Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10

Dimension: px
Commencer à balayer dès la page:

Download "Suites T.S. I.Suites : Le Best of du programme de 1S...1. II.Le raisonnement par récurrence...8. III.Limite d'une suite...10"

Transcription

1 Table des matières Suites T.S. I.Suites : Le Best of du programme de 1S...1 A.Pourquoi les suites? qu'est-ce que c'est?...1 B.Défiitio et otatios...1 C.Deux faços de défiir ue suite :...2 D.Représetatio graphique d ue suite...3 E.Suites majorées, miorées et borées...3 F.Ses de variatio d'ue suite...3 G.Les suites arithmétiques...4 H.Suites géométriques...6 II.Le raisoemet par récurrece...8 A.Étude d'u exemple...8 B.Propriété de récurrece...9 III.Limite d'ue suite...10 A. Suite covergete...10 B. Suites divergetes...10 C. Suites de référece : Puissaces positives et égatives de...11 D.Opératios algébriques sur les limites et formes idétermiées...11 IV.Limites et comparaiso...12 V.Cas particuliers de covergece : Les suites mootoes et les suites géométriques...13 A.Suites mootoes...13 B. Cas des limites de suites géométriques...13 VI.Limites possibles pour ue suite récurrete...14 I. Suites : Le Best of du programme de 1S A. Pourquoi les suites? qu'est-ce que c'est? Ituitivemet : Ue suite umérique est ue liste ifiie de ombres réels. Das certais cas, les valeurs d'ue foctio u 'ot de ses que si x est u ombre etier. Par exemple, la recette u( x) d'u bar e foctio du ombre x de café vedus : Le bar e peut pas vedre 17,3 cafés : Il e ved soit 17 soit 18. Das ce cas, o se restreit aux valeurs etières de la variable, o ote le ombre de cafés vedus (au lieu de x ) et la recette u() (au lieu de u( x) ) ou, avec la otatio habituelle des suites, u. Si chaque café est vedu 1,75, la recette sera u =1,75. [recette bééfice] Il arrive aussi que l'o s'itéresse à ue certaie quatité à itervalle de temps réguliers, soit par ce qu'il e se passe rie etre ces deux istats, soit parce qu'o 'a pas les moye ou le besoi de savoir ce qui se passe à tout istat. Das ces cas aussi o préfère les suites aux foctios. Par exemple, la quatité d'arget sur u compte e baque das le cadre d'u placemet e chage qu'à chaque versemet des itérêts : Si les itérêts e sot versés qu'ue fois par a, o peut oter u l arget préset sur le compte au bout de aées. Il est importat de bie faire la différece etre l'idice et la valeur du ombre u. Par exemple, si après avoir placé de l'arget pedat 3 as vous avez 2400, alors =3 et u 3 =2400. O dit que le terme d'idice 3 (ou de rag 3) a pour valeur B. Défiitio et otatios Exemple 1. La liste (1, 3,5, 7, 9,., 2+1,.) costitue la suite des ombres impairs ragés e ordre croissat. O ote les termes d ue suite avec la otatio idicielle déjà vue pour les polyômes. Aisi das l'exemple des ombres impairs, u 1 =1; u 2 =3; u 3 =5; u 4 =7; u 5 =9... etc. Plus gééralemet, u est le ombre défii par u =2 1. Das cette écriture, l'idice (le ombre écrit e bas à droite de u) sert juste à uméroter les termes de la suite. Il 'idique PAS la valeur du ombre u. COURS Mme Helme-Guizo 1

2 O peut cosidérer que u 1 est l image de l etier 1 par ue foctio u de l esemble N des etiers aturels das R, que u 2 est l image de l etier 2 par cette même foctio et que de faço géérale, u est l image de l etier par cette foctio u. Illustratio : Idice = Atécédet ~ x : Terme correspodat à cet idice = Image (u f ( x)) : u 1 u 2 u 3 u 4 u Défiitio 1. Ue suite umérique est ue foctio de N das R (défiie à partir d u certai rag). Autremet dit, u:{ N R u Ue suite umérique est doc rie d autre qu ue foctio dot le domaie de défiitio est réduit aux valeurs etières. Notatio 2. La otatio (u ) 0 désige la suite elle-même c'est-à-dire la foctio u: N R (que l o peut assimiler à l esemble des termes de la suite) et u désige l image de l etier, appelé aussi terme d idice de la suite (u ) 0, terme que l o peut aussi oter u() e utilisat la otatio usuelle pour les foctios. Remarque 3. u désige doc u seul terme. E particulier, «u est croissate» e veut rie dire sas les parethèses! Il faut écrire «(u ) est croissate». Remarque 4. Ue suite peut être défiie qu à partir d u certai rag 0 ; u 0 est alors so terme iitial et o ote la suite (u ) 0. Par exemple, La suite de terme gééral u = 4 est défiie que pour 4, o la ote doc (u ) 4. La suite de terme gééral u = 1 est défiie que pour 1, o la ote doc (u ) 1. Comme pour les foctios, o omet souvet de préciser l esemble de défiitio et, comme pour les foctios, das ce cas c'est à vous de le trouver. C. Deux faços de défiir ue suite : O peut défiir ue suite (1) soit e défiissat so terme gééral par ue formule explicite e foctio du rag par ue formule du type u = f ( ). Exemple 2. Soit (u ) 1 la suite défiie par u = 2 pour tout 1 alors u 1 =1;u 2 =4 ;u 3 =9 (2) soit par récurrece c'est-à-dire que l o doe le premier terme et ue formule permettat de calculer u terme de la suite e foctio du (des) précédet(s). Exemple 3. Soit (u ) 0 la suite défiie par { u 0=2. O obtiet u +1 =u (1 u ) u 1 =u 0 (1 u 0 )=2(1 2)= 2 ; u 2 = 6 ; u 3 = 42. Défiitio 5. Ue suite pour laquelle chaque terme (sauf le ou les premiers) est défii e foctio de terme(s) précédet(s) est appelée suite récurrete. Oui, vous avez bie compris, pour calculer le 100 ème terme d ue suite récurrete, il faut a priori calculer de proche e proche tous les termes précédets! (ce qui peut être log ). Heureusemet, les calculatrices le fot (vous savez leur demader bie sûr?) Fiches sur l utilisatio des calculatrices : Exercice 4. Détermier le terme gééral d ue suite récurrete (quad c est possible). Soit (u ) 0 la suite défiie par u 0 =0 et u +1 =u ) Calculer les quatre premiers de cette suite. 2) Émettre ue cojecture sur l expressio de u foctio de. 3) La démotrer. COURS Mme Helme-Guizo 2

