Jui 014 1 ères S MATHEMATIQUES Voici ue série d exercices sur différets thèmes abordés e classe de première S. Ils vous permettrot de repredre cotact avec les mathématiques avat d aborder la classe de

Plus en détail

Algorithmes type BAC sur les suites

Algorithmes type BAC sur les suites Algorithmes type BAC sr les sites 1. Algorithme permettat de détermier rag à partir dqel e site croissate de limite ifiie est spériere à ombre réel A O cosidère la site ( ) défiie par 0 = et por tot etier,

Plus en détail

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES

CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES Dérivatio des octios composées Cours CHAPITRE 7 : DERIVATION DES FONCTIONS COMPOSEES - DERIVEE N-IEMES. DERIVATION d ue FONCTION COMPOSEE.. Dérivée d ue octio composée Théorème Soit ue octio dérivable

Plus en détail

On considère qu une suite admet une limite l, ou converge vers l, lorsque :

On considère qu une suite admet une limite l, ou converge vers l, lorsque : I. Gééralités sr les limites de sites. Site covergete O cosidère q e site admet e limite l, o coverge vers l, lorsqe : tot itervalle overt coteat l cotiet tos les termes de la site à partir d certai rag.

Plus en détail

1 ère S Suites géométriques (2)

1 ère S Suites géométriques (2) ère S Sites géométries () E ret =, o retrove l formle (exressio d terme géérl d e site géométrie de remier terme I. Reltio etre dex termes elcoes ) Formle est e site géométrie de remier terme et de riso.

Plus en détail

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib

Les suites réelles. Copyright Dhaouadi Nejib Dhaouadi Nejib Les sites réelles Copyright Dhaoadi Nejib 009 00 http://wwwsigmathscocc Dhaoadi Nejib http://wwwsigmathscocc Page : Sites Réelles Das ce chapitre I désige l esemble des etiers 0 ( 0 N ) I Rappels et complémets

Plus en détail

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ).

SUITES - Cours. a a. C est donc une liste de nombres. On peut noter les éléments de la liste comme suit :... On appelle u. u (avec n N ). Cors de Mathématiqe S CHAPITRE N Partie : Algebre & Aalyse SUITES - Cors D abord qelqes petits rappels : a = a = a m m a a = a + ( )( ) a m = m a a = b b a + a a = a si a, alors a a a a = + a m = a m Notio

Plus en détail

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés

Suites numériques. Copyright meilleurenmaths.com. Tous droits réservés Suites umériques. 1. Mode de géératio des suites... p2 4. Le raisoemet par récurrece... p4 2. Relatio de récurrece... p3 5. Ses de variatio des suites... p6 3. Suites arithmétiques, suites géométriques...

Plus en détail

Convergence et limite de suites numériques

Convergence et limite de suites numériques Covergece et limite de sites mériqes 1. Covergece d e site 1.1. Défiitio Ue site de ombres réels est covergete et admet comme limite ombre réel l si, qelqe soit le ombre ε > 0 assi petit soit-il, il existe

Plus en détail

1 ère S Exercices sur les suites (3)

1 ère S Exercices sur les suites (3) ère S Exercices sr les sites () (Sites arithmétiqes - sites géométriqes) Soit la site arithmétiqe de premier terme 0 et de raiso r Exprimer e foctio de Soit la site arithmétiqe de premier terme 0 et de

Plus en détail

SUITES ET SÉRIES. On peut aussi représenter une suite par un dessin : 0.8 0.6 0.4 0.2. Une suite est strictement décroissante si u n > u n+1, n N *.

SUITES ET SÉRIES. On peut aussi représenter une suite par un dessin : 0.8 0.6 0.4 0.2. Une suite est strictement décroissante si u n > u n+1, n N *. SUITES ET SÉRIES 7 2. Suites et séries 2.. Suites Défiitio Exemples Liste u = 5, u 2 = 8, u 3 = 4, u 4 =, Formule u = 2 ; 4 ; 9 ; 6 ; Récurrece { u = 2 u = 2u Ue suite réelle est ue liste ordoée (ou liste

Plus en détail

Suites géométriques suite géométrique suite géométrique de raison q

Suites géométriques suite géométrique suite géométrique de raison q Sites géométriqes Itrodctio : M. Fiace dispose d e somme de 5 FF et désire faire frctifier so pactole ; por cela il va voir so baqier qi li propose de optios : e agmetatios forfaitaire, aelle, de 5 F =

Plus en détail

Analyse 5 SUITES REELLES

Analyse 5 SUITES REELLES Aalyse chap 5 /6. GENERALITES SR LES SITES. Défiitios Défiitio : e suite est ue foctio, défiie sur ue partie D de. O ote () =, o lit «idice». O dit que est le terme gééral de la suite, ou terme de rag.

Plus en détail

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite

Chapitre 1. Les suites numériques Principe de récurrence Limite d une suite Eseigemet spécifique Chapitre 1. Les suites umériques Pricipe de récurrece Limite d ue suite I. Rappels sur les suites umériques 1. géérale Ue suite umérique est ue foctio défiie de N vers R, elle peut

Plus en détail

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k *

Propriété Limites de suites convergentes usuelles. 1 lim 0 où k * SUITES NUMERIQUES Le pricipe de récrrece Soit e propositio P dépedat d etier atrel. Por démotrer qe P est raie por tot etier 0, il sffit de motrer qe : La propositio est raie a rag 0 ; por etier qelcoqe

Plus en détail

BAC BLANC de MATHEMATIQUES TS

BAC BLANC de MATHEMATIQUES TS BAC BLANC de MATHEMATIQUES TS Décembre 205 Lycée Jea Calvi - Noyo Exercice Das cet exercice, les probabilités serot arrodies a cetième. Partie A U grossiste achète d soja chez dex forissers. Il achète

Plus en détail

LES SUITES. u n = 1 n, pour n 1. u n = n 3

LES SUITES. u n = 1 n, pour n 1. u n = n 3 LES SUITES. Défiitio.. Défiitio Ue suite umérique est ue foctio de das, défiie à partir d'u certai rag 0. La otatio (u ) désige la suite e tat qu'objet mathématique et u désige l'image de l'etier (appelé

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propriété P() dépedat de l idice Si les propositios ()

Plus en détail

Chapitre 3 RÉGRESSION CORRÉLATION

Chapitre 3 RÉGRESSION CORRÉLATION Chapitre 3 RÉGRESSION CORRÉLATION Les doées se présetet sous la forme d ue suite de couples de valeurs umériques(x i, y i ), umérotés de à i =. O ote m x, s x ², m y, s y ² les moyees et les variaces des

Plus en détail

Exercices sur les suites (révisions de 1 ère et compléments)

Exercices sur les suites (révisions de 1 ère et compléments) T O cosidère la site Exercices sr les sites (révisios de ère et complémets) défiie sr par cos Étdier le ses de variatio de la site par étde de foctio Idicatio : O commecera par défiir e foctio f défiie

Plus en détail

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes

Une définition de la fonction exponentielle dans l esprit des nouveaux programmes 1 Ue défiitio de la foctio expoetielle das l esprit des ouveaux programmes 0. Itroductio. Les ouveaux programmes de mathématiques de termiale S qui sot etrés e vigueur à la retrée 2002 icitet fortemet

Plus en détail

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n).

1.Définition. L image par f de l entier n est le terme général de la suite noté : u n = f(n). SUITES ET SERIES SUITES 1.Défiitio O appelle site esemble de ombres 1, 2,... défiis das l ordre croissat et vérifiat certaies règles de défiitio. Chaqe ombre de la site s appelle terme, est par exemple

Plus en détail

Centres étrangers juin n + 2.

Centres étrangers juin n + 2. Cetres étragers ji 3 EXERCICE poits Comm à tos les cadidats O défiit, por tot etier atrel >, la site ( ) de ombres réels strictemet positifs par = Por tot etier atrel >, o pose v = a Motrer qe v = b Motrer

Plus en détail

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également.

SUITES (Partie 1) Dans l'exemple, si on suppose qu'un domino (k) tombe alors le domino suivant (k+1) tombe également. SUITES (Partie ) I. Raisoemet par récurrece ) Le pricipe C'est au mathématicie italie Giuseppe Peao (858 ; 93), ci-cotre, que l'o attribue le pricipe du raisoemet par récurrece. Le om a probablemet été

Plus en détail

TD n 3 : quelques exercices sur la récurrence

TD n 3 : quelques exercices sur la récurrence Éocé TD 3 : quelques exercices sur la récurrece Exercice 1 Soit (a ) 0 ue suite de ombres réels ou complexes. O pose b 0 = 1 et b = (1 a k ) pour 1. Motrer que b +1 = 1 Exercice O défiit ue suite (u )