3 P 6. Ue méthode pour motrer que deux suites sot égales. Ue suite est etièremet détermiée par so premier terme et la relatio de récurrece qui permet de calculer u terme à partir du précédet. Par coséquet, si deux suites ot le même premier terme et si elles satisfot la même relatio de récurrece alors elles sot égales. D. Représetatio graphique d ue suite Défiitio 7. O se place das u repère O ; i, j. La représetatio graphique de la suite (u ) est l esemble des poits de coordoées, u. (exactemet comme pour 'importe quelle foctio) Exemple 5. Soit la suite défiie par u = 1 y 1 pour 1. Représetatio avec e abscisses et u e ordoée. Représetatio semblable à celle de importe quelle foctio : x u f ( x) x A savoir obteir avec votre calculatrice! Fiches sur l utilisatio des calculatrices : E. Suites majorées, miorées et borées Défiitio 8. Soit ue suite de ombres réels. O dit que la suite (u ) est : majorée par le ombre M lorsque u M pour tout etier aturel ; miorée par le ombre lorsque u m pour tout etier aturel ; borée si elle est à la fois majorée et miorée. Exemple 6. Soit la suite défiie par u = 1 pour 1. Cette suite est miorée par 0 puisque mais 1, u 0 aussi par 1, 3 etc puisque 1, u 1 et 1, u 3 : Les ombres 0, 1 et 3 sot tous les trois des miorat de (u ). De même, cette suite est majorée par 1 mais ce majorat 'est pas uique puisque tous les ombres plus grads que 1 sot aussi des majorats. F. Ses de variatio d'ue suite Défiitio 9. Soit ue suite de ombres réels. O dit que la suite est : croissate à partir du rag 0 lorsque u + 1 u pour tout etier 0 ; strictemet croissate à partir du rag 0 lorsque u + 1 > u pour tout etier 0 ; décroissate à partir du rag 0 lorsque u +1 u pour tout etier 0 ; strictemet décroissate à partir du rag 0 lorsque u + 1 < u pour tout etier 0 ; mootoe à partir du rag 0 si elle est croissate ou décroissate à partir du rag 0 ; statioaire à partir du rag 0 lorsque u +1 =u pour tout etier 0 tous les termes sot égaux à partir d'u certai rag). costate si tous ses termes sot égaux. Exercice 7. La suite de terme gééral u =cos(2π) est La suite de terme gééral v =3 9 est (c'est-à-dire dire que Remarque : O peut devier le ses de variatio d ue suite grâce à sa représetatio graphique ou so tableau de valeurs doé par la calculatrice. (Vous savez le faire, bie sûr?) Ue fois le résultat devié, il faut le démotrer, d où : COURS Mme Helme-Guizo 3

4 Méthode 10. Commet démotrer qu ue suite est croissate ou décroissate? Méthode la plus géérale : O calcule, pour tout idice [O garde la lettre das le calcul], la différece de deux termes cosécutifs c'est à dire u + 1 u. Si o obtiet ue quatité positive pour tout etier [il faut doc garder das les calculs, o e peut pas le remplacer par ue valeur], alors la suite (u ) est croissate. Si o obtiet ue quatité égative, alors la suite (u ) est décroissate. Si o obtiet ue quatité de sige variable alors la suite (u ) est i croissate i décroissate. Das certais cas particuliers, o peut avoir recours à d autres méthodes: Si u = f (), o peut utiliser le ses de variatio de f sur R +. E effet. Si f est croissate sur R +. alors (u ) est croissate et si f est décroissate sur R +. alors (u ) est décroissate (réciproques fausses). Si u a u sige costat, c'est à dire si tous les termes sot positifs ou si tous les termes sot égatifs, o peut comparer u +1 u et 1. G. Les suites arithmétiques 1. Défiitio et formule explicite Défiitio 11. Ue suite est dite arithmétique si l o passe de chaque terme au suivat e ajoutat toujours le même ombre r, autremet dit si u +1 =u +r pour tout etier aturel ; r est alors appelé raiso de la suite. u 0 u 1 u 2 u 3... q q q Exemples 8. 1) La suite des ombres etiers est ue suite arithmétique de raiso r = 1. 2) La suite des ombres pairs est ue suite arithmétique de raiso r = 2. 3) La suite des multiples de 7 est ue suite arithmétique de raiso r = 7. 4) Si u loyer augmete de 50 chaque aée, alors la suite qui doe le loyer l aée est ue suite arithmétique de raiso 50. P12 Caractérisatio des suites arithmétiques par leur formule explicite Toute suite défiie par ue relatio du type u = a + b est arithmétique de raiso a, avec b=u 0 si la suite est défiie à partir de l idice 0. Réciproquemet, toute suite arithmétique peut s écrire u = a + b où a = r est la raiso de la suite arithmétique, et b=u 0 si la suite est défiie à partir de l idice 0. Ue écriture du type u = a + b caractérise doc les suites arithmétiques (la raiso est a). P 13. Méthodes pour motrer qu ue suite est arithmétique. O utilise la défiitio, c'est-à-dire que l o écrit u +1 sous la forme u + 1 =u + r, où r est u ombre qui e déped pas de. Variate : O calcule u +1 u pour tout idice. Si o obtiet ue quatité costate (= qui e déped pas de ) r alors la suite est arithmétique de raiso r. Si par cotre la quatité u +1 =u déped de, alors la suite est PAS arithmétique. O peut aussi utilise la caractérisatio vue précédemmet: La suite (u ) est arithmétique si et seulemet si so terme gééral peut s écrire u =a+b et das ce cas, la raiso est a. Exemples 9. 1) u =3 2 COURS Mme Helme-Guizo 4

5 Première méthode : E calculat les premiers termes de la suite o peut supposer qu elle sera arithmétique. Motros le : u + 1 u =3(+ 1) 2 (3 2)=3, qui e déped pas de. La suite est doc arithmétique de raiso r = 3 et de premier terme u 0 = 2. Autre méthode : u =3 2 doc u est de la forme u =a+b ; d'après la caractérisatio P12, elle est doc arithmétique de raiso a=3. 2) u = 2 +1 u 0 =1; u 1 =2; u 2 =5 doc u 1 u 0 =1 3=u 2 u 1. La suite est doc pas arithmétique puisque la quatité u +1 u 'est pas costate. [Rédactio qui vous sera utile! À reteir...] P14 Commet calculer u terme quelcoque d ue suite arithmétique? O utilise l ue des relatios suivates u =u 0 + r pour tout etier aturel ; u =u 1 +( 1)r pour tout etier aturel ; u =u p + ( p)r pour tout et p de N. u 0 u 1 u 2 u 3... u + r + r + r + r Pour retrouver ces formules : La première doit être vérifiée pour = 0 (o doit évidemmet avoir u 0 =u 0!), la deuxième doit être vérifiée pour = 1 (o doit avoir u 1 = u 1 ) et la troisième doit être vérifiée pour = p (o doit avoir u p =u p ). Bie sûr, les deux premières sot u cas particulier de la troisième. Exemples 10. Soit (u ) ue suite arithmétique. Calculer u 26 das les deux cas suivats : 1) u o =6 et r=5 u 26 =u r=6+26 5=136 2) u 10 =3 et r= 2 u 26 =u 10 + (26 10)r=3+ 16( 2)= Somme de termes cosécutifs d ue suite arithmétique P15 Commet calculer la somme de termes cosécutifs d ue suite arithmétique? ( Premier terme+ Derier terme) O utilise la relatio suivate : S=( Nombre de termes) ce que l'o 2 (P+ D) { Pest le premier termede la somme peut écrire sous forme plus codesée : S=N où D est le derier terme dela somme 2 N est le ombre de termesde la somme. Remarque : Cette formule 'est valable que si la suite est arithmétique. Pour appliquer cette formule ous auros besoi de savoir compter le ombre de termes d'ue somme de termes cosécutifs. O utilise : P16 Le ombre de termes d ue somme de termes cosécutifs = «idice du derier terme» - «idice du premier terme» +1 Exemple 11. La somme u 13 + u 14 + u u 45 comporte doc termes. P17 U cas particulier à coaître: La somme des premiers etiers = = 3. Représetatio d ue suite arithmétique (+ 1) 2 Ue suite arithmétique est représetée das le pla (avec e abscisses et u e ordoées) par des poits aligés sur ue droite. Si la suite arithmétique a pour raiso r et pour premier terme u 0, alors u =u 0 +r et les poits de coordoées (,u ) sot aligés sur la droite d équatio y=u 0 + r.. COURS Mme Helme-Guizo 5