Plus en détail

Elle est associative, commutative et son élément neutre est la suite nulle notée 0

Elle est associative, commutative et son élément neutre est la suite nulle notée 0 Chapitre 9 : Sites mériqes-résmé de cors 1. Gééralités 1.1 Défiitio et exemples Déf: O appelle site tote applicatio de das. Si la site est otée, l'image de est oté pltôt qe (). O otera idifféremmet la

Plus en détail

SUITES RECURRENTES - EXERCICES CORRIGES

SUITES RECURRENTES - EXERCICES CORRIGES Exercice. SUITES RECURRENTES - EXERCICES CORRIGES O cosidère la site ( ) défiie par ) Etdier la mootoie de la site ( ) ) a) Démotrer qe, por tot etier atrel, b) Qelle est la limite de la site ( )? = por

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES ENIHP Equatios différetielles p. I Défiitio et otatio EQUATIONS DIFFERENTIELLES Défiitio : O appelle dérivée secode de f (x) la dérivée de f (x), elle même dérivée de f(x). O défiit aisi la dérivée d ordre

Plus en détail

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie.

La présentation, le soin et la rigueur des résultats entreront pour une part importante dans l évaluation de la copie. NOM Tle S-A/B/C DS - Mathématiqes - Ldi 26 septembre 206 La présetatio, le soi et la riger des résltats etrerot por e part importate das l évalatio de la copie Exercice : sr 8 poits Cet exercice est costité

Plus en détail

Terminales S BAC BLANC Mathématiques Sujet

Terminales S BAC BLANC Mathématiques Sujet Sujet Durée 4 heures. La calculatrice graphique est autorisée. Le barème est fouri à titre idicatif. Eercice 1 (commu) [5 poits] 3 Soit la foctio f défiie sur + par f ( ) =. O appelle C, la courbe représetative

Plus en détail

TS Limites de suites (3)

TS Limites de suites (3) TS Limites de suites (3) I. Rappels sur les suites majorées, miorées, borées ) Défiitio (suite majorée, miorée, borée) 5 ) Propriété Si u réel M est u majorat d ue suite u, alors tous les réels supérieurs

Plus en détail

TS Exercices sur les limites de suites (3)

TS Exercices sur les limites de suites (3) TS Exercices sr les limites de sites () O cosidère la site défiie sr par so premier terme récrrece por tot etier atrel ) Démotrer par récrrece qe, por tot etier atrel, o a : ) Détermier le ses de variatio

Plus en détail

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000

1 + ln x + 1 2. MA + MB + MC + MD. AMERIQUE DU SUD Novembre 2000 MERIQUE DU SUD Novembre 000 EXERIE U sac cotiet trois boules umérotées respectivemet 0, et, idiscerables au toucher. O tire ue boule du sac, o ote so uméro et o la remet das le sac ; puis o tire ue secode

Plus en détail

Suites numériques 1 / 12 A Chevalley

Suites numériques 1 / 12 A Chevalley MT8 A 03 Suites umériques Aleth Chevalley. Rappels.. Défiitio O appelle suite umérique réelle, toute applicatio f : ϒ qui à tout etier aturel, fait correspodre le ombre réel f() et o désige la suite par

Plus en détail

ESG MANAGEMENT SCHOOL

ESG MANAGEMENT SCHOOL ESG MANAGEMENT SCHOOL ETABLISSEMENT D ENSEIGNEMENT SUPERIEUR TECHNIQUE PRIVE RECONNU PAR L ETAT DIPLÔME VISÉ PAR LE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE/ GRADE MASTER MEMBRE DE LA CONFERENCE

Plus en détail

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Suites Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Suites Numériques Site MathsTICE de Adama Traoré Lycée Techique Bamako I Gééralité sur les suites: - Pricipe du raisoemet par récurrece : Soit la propositio P() dépedat de l etier () la propositio est

Plus en détail

T.D. 9 SUITES ET CALCULATRICES -

T.D. 9 SUITES ET CALCULATRICES - T.D. 9 SUITES ET CALCULATRICES - A/ Calculatrices TI 8 - TI 83 Pour calculer les termes, la calculatrice doit être e mode «Suites». Pour cela appuyer sur la touche MODE, choisir Seq puis valider par ENTER.