6 Suites arithmétiques de premier terme 0 et de raiso r > r =2 r =1,2 r =0, Suites arithmétiques de premier terme 10 et de raiso r < r =-2 r =-1,2 r =-0,5 4. Ses de variatio d ue suite arithmétique P18 Ses de variatio d ue suite arithmétique : Soit u ue suite arithmétique de raiso r : Si r > 0 alors u est strictemet croissate, Si r = 0 alors la suite u est costate, Si r < 0 alors la suite u est strictemet décroissate. H. Suites géométriques 1. Défiitio et formule explicite Défiitio 19. Ue suite est dite géométrique si l'o passe de chaque terme au suivat e multipliat toujours le même ombre q, c'est à dire si u +1 =qu pour tout etier aturel. q est appelé raiso de la suite. u 0 u 1 u 2 u 3... q q q Exercice 12. À faire à l'ardoise 1) Si la populatio d ue ville augmete de 3% chaque aée, alors la suite qui doe populatio de la ville l aée est ue suite géométrique de raiso q=1,03. 2) Si la populatio d ue ville augmete de 230 persoes chaque aée, alors la suite qui doe populatio de la ville l aée est ue suite arithmétique de raiso r=230. 3) Si la populatio d u village dimiue de 2% chaque aée, alors la suite qui doe populatio du village l aée est ue suite géométrique de raiso q=0,98. P20 Caractérisatio des suites géométriques par leur formule explicite Toute suite défiie par ue relatio du type u =λ q est géométrique de raiso q. Réciproquemet, toute suite géométrique de raiso q est de la forme u =λ q, avec λ=u 0 si la suite est défiie à partir de l idice 0. Ue écriture du type u =λ q caractérise doc les suites géométriques. P21 Diverses méthodes pour motrer qu ue suite est géométrique O utilise directemet la défiitio, c'est-à-dire que l o écrit u +1 sous la forme u +1 =qu Variate :Après s être assuré que u 0 pour tout etier, o calcule u + 1 u. Si obtiet ue quatité costate (= qui e déped PAS de ) q alors la suite est géométrique de raiso q. Si obtiet ue quatité qui déped de alors la suite est PAS géométrique. O peut aussi utilise la caractérisatio vue précédemmet: (u ) est géométrique si et seulemet si so terme gééral peut s écrire u =λ q et das ce cas, q est la raiso de la suite. COURS Mme Helme-Guizo 6

7 Exemples 13. Recoaître ue suite géométrique. Les suites (u ) 0 et (v ) 1 défiies respectivemet par u = 1,01 5 1) u = 1,01 5 et v = 2 sot-elles géométriques? est de la forme u =λ q avec λ= 1 5 géométrique de raiso q=1,01 et de 1 er terme u 0 = 1 5. et q=1,01 doc la suite (u ) 0 est ue suite 2) v = 2 doc v 1 =1;v 2 =4; v 3 =9. O a v 2 v 1 =4 9 4 = v 3 v 2, doc la suite (v ) 1 est pas géométrique puisque la quatité u + 1 u 'est pas costate. [Rédactio qui vous sera utile! À reteir...] P22 Commet calculer u terme quelcoque d ue suite géométrique? O utilise l ue des relatios suivates u =u 0 q pour tout etier aturel ; u =u 1 q 1 pour tout etier aturel ; u =u p q p pour tous etiers et p. Exemples 14. Soit ue suite géométrique. Calculer u 7 das les deux cas suivats : 1) u 0 = 1 4 et q = 2 u 7=q 7 u 0 = =27 2 =32. 2) u 4 =81 et q= 1 3 u 7 =q 3 u 4 =( 1 3 3) 81= =3. 2. Somme de termes cosécutifs d ue suite géométrique P23 Commet calculer la somme de termes cosécutifs d ue suite géométrique? O utilise la relatio suivate : Si q 1 o a 1+ q+ q 2 + q 3 + q q = 1 q+ 1 ce qui permet de démotrer la formule 1 q Premier terme ( Derier terme raiso) plus géérale S= 1 raiso { P est le premier terme dela somme où q est la raiso N est le ombrede termes dela somme. Si q = 1 S=N P (Formule évidete) P ( D q) = 1 q Exemples 15. Calculer S = Nous avos affaire à la somme de termes d ue suite géométrique de raiso q = 2 et dot le 1 er terme est égal à 1 : S= P D q 1 q = = u 0 u 1 u 2 u 3... u q q q Remarques : 1) Ces formules e sot valables que si la suite est géométrique. Premier terme Derier terme raiso 2) Das la formule (2) : S=, au umérateur, la raiso e 1 raiso multiplie QUE le derier terme, et PAS la différece du premier et du derier terme (sio o aurait mis des parethèses autour de «premier terme - derier terme»). q Exercice 16. Soit (u ) la suite défiie par u = géométrique puis calculer S p =u 0 +u 1 +u 2 +u p.. Motrer que (u ) est ue suite COURS Mme Helme-Guizo 7

8 Voir les graphiques page Représetatio graphique d ue suite géométrique et ses de variatio d ue suite géométrique Étape 1 : Ses de variatio de la suite P24. Ses de variatio d ue suite géométrique : Soit ue suite défiie par : u =q Si q> 1 alors Si q=1 alors Si 0< q< 1 alors Si q< 0 alors q est strictemet croissate, q est costate, q est strictemet décroissate, q est i croissate i décroissate. q, suivat les valeurs de q. Étape 2, Cas gééral : Ses de variatio de 'importe quelle suite géométrique. Toute suite géométrique s écrit u =λ q. Le théorème précédet doe le ses de variatio de q. Il e reste plus qu à multiplier par λ pour obteir otre suite. Si λ >0, les suites q et λ q ot le même ses de variatio et si λ <0, q et λ q ot des ses de variatio opposés. II. Le raisoemet par récurrece Source pour pour ce paragraphe : Le cours de Pierre Lux. Merci à lui! A. Étude d'u exemple E classe, démotrer la formule qui doe la somme des premiers carrés: 1, = (+1)(2+1) et leur laisser l'exemple ci-dessous à lire à la maiso. 6 O cosidère la propositio 1 P() dépedat d'u etier : «10 ( 1) est u multiple de 11.» (O rappelle qu'u ombre est multiple de 11 lorsqu'il s'écrit sous la forme 11 k avec k Z.) Vérifios que cette propositio est vraie pour les etiers = 0, 1, 2, 3, 4 : Pour = 0 : 10 0 ( 1) 0 =1 1=0=11 0 Pour = 1 : 10 1 ( 1) 1 =10 ( 1)=10+ 1=11=11 1 Pour = 2 : 10 2 ( 1) 2 =100 1=99=11 9 Pour = 3 : 10 3 ( 1) 3 =1000 ( 1)= =1001=11 91 Pour = 4 : 10 4 ( 1) 4 = =9999= O pourrait cotiuer aisi les vérificatios, mais quel que soit le ombre de vérificatios effectuées, o e peut pas affirmer que cette propositio est vraie pour tout etier aturel. Pour justifier que cette propositio est vraie pour tout etier aturel, démotros le résultat suivat : Si la propositio est vraie pour le rag, alors elle est vraie pour le rag suivat + 1. Pour cela, supposos que la propositio est vraie pour u certai rag ( état u etier aturel fixé ). Alors pour cet etier aturel, o a : 10 ( 1) u multiple de 11 c'est-à-dire 10 ( 1) =11 k avec k Z [ est fixé mais sa valeur est arbitraire, o e peut doc pas le remplacer par ue valeur. O doit garder ] O veut alors démotrer que la propositio est vraie pour + 1 c'est-à-dire que ( 1) + 1 =11 k pour u certai k ' Z : Puisque 10 ( 1) =11 k avec k Z, o peut écrire : 10 =11k + ( 1). Or 1 Ue propositio est ue affirmatio peut être vraie ou fausse. E particulier pour ue propositio qui déped de, elle pourrait être vraie pour certaies valeurs de et fausse pour d'autres. COURS Mme Helme-Guizo 8

9 10 =11k +( 1) (i) =10[ 11k +( 1) ] =110 k+10 ( 1) (ii) ( 1) +1 =110 k +10 ( 1) ( 1) +1 (iii) = 110 k+( 1) [ 10 ( 1) 1 ] =110 k +( 1) ( 1) +1 =11[10 k +( 1) ]=11k ' ou` k '=10 k+( 1). Explicatios : (i) E multipliat les deux membres par 10 ; (ii) E soustrayat ( 1) + 1 aux deux membres ; (iii) E factorisat ( 1). k état u etier, le ombre k =10 k+ ( 1) O a doc démotré que : est aussi u etier ( 1) + 1 =11 k ', k ' Z. O a doc démotré le caractère héréditaire de la propositio : Si la propositio est vraie pour u etier, alors elle est vraie pour l'etier suivat +1. O peut alors observer que : puisque la propositio est vraie pour 0, elle est vraie pour 1 ; puisqu'elle est vraie pour 1, elle est vraie pour 2 ; puisqu'elle est vraie pour 2, elle est vraie pour 3... Il apparaît alors "clairemet" que la propositio est vraie pour tous les etiers de N. E assimilat l'esemble N des etiers aturels à ue échelle sur laquelle o voudrait moter, le pricipe du raisoemet qui viet d'être fait est le suivat : si o sait moter sur le premier barreau de l'échelle [Iitialisatio] et si l'o sait passer d'u barreau au barreau suivat, [Hérédité] alors o peut atteidre tous les barreaux de l'échelle. [Coclusio] Le type de raisoemet aisi effectué est appelé raisoemet par récurrece. Il est basé sur la propriété suivate : B. Propriété de récurrece Propriété 25. Soit P () ue propositio dépedat d'u etier et 0 u etier fixé. Si P ( 0 ) est vraie, et si pour tout etier 0 : P() P(+1) alors P() est vraie pour tout etier 0. [Iitialisatio] [Hérédité] [Coclusio] Remarque : Cette propriété, que l'o e démotre pas et qui semble teir du "bo ses" est e fait u axiome des mathématiques, c'est-àdire u éocé posé à priori qui sera ue des bases de la théorie mathématique. E géométrie u axiome célèbre est l'axiome d'euclide : "Par u poit doé il passe ue parallèle et ue seule à ue droite doée". Pratique : U exemple (utile pour la suite!) de démostratio par récurrece. Exercice 17. Démotros par récurrece que si a>0 alors pour tout N, o a (1+a) 1+a. COURS Mme Helme-Guizo 9

10 III. Limite d'ue suite A. Suite covergete U graphique permet de se faire ue idée ituitive de la otio de limite : Exemple 18. Les 50 premiers termes de la suite de terme gééral u sot représetés cidessous, avec u e abscisse et e ordoée. O dit que cette suite coverge vers 3. A partir d'u certais rag, tous les poits sot das ue bade cetrée sur la limite (qui est 3 das cet exemple) de largeur aussi petite que l'o veut : Sur ce dessi, das la bade (verte) etre les droites d'équatio y=2,8 et y=3,1. Défiitio 26. O dit qu ue suite admet ue limite, ou coverge vers, lorsque tout itervalle ouvert coteat cotiet tous les termes de la suite à partir d u certai rag. Autremet dit, pour tout itervalle ouvert ]a, b[ coteat le ombre, o peut trouver u idice 0 tel que pour tout 0, o a l ]a,b[. Exercice 19. Complétez : Sur le dessi ci-dessus, =3 ; ]a, b[ =..... et 0 = coviet. Ue autre valeur possible pour 0 est Propriété 27. Si ue suite (u ) coverge vers, ce ombre est uique. O l'appelle la limite de la suite. O ote lim u = l. B. Suites divergetes Défiitio 28. Ue suite est dite divergete si elle est pas covergete. Il existe deux types de suites divergetes : les suites qui ot ue limite ifiie : ou + ; les suites qui 'ot pas de limite (i fiie, i ifiie, comme ( 1) par exemple). Exemple. Les premiers termes de la suite de terme gééral u =+ 8si sot représetés cidessous, avec u e abscisse et e ordoée. (Les poits représetet les termes de la suite, la courbe e poitillés sert juste à mieux visualiser l'ordre das les termes apparaisset) COURS Mme Helme-Guizo 10

11 Défiitio 29. Suites qui tedet vers l'ifii : O dit que la suite u ted vers + si tout itervalle de la forme ]A ;+ [ cotiet tous les termes de la suite à partir d'u certai rag. O ote alors lim u =. Autremet dit, pour tout itervalle de la forme ]A ;+ [, o peut trouver u idice 0 tel que pour tout 0, o a l ]a,b[. Exercice 20. Complétez : Sur le dessi ci-dessus, A=25 et e otat 0 u rag à partir duquel tous les termes de la suite sot das ]A ;+ [, o voit que 0 = coviet. Ue autre valeur possible pour 0 est Remarque : o a ue défiitio similaire pour ue suite ayat comme limite. Exemple de suites divergete 'ayat pas de limite du tout. Soit la suite défiie par so terme gééral : w =( 1). ( 1) =1 pour pair et ( 1) = 1 pour impair doc les termes de la suite w vot alterer etre 1 et 1. Cette suite 'a pas de limite. C. Suites de référece : Puissaces positives et égatives de Propriété 30. Les suites de terme gééral 1, 1, 1 2 et plus gééralemet 1 avec p>0 3 p 1 aisi que coverget vers 0. Exemple 21. v = O a lim 6=0. Propriété 31. Les suites de terme gééral, 2, 3 et plus gééralemet p avec p> 0 aisi que tedet vers +. Exemple 22. v = 7, o a lim v =+ +. D. Opératios algébriques sur les limites et formes idétermiées 1. Limite d ue somme Si u a pour limite et si v a pour limite ' ' ' + alors u+v a pour Forme + ' + + limite idétermiée COURS Mme Helme-Guizo 11