Plus en détail

TS Exercices sur les suites (2) 10 Soit u n

TS Exercices sur les suites (2) 10 Soit u n TS Exercices sr les sites () Soit la site défiie sr * par Soit e site défiie sr Tradire sos la forme d e phrase qatifiée la propriété «coverge vers» O cosidère e site défiie sr Tradire e termes de limites

Plus en détail

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures)

1S 1 : DEVOIR SURVEILLÉ N 8 (2 heures) S : DEVOIR SURVEILLÉ N 8 ( heres) Exercice ( poits) Calcler les sommes sivates : S + + 3 +... + + et S + + 3 +... + 8 +. Exercice (3 poits) La site ( ) est arithmétiqe de raiso r. O sait qe 5 46 et 86..

Plus en détail

Suites. tel que : :. La suite se note u ou avec des parenthèses Le terme initial de la suite est u

Suites. tel que : :. La suite se note u ou avec des parenthèses Le terme initial de la suite est u Sites A) Sites mériqes Notio de site Défiitio : Ue site est e foctio qi à tot etier atrel associe ombre réel, oté tel qe : : La site se ote o avec des parethèses Le terme iitial de la site est o p qad

Plus en détail

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite.

s'exprime en fonction de u 10. Calculer u n ). u et on étudie son signe. = 2. Déterminer le sens de variation de cette suite. Première S / mathématiques Préparatio Termiale S Mme MAINGUY Défiir ue suite umérique Sythèse Ê SUITES NUMÉRIQUES u s'exprime e foctio de Cette suite est défiie par u = f ( ) Ê par ue formule explicite

Plus en détail

arlesrsuitesraurbacr2013r==corriges=z

arlesrsuitesraurbacr2013r==corriges=z arlesrsuitesraurbacrr==corriges=z Frace métropolitaie septembre 5 poits 7 La foctio x x, ratioelle, est dérivable sr tot itervalle cote das so esemble x de défiitio * doc f est dérivable sr ] ; + [ et,

Plus en détail

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques.

Les suites réelles. Comportement global d une suite : Suite croissante Suite décroissante Suite majorée Suite minorée. 1. Des suites Arithmétiques. Les sites réelles Cote discipliaire 2A Scieces 3A Scieces expérimetales 4AScieces expérimetales Sites arithmétiqes. Sites géométriqes. Comportemet global d e site : Site croissate Site décroissate Site

Plus en détail

Limites de suites et de fonctions

Limites de suites et de fonctions TermS Limites de suites et de foctios I ] Suites ) Défiitio : Ue suite réelle est ue foctio de! das!, défiie à partir d'u certai rag 0. Notatio : u = lire "u idice " = terme d'idice, ou de rag = terme

Plus en détail

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie.

a. Une suite numérique est une liste de nombres (les termes) repérés par un numéro d ordre (l indice), cette liste peut être infinie. Stg Les sites I. Notios sr les sites a. Ue site mériqe est e liste de ombres (les termes) repérés par méro d ordre (l idice), cette liste pet être ifiie. Exemple. La site des ombres impairs :,,... Exemple.

Plus en détail

LEÇON N 8 : 8.1 Séries statistiques à deux variables

LEÇON N 8 : 8.1 Séries statistiques à deux variables LEÇON N 8 : Séries statistiques à deux variables umériques. Nuage de poits associé. Ajustemet affie par la méthode des moidres carrés. Droites de régressio. Applicatios. L exposé pourra être illustré par

Plus en détail

u est une suite arithmétique

u est une suite arithmétique wwwmathseligecom SUITES ARITHMETIQUES EXERCICES A EXERCICE A O cosidère la site défiie por tot etier atrel par = a Calcler ; et b Exprimer e foctio de c Démotrer qe dot o précisera le premier terme EXERCICE

Plus en détail

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES

SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES SE RAMENANT AUX SUITES ARITHMETIQUES OU GEOMETRIQUES - EXERCICES CORRIGES Exercice O cosidère la site défiie par O pose Motrer qe ( est e site géométriqe Exprimer

Plus en détail

Séquence 5. 1 ère partie : 2 e partie : Suites numériques (1) Produit scalaire (1) Séquence 5 MA12. Cned - Académie en ligne

Séquence 5. 1 ère partie : 2 e partie : Suites numériques (1) Produit scalaire (1) Séquence 5 MA12. Cned - Académie en ligne Séquece 5 1 ère partie : Produit scalaire (1) e partie : Suites umériques (1) Séquece 5 MA1 1 1ère partie Produit scalaire (1) Sommaire 1 Pré-requis Produit scalaire de deux vecteurs 3 Sythèse de la partie

Plus en détail

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées

Ch.1 ( ) ( ) + 9 ( ) ( ) = n ( n + 1 )( n + 2) ( )? ( ) ( ) ( )( n + 2) SUITES PARTIE 1 récurrence et suites bornées Termiale S Ch1 SUITES PARTIE 1 récurrece et suites borées Das tout le chapitre, les etiers cosidérés sot aturels, c'est-à-dire positifs ouls I Raisoemet par récurrece 1 / Itroductio Exercice 1 : soit u

Plus en détail

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un

on note cette suite par ( u. Exemple concret:on peut considérer une suite comme une suite infinie de nombres réels : n+1 u n = un I-Défiitios, vocablaire I- : Notio de site : Défiitio : e site d élémets d esemble A est e foctio de N vers R dot l esemble de défiitio est d type A R Si AR, o dit alors qe cette site est e site réelle

Plus en détail

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =.

{ } Sujet I, éléments de correction. EXERCICE I (3 points) u = La suite u est définie par u 0 = 2 et pour tout entier naturel n, un+ 1 =. Sjet I, élémets de correctio EXERCICE I ( poits) La site est défiie par 0 = et por tot etier atrel, + = 0 = ; =, 7 ; =, 7 ; =, 6666 ; =, 0 ; la site e semble pas être mootoe, elle paraît coverger vers

Plus en détail

Auteur : Simplice TANKOUA Activités de mise en place de la leçon.

Auteur : Simplice TANKOUA Activités de mise en place de la leçon. Auteur : Simplice TANKOUA (stakoua@yahoofr) Cours SUITES NUMÉRIQUES Leço : GÉNÉRALITÉS SUR LES SUITES Activités de mise e place de la leço Activité : (formule explicite) Exercice O cosidère la liste ordoée

Plus en détail

Notion d équation différentielle : Équations du 1 er ordre

Notion d équation différentielle : Équations du 1 er ordre IUT Orsa Mesures Phsiques Notio d équatio différetielle : Équatios du er ordre Cours du er semestre A. De quoi s agit-il? A-I. Eemples tirés de la géométrie a. Avec tagete et abscisse O suppose que f est

Plus en détail

Cours I : SUITES NUMERIQUES. I Quelques rappels

Cours I : SUITES NUMERIQUES. I Quelques rappels Agrocampus Ouest ENIHP ère aée p. Cours I : SUITES NUMERIQUES / Défiitio I Quelques rappels Défiitio : Ue suite u est ue applicatio de l esemble N ou ue partie de N das R qui à chaque élémet de N associe

Plus en détail

POUR PRENDRE UN BON DEPART EN TERMINALE S

POUR PRENDRE UN BON DEPART EN TERMINALE S Lycée Charles de Galle POUR PRENDRE UN BON DEPART EN TERMINALE S Foritres por le jor de la retrée : dex cahiers grad format (si possible 4x3) à petits carreax Ue calclatrice avec modle graphiqe Ue pochette

Plus en détail

Suites arithmétiques et géométriques

Suites arithmétiques et géométriques Sites arithméties et géométries A Sites arithméties Défiitio et formles Défiitio : forme récrsive Ue site est arithmétie lorse, à partir d terme iitial, l o passe d' terme de la site a terme sivat e ajotat

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que

[http://mp.cpgedupuydelome.fr] édité le 5 mai 2016 Enoncés 1. Exercice 7 [ 02253 ] [Correction] Soient (u n ) et (v n ) deux suites telles que [http://mp.cpgedupuydelome.fr] édité le 5 mai 06 Eocés Suites umériques Covergece de suites Exercice [ 047 ] [Correctio] Soiet u ) et v ) deux suites réelles covergeat vers l et l avec l < l. Motrer qu

Plus en détail

Fiche sur suites et calculatrices pour les calculatrices TI

Fiche sur suites et calculatrices pour les calculatrices TI Fiche sur suites et calculatrices pour les calculatrices TI Objectifs : O doe ue suite. O veut obteir : - u tableau de valeurs des termes de la suite ; - ue représetatio graphique des termes de la suite.