12 Défiitio 32. Dire qu ue limite est ue forme idétermiée sigifie qu il est possible que la limite soit fiie ou ifiie ou même qu elle existe pas! O e peut pas le savoir avat de trasformer l expressio pour lever l idétermiatio e factorisat, simplifiat etc. [Idétermiée Idétermiable!] 2. Limite d u produit Si u a pour limite 0 + ou =0 et si v a pour limite ' + ou + ou + ou alors u v a pour limite ' + ou + ou Forme O le détermie par O le détermie par idétermiée la règle des siges la règle des siges Si u a pour limite Alors 1 u 3. Limite d u iverse a pour limite Limite d u quotiet =0 par valeurs supérieures + (par la règle des siges) =0 par valeurs iférieures (par la règle des siges) + ou 0 u =u v 1 v produits. doc o obtiet les limites de ce type e combiat les règles sur les iverses et celle sur les 5. Bila : Liste des formes idétermiées P 33. Liste des formes idétermiées :,, 0 0, 0, 00 et 1. Attetio aux otatios : «0 est ue forme idétermiée» sigifie que si la première suite ted vers 0 et la deuxième vers +, o e peut pas coaître directemet la limite de leur produit. Bie sûr si la première suite est égale à 0 la limite vaut 0. Morale de l'histoire : E regardat les tableaux, o voit que les limites sot ce qu'o atted ituitivemet sauf quad il y a u problème càd ue forme idétermiée. Bref, il suffit de coaître la liste des formes idétermiées (pas besoi de reteir ces tableaux) et de faire preuve de bo ses quad il 'y pas de forme idétermiée. IV. Limites et comparaiso P 34. Limite et ordre: Le passage à la limite respecte l'ordre mais peut élargir les iégalités : Soiet u et v des suites ayat ue limite (fiie ou o) et soit 0 u etier aturel. (1) Si 0, u v alors lim u lim v. + + (2) Si 0, u < v alors lim + u lim + Remarque : Cette propriété 'est utilisable que si o sait déjà que les suites ot ue limite. Elle permet alors de comparer des limites (mais pas de prouver leur existece). Les théorèmes: P 35. Théorèmes des gedarmes [admis] Soiet u, v et w des suites et soit 0 u etier aturel. Si 0, u v w et si lim u = lim w = alors lim v = O peut traduire cette propriété par «Ue suite ecadrée par deux suites de même limite coverge vers cette limite commue.» v. COURS Mme Helme-Guizo 12

13 «Théorème des gedarmes» car la suite v est coicée etre les «gedarmes» u et w et elle est doc bie obligée d'aller où ils l'emmèet. Das le même gere, pour des limites ifiies : Deux théorèmes de comparaiso : Propriété 36. ( ROC exigible) Théorème de comparaiso 1 = Théorème de mioratio Si u v à partir d'u certai rag et si lim u =+ alors lim v =. + O peut traduire cette propriété par «Ue suite supérieure à ue suite qui ted vers + ted aussi vers +. «Théorème de mioratio» car la suite v dot o cherche la limite est miorée (par u). Propriété 37. Théorème de comparaiso 2 = Théorème de majoratio Si u v à partir d'u certai rag et si lim v = alors lim u =. + + O peut traduire cette propriété par «Ue suite iférieure à ue suite qui ted vers ted aussi vers. «Théorème de majoratio» car la suite u dot o cherche la limite est majorée (par v). V. Cas particuliers de covergece : Les suites mootoes et les suites géométriques A. Suites mootoes Rappel : Ue suite (ou ue foctio) est dite mootoe si elle est soit croissate soit décroissate. P38 ( ROC exigible) Majoratio par leur limite des suites croissates et covergetes Si ue suite est croissate et covergete alors elle est majorée par sa limite. Théorèmes de covergece mootoe : Covergece des suites croissates majorées et décroissates miorées P39 Si ue suite est croissate et majorée alors elle est covergete. P40 Si ue suite est décroissate et miorée alors elle est covergete. Remarque : Ce théorème e permet pas de trouver la valeur de la limite (elle 'est pas forcémet égale au majorat ou au miorat) mais il garatit so existece. P41 ( ROC exigible) Suites croissates o majorées Si ue suite est croissate et NON majorée alors elle ted vers +. B. Cas des limites de suites géométriques Propriété 42. Soit ue suite géométrique de terme gééral q Coditio sur q limite? Exemple Si q 1 alors (q ) 'a pas de limite u = 1,3 Si 1< q <1 Si q=1 Si q >1 alors lim q =0 + lim 0,4 =0 + alors lim 1 =1 La suite est costate et vaut 1. alors lim q =+ + ( ROC exigible) lim 1,001 =+ + Résultats à rapprocher des représetatios graphiques ci-dessous. COURS Mme Helme-Guizo 13

14 Sur tous ces graphiques u 0 =10. O obtiedrait des graphiques très similaires avec d autres valeurs positives de u 0 mais par cotre les ses de variatios seraiet iversés pour des valeurs égatives de u 0. q>0 Suite (q ) avec q > q >1 Variatios : La suite (q ) est croissate. Limite : La suite (q ) a pour limite +. q = 1: La suite (q ) est costate et égale à 1. Elle a doc pour limite q< e abscisse et u e ordoée Suites géométriques (q ) avec q < 0 0 < q < 1: Variatios : La suite (q ) est décroissate. Limite : La suite (q ) a pour limite q <0 et q >1 : Variatios : La suite (q ) est pas mootoe. Limite : La suite (q ) a pas de limite e abscisse et u e ordoée. Les traits etre deux poits servet juste à mieux visualiser les suites. Exemples. 1) u =5, comme 5 1, o a lim u =+. + 2) S = Quelle est la limite de S? Solutio : S est ue somme de termes cosécutifs de la suite de terme gééral u =( S =( 1 0 3) +( 1 1 3) +( 1 2 3) +( 1 3 3) + +( 1 3) lim + ( =0 doc lim S 3) = (1 0)= ) 1 doc S = ( VI. Limites possibles pour ue suite récurrete q <0 et q <1 : Variatios : La suite (q ) est pas mootoe. Limite : La suite (q ) a pour limite ) qui est ue suite géométrique. = 3 2 ( ( ) ). Comme 1< 1 < 1, o a 3 Il arrive que grâce au théorème de covergece mootoe o arrive à prouver qu'ue suite est covergete sas coaître sa limite. Pour la détermier, o utilise souvet : COURS Mme Helme-Guizo 14

15 P43 Si ue suite défiie par u +1 = f (u ) est covergete vers ue limite et si f est cotiue e, alors vérifie = f ( ). Cette propriété sert aussi à détermier à priori les valeurs possibles pour la limite d'ue suite. Exemple. La suite (u ) défiie par { u +1 =(u )2 +u +2 u 0 = 7 est-elle covergete? Solutio: [raisoemet par l'absurde] Si la suite était covergete, comme la foctio x x 2 +x+2 est cotiue, la limite de u vérifierait écessairemet = càd 2 +2=0 ce qui est impossible. Cette suite est doc divergete (Elle peut évetuellemet avoir ue limite ifiie; à ce stade o 'e sait rie). Sources : Les cours de M. Dupot, de M. Lux et de Mme Dubois, que je remercie ici, le livre Sésamath, le livre Math x, le livre Déclic et l excellet site de Xavier Delahaye. Objectifs pour le chapitre sur les suites e TS Liste à cocher au fur et à mesure de vos révisios Objectifs e Première S Gééralités sur les suites Savoir modéliser ue situatio par ue suite Savoir calculer à la mai des termes d'ue suite à partir de sa défiitio explicite ou par récurrece. Bie faire la différece etre l'idice et le ombre u. Savoir détermier le ses de variatio d'ue suite. Savoir obteir u tableau de valeur d ue suite à la calculatrice aisi que sa représetatio graphique. Fiches sur l utilisatio des calculatrices : Savoir lire et compredre des algorithme permettat de calculer u terme de rag doé ou l'idice à partir duquel la suite dépasse ue valeur doée Utiliser ue suite auxiliaire pour obteir ue formule explicite (suites arithmo-géométrique par exemple) Suites arithmétiques et géométriques Savoir recoaître ue suite arithmétique et ue suite géométrique. Savoir prouver qu'ue suite 'est PAS arithmétique ou PAS géométrique. [Rédactio : voir exemples 9 et 13 ] Savoir doer ue écriture explicite (c'est-à-dire u e foctio de ) pour ue suite arithmétique et ue suite géométrique coaissat u terme et la raiso. Savoir détermier le ses de variatio d ue suite arithmétique et ue suite géométrique. Savoir calculer la somme de termes cosécutifs d ue suite arithmétique et ue suite géométrique. Objectifs additioels e TS Savoir retrouver les démostratios des ROC du cours et faire des démostratios similaires à ces modèles. Savoir faire u raisoemet par récurrece. Coaître les limites des suites de référece y compris les suites géométriques. Savoir maipuler les iégalités pour obteir des majoratios, des mioratios ou des ecadremets de suites. [Rie de ouveau au iveau des maipulatios d'iégalités depuis la secode]. Lors d'u calcul de limites, savoir recoaître ue forme idétermiée et savoir «lever l'idétermiatio» (e factorisat et simplifiat par exemple). Savoir utiliser des majoratios, des mioratios ou des ecadremets d'ue suite pour trouver sa limite via les théorèmes de comparaiso. Savoir utiliser u graphique sur lequel figure la première bissectrice (càd la droite d'équatio y= x ) pour visualiser les termes de la suite (sas faire aucu calcul!) et pour faire des cojectures sur le ses de variatio de et sa limite. Savoir que si (u ) est défiie par u + 1 = f (u ) et si f est cotiue alors la limite de (u ), si elle existe, vérifie forcémet = f ( ). Savoir écrire u algorithme qui pour ue suite croissate détermie à partir de quel terme elle atteit ou dépasse ue valeur doée. COURS Mme Helme-Guizo 15

16 TD, savoir-faire : Costructio des termes d ue suite récurrete sur u des axes au moye de la première bissectrice. O ote f la foctio défiie sur [ 1;+ [ par f (x)= x+ 1 et c sa courbe représetative. La suite est (u ) 0 défiie par u 0 = 0,8 et pour tout 0, u + 1 = f (u ). Le but est de représeter les premiers termes de la suite sur l axe des abscisses sas les calculer. I - Costructio des premiers termes sur l axe des abscisses Sur le dessi ci-dessous la droite Δ a pour équatio y=x. 1) Placer u 0 sur l axe des abscisses. Sachat que u 1 = f(u 0 ), costruire u 1 sur l axe des ordoées. 2) Soit A 1 le poit de Δ d ordoée u 1. Quelle est so abscisse? Placer u 1 sur l axe des abscisses. 3) Sachat que u 2 = f(u 1 ), costruire u 2 sur l axe des ordoées puis sur l axe des abscisses. 4) Costruire aisi pas à pas les premiers termes de la suite jusqu à u 5 sur l axe des abscisses. II Ifluece du premier terme : 1) Costruire (sur l axe des abscisses) sur le même graphique mais d'ue autre couleur les termes v 0, v 1, v 2, v 3 et v 4 de la suite (v ) 0 défiie par v 0 = 4 et pour tout 0, v + 1 = f (v ). 2) Quel ses de variatio peut-o cojecturer pour (u ) 0 et (v ) 0? 3) Les suites (u ) 0 et (v ) 0 semblet-elles être covergetes? Si oui, cojecturer leur(s) limite(s). III Même chose à la calculatrice : Istallez-vous traquillemet chez vous avec votre calculatrice et so mode d emploi jusqu à obteir ce même diagramme à la calculatrice. (TI 89 : Das le meu Y =, choisir F7 axes Web). Aexes : Fiches méthode sur l utilisatio de la calculatrice : Fiche méthode sur les suites: COURS Mme Helme-Guizo 16

17 Démostratios Démostratio de P15. S = P + (P + r) + (P + 2r) + + (D 2r) + (D r) + D (somme de N termes) S = D + (D r) + (D 2r) + + (P + 2r) + (P + r) + P (La même somme) S = (P + D) + (P + D) + (P + D) + + (P + D) + (P + D) + (P + D) (e ajoutat membre à membre) Cette somme compred N termes tous égaux à P + D d où S = N(P + D) cqfd. COURS Mme Helme-Guizo 17

18 Corrigé des exemples du cours Corrigé de l'exemple Erreur : source de la référece o trouvée. COURS Mme Helme-Guizo 18

Limites des Suites numériques

Limites des Suites numériques Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet

Plus en détail

Comportement d'une suite

Comportement d'une suite Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer

Plus en détail

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1

. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1 Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S

Plus en détail

Chapitre 3 : Fonctions d une variable réelle (1)

Chapitre 3 : Fonctions d une variable réelle (1) Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s

Plus en détail

Etude de la fonction ζ de Riemann

Etude de la fonction ζ de Riemann Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.

Plus en détail

CHAPITRE 2 SÉRIES ENTIÈRES

CHAPITRE 2 SÉRIES ENTIÈRES CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.

Plus en détail

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9

Convergences 2/2 - le théorème du point fixe - Page 1 sur 9 Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios

Plus en détail

1 Mesure et intégrale

1 Mesure et intégrale 1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios

Plus en détail

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.

x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3. EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite

Plus en détail

Séquence 5. La fonction logarithme népérien. Sommaire

Séquence 5. La fonction logarithme népérien. Sommaire Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n = [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.

Plus en détail

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1 Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a

Plus en détail

14 Chapitre 14. Théorème du point fixe

14 Chapitre 14. Théorème du point fixe Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de

Plus en détail

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3... Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1

Plus en détail

Les Nombres Parfaits.

Les Nombres Parfaits. Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie

Plus en détail

Séries réelles ou complexes

Séries réelles ou complexes 6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés

Plus en détail

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter

Plus en détail

Suites et séries de fonctions

Suites et séries de fonctions [http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **

Plus en détail

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé : Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires

Plus en détail

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue

Plus en détail

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes. Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités

Plus en détail

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces

Plus en détail

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour

Plus en détail

SÉRIES STATISTIQUES À DEUX VARIABLES

SÉRIES STATISTIQUES À DEUX VARIABLES 1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1

Plus en détail

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009

II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009 M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted

Plus en détail

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation 1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus

Plus en détail

20. Algorithmique & Mathématiques

20. Algorithmique & Mathématiques L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus

Plus en détail

2 ième partie : MATHÉMATIQUES FINANCIÈRES

2 ième partie : MATHÉMATIQUES FINANCIÈRES 2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul

Plus en détail

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices

Dénombrement. Chapitre 1. 1.1 Enoncés des exercices Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.

Plus en détail

Processus et martingales en temps continu

Processus et martingales en temps continu Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de

Plus en détail

EXERCICES : DÉNOMBREMENT

EXERCICES : DÉNOMBREMENT Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris

Plus en détail

55 - EXEMPLES D UTILISATION DU TABLEUR.

55 - EXEMPLES D UTILISATION DU TABLEUR. 55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique

Plus en détail

Chap. 5 : Les intérêts (Les calculs financiers)

Chap. 5 : Les intérêts (Les calculs financiers) Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie

Plus en détail

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das

Plus en détail

Statistique descriptive bidimensionnelle

Statistique descriptive bidimensionnelle 1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice

Plus en détail

4 Approximation des fonctions

4 Approximation des fonctions 4 Approximatio des foctios Ue foctio f arbitraire défiie sur u itervalle I et à valeur das IR peut être représetée par so graphe, ou de maière équivalete par la doée de l esemble de ses valeurs f(t) pour

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.

LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil. Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la

Plus en détail

Solutions particulières d une équation différentielle...

Solutions particulières d une équation différentielle... Solutios particulières d ue équatio différetielle......du premier ordre à coefficiets costats O cherche ue solutio particulière de y + ay = f, où a est ue costate réelle et f ue foctio, appelée le secod

Plus en détail

STATISTIQUE : TESTS D HYPOTHESES

STATISTIQUE : TESTS D HYPOTHESES STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie

Plus en détail

Cours de Statistiques inférentielles

Cours de Statistiques inférentielles Licece 2-S4 SI-MASS Aée 2015 Cours de Statistiques iféretielles Pierre DUSART 2 Chapitre 1 Lois statistiques 1.1 Itroductio Nous allos voir que si ue variable aléatoire suit ue certaie loi, alors ses réalisatios

Plus en détail

RECHERCHE DE CLIENTS simplifiée

RECHERCHE DE CLIENTS simplifiée RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées

Plus en détail

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) RAIRO Operatios Research RAIRO Oper. Res. 34 (2000) 99-129 TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 ) Commuiqué par Berard LEMAIRE Résumé. L étude

Plus en détail

c. Calcul pour une évolution d une proportion entre deux années non consécutives

c. Calcul pour une évolution d une proportion entre deux années non consécutives Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages

Plus en détail

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3 1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que

Plus en détail

La maladie rénale chronique

La maladie rénale chronique La maladie réale chroique Qu est-ce que cela veut dire pour moi? Natioal Kidey Disease Educatio Program La maladie réale chroique: l essetiel Vous avez été iformé(e) que vous êtes atteit(e) de la maladie

Plus en détail

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe

La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe 1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios

Plus en détail

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions.

3.1 Différences entre ESX 3.5 et ESXi 3.5 au niveau du réseau. Solution Cette section récapitule les différences entre les deux versions. 3 Réseau Le réseau costitue u aspect essetiel d u eviroemet virtuel ESX. Il est doc importat de compredre la techologie, y compris ses différets composats et leur coopératio. Das ce chapitre, ous étudios

Plus en détail

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble. II LE MARCHE DU CAFE 1 L attractivité La segmetatio selo le mode de productio Le marché du café peut être segmeté e foctio de deux modes de productio pricipaux : la torréfactio et la fabricatio de café

Plus en détail

Terminale S. Terminale S 1 F. Laroche

Terminale S. Terminale S 1 F. Laroche Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM

Plus en détail

Chapitre 3 : Transistor bipolaire à jonction

Chapitre 3 : Transistor bipolaire à jonction Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats

Plus en détail

Compte Sélect Banque Manuvie Guide du débutant

Compte Sélect Banque Manuvie Guide du débutant GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de

Plus en détail

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1 Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques

Plus en détail

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars

Plus en détail

STATISTIQUE AVANCÉE : MÉTHODES

STATISTIQUE AVANCÉE : MÉTHODES STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................

Plus en détail

Sommaire Chapitre 1 - L interface de Windows 7 9

Sommaire Chapitre 1 - L interface de Windows 7 9 Sommaire Chapitre 1 - L iterface de Widows 7 9 1.1. Utiliser le meu Démarrer et la barre des tâches de Widows 7...11 Démarrer et arrêter des programmes...15 Épigler u programme das la barre des tâches...18

Plus en détail

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4 UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»

Plus en détail

Probabilités et statistique pour le CAPES

Probabilités et statistique pour le CAPES Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes

Plus en détail

Cours 5 : ESTIMATION PONCTUELLE

Cours 5 : ESTIMATION PONCTUELLE Cours 5 : ESTIMATION PONCTUELLE A- Gééralités B- Précisio d u estimateur C- Exhaustivité D- iformatio E-estimateur sas biais de variace miimale, estimateur efficace F- Quelques méthode s d estimatio A-

Plus en détail

Faites prospérer vos affaires grâce aux solutions d épargne et de gestion des dettes

Faites prospérer vos affaires grâce aux solutions d épargne et de gestion des dettes Faites prospérer vos affaires grâce aux solutios d éparge et de gestio des dettes Quelques excelletes raisos d offrir des produits bacaires et de fiducie à vos cliets Vous avez la compétece écessaire pour

Plus en détail

UNIVERSITÉ DE SFAX École Supérieure de Commerce

UNIVERSITÉ DE SFAX École Supérieure de Commerce UNIVERSITÉ DE SFAX École Supérieure de Commerce Aée Uiversitaire 2003 / 2004 Auditoire : Troisième Aée Études Supérieures Commerciales & Scieces Comptables DÉCISIONS FINANCIÈRES Note de cours N 3 Première

Plus en détail

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction

Un nouvel opérateur de fusion adaptatif. A new adaptive operator of fusion. 1. introduction A ew adaptive operator of fusio par Fraçois DELMOTTE LAMIH, Uiversité de Valeciees et du Haiaut-Cambrésis, Le Mot Houy, BP 3, 5933 Valeciees CEDEX 9 fdelmott@flore.uiv-valeciees.fr résumé et mots clés

Plus en détail

Formation d un ester à partir d un acide et d un alcool

Formation d un ester à partir d un acide et d un alcool CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester

Plus en détail

Introduction : Mesures et espaces de probabilités

Introduction : Mesures et espaces de probabilités Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,

Plus en détail

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? Etude Spéciale o. 7 Javier 2003 SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT? MARK SCHNEIDER Le CGAP vous ivite à lui faire part de vos commetaires, de vos rapports et de toute demade d evoid autres

Plus en détail

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT

POLITIQUE ECONOMIQUE ET DEVELOPPEMENT POLTQU ONOMQU T DVLOPPMNT TRUTUR DU MAR NATONAL DU AF-AAO T PR AU PRODUTUR MALAN Beïla Beoit osultat PD N 06/008 ellule d Aalyse de Politiques coomiques du R Aée de pulicatio : Avril 009 Résumé e papier

Plus en détail

Comment les Canadiens classent-ils leur système de soins de santé?

Comment les Canadiens classent-ils leur système de soins de santé? Novembre Les sois de saté au Caada, c est capital bulleti o 4 Commet les Caadies classet-ils leur système de sois de saté? Résultats du sodage iteratioal du Fods du Commowealth sur les politiques de saté

Plus en détail

?,i- ' ^/mmmmmm. CACU ^..""'V ii\teimmies EîiiEsmmii ''?A y? K 1^ 1 - r Par le Moyede Formules Algébriques ) v-^' ET A 'AIDE DES OGARITHMES.../v:?i.'?Xi:: F, X, BURQUE, Ptr. Professeur de MatJu'matiques,

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Stage «Nouveaux programmes de Termiale S» - Ho Chi Mih-Ville Novembre 202 Échatilloage et estimatio Partie C - Frédéric Barôme page Échatilloage et estimatio Partie C : Capacités et exercices-types. Rappelos

Plus en détail

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller

Les solutions mi-hypothécaires, mi-bancaires de Manuvie. Guide du conseiller Les solutios mi-hypothécaires, mi-bacaires de Mauvie Guide du coseiller 1 2 Table des matières Itroductio... 5 La Baque Mauvie...5 Le compte Mauvie U...5 Le compte Sélect Baque Mauvie...5 1. Les solutios

Plus en détail

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets

Plus en détail

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS

PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS J. L. NICOLAS PROBLEMES DIOPTIMISATION EN NOMBRES ENTIERS ET APPROXIMATIONS DIOPHANTIENNES J. L. NICOLAS Cet article expose sup 3 e quelques iter'f~reces etre les pr'obl~res dloptimisatio e hombres etiers et la th~or-ie