Plus en détail

Suites arithmétiques et suites géométriques Bilan et croissances

Suites arithmétiques et suites géométriques Bilan et croissances Sites arithmétiqes et sites géométriqes Bila et croissaces I Bila sr les sites arithmétiqes et géométriqes ) Tablea de formles Défiitio Relatio etre dex termes coséctifs Calcl d terme 4 ) Ue qestio de

Plus en détail

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si :

pour tout n de N, u n u n+1 ( resp. u n > u n+1 ). On dit d une suite ( u n ) qu elle est décroissante ( resp. strictement décroissante ) si : Sites mootoes Sites adjacetes Approximatios d réel Développemet décimal Pré reqis Axiome de la bore spériere Limite d e site Partie etière d réel Divisio eclidiee Sites mootoes Défiitios : O dit d e site

Plus en détail

Fonctions - Dérivation

Fonctions - Dérivation Termiale S Dériatio Chapitre 4 Foctios - Dériatio I- Dériabilité f est e foctio défiie sr D f (iteralle o réio d iteralles C f est sa corbe représatie Foctio dériable e a Nombre dérié Défiitio (Rappels

Plus en détail

Chapitre 1 METHODES SUR LES SUITES

Chapitre 1 METHODES SUR LES SUITES Chapitre 1 METHODES SUR LES SUITES Nous allos voir commet : 1) Cojecturer le comportemet d ue suite ) Raisoer par récurrece 3) Utiliser les suites arithmétiques et géométriques 4) Étudier le comportemet

Plus en détail

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière

Mise à niveau licence 1 de mathématiques. Les fonctions racine carrée, valeur absolue ou partie entière Mise à ivea licece de mathématiqes Les foctios racie carrée, valer absole o partie etière Eercice Détermier la limite de + + qad ted vers Eercice Vérifier qe ( 5) 6 5 A-t-o l'égalité 6 5 5? Eercice O sohaite

Plus en détail

PROGRAMME TRAITÉ EN COURS DE MESURE ET INTÉGRATION

PROGRAMME TRAITÉ EN COURS DE MESURE ET INTÉGRATION PROGRAMME TRAITÉ EN COURS DE MESURE ET INTÉGRATION THIERRY FACK Notes de cours Les otes de cours de l a derier serot suivies à partir du troisième cours. Elles sot dispoibles sur le wiki site de la licece

Plus en détail

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES

Cours et exercices de mathématiques SUITES NUMERIQUES EXERCICES CORRIGES Cors et exercices de mathématiqes SUITES NUMERIQUES EXERCICES CORRIGES Exercice. Les sites sot défiies par f (. ( Doer la foctio mériqe f correspodate, idiqer le terme iitial de la site, pis calcler les

Plus en détail

Université Mohammed V Faculté des Sciences Département de Mathématiques & d Informatique Rabat, Maroc

Université Mohammed V Faculté des Sciences Département de Mathématiques & d Informatique Rabat, Maroc Uiversité Mohammed V Faculté des Scieces Départemet de Mathématiques & d Iformatique Rabat, Maroc Cours d Aalyse 4 Zie El Abidie ABDELALI Table des matières Chapitre. Notios sur la topologie de R 7.

Plus en détail

Problème 1 : continuité uniforme

Problème 1 : continuité uniforme SESSION 0 CAPES EXTERNE MATHÉMATIQUES Problème : cotiuité uiforme f est pas uiformémet cotiue sur I si et seulemet si ε > 0/ η > 0, x,y I / x y η et fx fy > ε Soit f ue foctio -lipschitziee sur I avec

Plus en détail

Fiche 1 : les suites

Fiche 1 : les suites Fiche Cors Nº : 3 Fiche : les sites Pla de la fiche I - Défiir e site II - Comortemet global d e site III - Comortemet asymtotiqe d e site IV - Oératios et limites V - Théorèmes de comaraiso VI - Comortemet

Plus en détail

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen

Université Paris-Dauphine Année 2008-2009 U.F.R. Mathématiques de la décision L3 - Statistique Mathématique. Examen Uiversité Paris-Dauphie Aée 28-29 U.F.R. Mathématiques de la décisio L3 - Statistique Mathématique Exame Durée 2h. Le barême est doé à titre idicatif. Exercice : 5 poits) Soit X,...,X ) u échatillo de

Plus en détail

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances

Amérique du Nord Mai 2011 Série S Exercice Partie A : Restitution organisée des connaissances Amériqe d Nord Mai 0 Série S Exercice Partie A : Restittio orgaisée des coaissaces Démotrer le théorème de Gass e tilisat le théorème de Bézot Partie B O rappelle la propriété coe sos le om de petit théorème

Plus en détail