Plus en détail

Initiation à l analyse factorielle des correspondances

Initiation à l analyse factorielle des correspondances Fiche TD avec le logiciel : tdr620b Iitiatio à l aalyse factorielle des correspodaces A.B. Dufour & M. Royer & J.R. Lobry Das cette fiche, o étudie l Aalyse Factorielle des Correspodaces. Cette techique

Plus en détail

LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE

LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE LES MESURES CLÉS DU PROJET DE LOI ÉCONOMIE SOCIALE ET SOLIDAIRE Qu est-ce que l Écoomie sociale et solidaire? Coopératives Etreprises sociales Scop Fiaceurs sociaux Scic CAE Mutuelles Coopératives d etreprises

Plus en détail

DETERMINANTS. a b et a'

DETERMINANTS. a b et a' 2003 - Gérard Lavau - http://perso.waadoo.fr/lavau/idex.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitemet. Toute diffusio à titre oéreux ou utilisatio

Plus en détail

Chaînes de Markov. Arthur Charpentier

Chaînes de Markov. Arthur Charpentier Chaîes de Markov Arthur Charpetier École Natioale de la Statistique et d Aalyse de l Iformatio - otes de cours à usage exclusif des étudiats de l ENSAI - - e pas diffuser, e pas citer - Quelques motivatios.

Plus en détail

Les algorithmes de tri

Les algorithmes de tri CONSERVATOIRE NATIONAL DES ARTS ET METIERS PARIS MEMOIRE POUR L'EXAMEN PROBATOIRE e INFORMATIQUE par Nicolas HERVE Les algorithmes de tri Souteu le mai JURY PRESIDENTE : Mme COSTA Sommaire Itroductio....

Plus en détail

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.

Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES. 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2. Chapitre 2 SONDAGE ALEATOIRE SIMPLE OU A PROBABILITES EGALES PLAN DU CHAPITRE 2 2.1 DEFINITIONS 2.2 SONDAGE ALEATOIRE SIMPLE SANS REMISE (PESR) 2.2.1 Pla de sodage 2.2.2 Probabilités d iclusio 2.3 SONDAGE

Plus en détail

Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers.

Renseignements et monitoring. Renseignements commerciaux et de solvabilité sur les entreprises et les particuliers. Reseigemets et moitorig. Reseigemets commerciaux et de solvabilité sur les etreprises et les particuliers. ENSEMBLE CONTRE LES PERTES. Reseigemets Creditreform. Pour plus de trasparece. Etreteir des rapports

Plus en détail

Exercices de mathématiques

Exercices de mathématiques MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris

Plus en détail

Petit recueil d'énigmes

Petit recueil d'énigmes Petit recueil d'éigmes Patxi RITTER (*) facile (**) mois facile (***) pas facile (****) il faudra de l aide Solutios e rouge. 1) Cryptarithme (**) Trouvez la valeur de A, B et C satisfaisat l équatio suivate.

Plus en détail

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO

STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO Des résultats du Programme de réductio des risques STRATÉGIE DE REMPLACEMENT DE LUTTE CONTRE LA PUNAISE TERNE DANS LES FRAISERAIES DE L ONTARIO 1. Cotexte La puaise tere Lygus lieolaris (figure 1) est

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Télé OPTIK. Plus spectaculaire que jamais.

Télé OPTIK. Plus spectaculaire que jamais. Télé OPTIK Plus spectaculaire que jamais. Vivez toute la puissace de la télévisio sur IP grâce au réseau OPTIK 1 de TELUS et découvrez-e l extraordiaire potetiel. Télé OPTIK MC vous doe la parfaite maîtrise

Plus en détail

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME

Université Victor Segalen Bordeaux 2 Institut de Santé Publique, d Épidémiologie et de Développement (ISPED) Campus Numérique SEME Uiversité Victor Segale Bordeaux Istitut de Saté Publique, d Épidémiologie et de Développemet (ISPED) Campus Numérique SEME MODULE Pricipaux outils e statistique Versio du 8 août 008 Écrit par : Relu par

Plus en détail

Module 3 : Inversion de matrices

Module 3 : Inversion de matrices Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que

Plus en détail

Dares Analyses. Plus d un tiers des CDI sont rompus avant un an

Dares Analyses. Plus d un tiers des CDI sont rompus avant un an Dares Aalyses javier 2015 N 005 publicatio de la directio de l'aimatio de la recherche, des études et des statistiques Plus d u tiers des CDI sot rompus avat u a Le cotrat de travail à durée idétermiée

Plus en détail

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1

UV SQ 20. Automne 2006. Responsable d Rémy Garandel ( m.-el. remy.garandel@utbm.fr ) page 1 UV SQ 0 Probabilités Statistiques UV SQ 0 Autome 006 Resposable d Rémy Garadel ( m.-el. remy.garadel@utbm.fr ) page SQ-0 Probabilités - Statistiques Bibliographie: Titre Auteur(s) Editios Localisatio Niveau

Plus en détail

S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui.

S-PENSION. Constituez-vous un capital retraite complémentaire pour demain tout en bénéficiant d avantages fiscaux dès aujourd hui. S-PENSION Costituez-vous u capital retraite complémetaire pour demai tout e bééficiat d avatages fiscaux dès aujourd hui. Sommaire 1. Il est temps de predre l iitiative 4 2. Profitez dès aujourd hui des

Plus en détail

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012

Mobile Business. Communiquez efficacement avec vos relations commerciales 09/2012 Mobile Busiess Commuiquez efficacemet avec vos relatios commerciales 9040412 09/2012 U choix capital pour mes affaires Pour gérer efficacemet ses affaires, il y a pas de secret : il faut savoir predre

Plus en détail

Le chef d entreprise développe les services funéraires de l entreprise, en

Le chef d entreprise développe les services funéraires de l entreprise, en Le chef d etreprise développe les services fuéraires de l etreprise, e assurat lui-même tout ou partie des activités de vete et e ecadrat directemet le persoel techique et commercial et d exploitatio.

Plus en détail

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales

PROMENADE ALÉATOIRE : Chaînes de Markov et martingales PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées thierry.bodieau@polytechique.edu Novembre 2013 2 Table des matières

Plus en détail

Opérations bancaires avec l étranger *

Opérations bancaires avec l étranger * Opératios bacaires avec l étrager * Coditios bacaires au 1 er juillet 2011 Etreprises et orgaismes d itérêt gééral Opératios à destiatio de l étrager Viremets émis vers l étrager : viremet e euros iférieur

Plus en détail

Séries numériques. Chap. 02 : cours complet.

Séries numériques. Chap. 02 : cours complet. Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm

Plus en détail

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION

RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables

Plus en détail

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus

Réseaux d ondelettes et réseaux de neurones pour la modélisation statique et dynamique de processus Réseaux d odelettes et réseaux de euroes pour la modélisatio statique et dyamique de processus Yacie Oussar To cite this versio: Yacie Oussar. Réseaux d odelettes et réseaux de euroes pour la modélisatio

Plus en détail

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison

La tarification hospitalière : de l enveloppe globale à la concurrence par comparaison ANNALES D ÉCONOMIE ET DE STATISTIQUE. N 58 2000 La tarificatio hospitalière : de l eveloppe globale à la cocurrece par comparaiso Michel MOUGEOT * RÉSUMÉ. Cet article cosidère différetes politiques de

Plus en détail