Régression multiple : principes et exemples d application. Dominique Laffly UMR CNRS Université de Pau et des Pays de l Adour Octobre 2006

Dimension: px
Commencer à balayer dès la page:

Download "Régression multiple : principes et exemples d application. Dominique Laffly UMR 5 603 CNRS Université de Pau et des Pays de l Adour Octobre 2006"

Transcription

1 Régression multiple : principes et eemples d ppliction Dominique Lffly UMR CNRS Université de Pu et des Pys de l Adour Octobre 006 Destiné à de futurs thémticiens, notmment géogrphes, le présent eposé n ps pour voction de présenter l théorie de l nlyse des données pr régression u sens sttistique du terme. Pour cel nous renvoyons u nombreu ouvrges rédigés pr les sttisticiens eu-mêmes. Le but recherché ici est de proposer des eemples concrets de tritement ynt fit ppel à l nlyse pr régression linéire multiple selon différentes logiques priori éloignées les unes des utres. Nous verrons successivement comment l méthode des régressions linéires multiples permet : - d nlyser les liens entre une vrible dépendnte quntittive à epliquer et plusieurs vribles quntittives eplictives indépendntes comme on l dmet générlement ; - de déterminer les équtions d un justement polynomil non-linéire pour l nlyse des liens entre deu vribles quntittives ; - de déterminer les équtions de surfces de tendnces ; - d nlyser l rugosité du relief ; - de déterminer les équtions polynomiles d un modèle de correction géométrique pplicble à des vecteurs et/ou des données rster.. RÉGRESSION LINÉAIRE : LES PRINCIPES L nlyse descriptive des données repose sur une démrche en plusieurs étpes. On définit tout d bord les crctéristiques des vribles prises une à une (nlyse univriée ou tri à plt), puis on observe les liens qui les crctérisent deu pr deu (nlyse bivriée ou tri

2 croisée) pour finir pr l observtion des structures multiples lint plusieurs vribles (nlyse multivriée). On distingue lors deu fmilles principles, l première consiste à observer les liens unissnt une vrible vec plusieurs utres ( n), l seconde considère simultnément les structures multiples lint différentes vribles (n n, nlyse fctorielle). Selon l nture des vribles retenues les méthodes de clcul seront différentes mis l logique reste l même. L nlyse pr régression linéire multiple est une des solutions qui eiste pour observer les liens entre une vrible quntittive dépendnte et n vribles quntittives indépendntes. Toutes méthodes fisnt ppel u régressions reposent sur l ccepttion des hypothèses fondtrices de l sttistique prmétrique et l notion d justement pr les moindres crrés. L moyenne rithmétique d une vrible est pr conséquent considérée comme un centre de grvité et l notion des moindres crrés consiste à minimiser l somme des résidus élevés à l puissnce deu entre l vleur observée et celle etrpolée... Régression linéire simple Un eemple simple d justement pr les moindres crrés est donné pr l nlyse bivriée de vribles quntittives qui peut se simplifier pr le clcul des vrinces et de l covrince des deu vribles X et Y retenues. L vrince répond à l formule suivnte : où : n, nombre d individus i, vleur de l vrible pour l individu i, moyenne rithmétique de l vrible Pour simplifier à l etrême, l sttistique prmétrique repose sur l hypothèse que les données sont des vribles indépendntes distribuées selon une loi normle.

3 L covrince considère les vritions communes des deu vribles selon l formule : CovXY N n ( i ) * ( yi y) i où : n, nombre d individus i, vleur de l vrible pour l individu i, moyenne rithmétique de l vrible y i, vleur de l vrible pour l individu i y, moyenne rithmétique de l vrible y Enfin, le coefficient de corréltion est donné pr l formule : Ceof. cor CovXY VrX * VrY Le coefficient de corréltion correspond u cosinus de l ngle formé entre deu droites de régression se croisnt u coordonnées des moyennes rithmétiques des deu vribles observées (centre de grvité supposé). On définit donc deu droites répondnt chcune à une éqution ffine :

4 ' ' b X Y et b Y X X et Y étnt les vleurs estimées à prtir des vleurs observées X et Y. Dns le cs de l nlyse bivriée, les coefficients des équtions sont fcilement donnés pr : ( )( ) ( ) n i i n i i i y y ( )( ) ( ) n i i n i i i y y y y y b y b Prenons comme eemple l mtrice théorique suivnte (tble A) :

5 id X Y X' Y' X-moyX Y-moyY (X-moyX)² (Y-moyY)² (X-moyX)(Y-moyY) Tble A : Eemple théorique Le coefficient de corréltion est de , les équtions sont : Y X (en june) et X Y.497 (en mgent) L somme des crrés des écrts entre les vleurs observées et celles théoriques est ici minimle pour les deu droites de régression, ce qui correspond à l justement pr les moindres crrés. Notons que ces écrts sont ppelés résidus et qu ils sont perpendiculires (c est-à-dire indépendnts d un point de vue mthémtique) à l e de l vrible eplictive dont les vleurs ne chngent ps pr définition (figure A8).

6 Moyenne X 6.77 Moyenne Y 9.66 Figure A8 : Les deu droites de régression et le coefficient de corréltion.. Régression linéire multiple L eemple développé à prtir de deu vribles permet de comprendre l logique de l théorie de l régression mis il ne peut être générlisé de l sorte u régressions multiples. Le système à deu équtions à deu inconnus présenté se résolvit fcilement comme on l vu. Les équtions se compliquent vec plusieurs régresseurs, deu méthodes distinctes permettent de résoudre les équtions. L première repose sur l connissnce des coefficients de corréltion linéire simple de toutes les pires de vribles entre elles, de l moyenne rithmétique et des écrts-types de toutes les vribles. L seconde repose sur des clculs mtriciels.... Les étpes de clcul fondé les vribles descriptives

7 Soit un ensemble de p vrible où l p-ième vrible est l vrible indépendnte. Toutes les vribles sont u prélble centrées-réduites. Soit r, r 3 r pp les coefficients de corréltions linéires des pires de vribles et s, s,, s p les écrts-types. Prenons un eemple vec p 4 soit 3 vribles dépendntes. Dns un premier temps on clcule les coefficients de régression linéire,, 3 en résolvnt un système de p- équtions à p- inconnues : r p r r 3 3 r p r r 3 3 r 3p 3 r 3 r 3 3 Pour résoudre ce système on procède pr substitutions successives : r p - r r 3 3 d où r p ( r * (r p - r r 3 3 )) r 3 3 r p - r r r 3p - r 3 r 3 3 Connissnt désormis les coefficients de régression on détermine ceu des vribles brutes :

8 Enfin, l constnte d justement est donnée en résolvnt l éqution pour l coordonnée à l origine : ε y 3 3 Le coefficient de détermintion multiple est donné pr : R p ' j r j jp Prenons grde u fit que ce coefficient dont les p- constituent en quelque sorte l contribution croît vec le nombre de vrible. Pr conséquent, ce comportement déterministe lié u propriétés des vribles létoires doit être compenser, on clcule lors le coefficient justé : ( n ) R justé ( R ) n ( p ) Où : n : nombre d individus On peut églement résoudre le système d équtions en prennt comme principe l justement pr les moindres crrés (Chdule) : n i ε min i Où : ε : vrince résiduelle

9 Les coefficients j sont lors etrits des équtions : Cov Cov Cov p, Vr Cov,... p Cov, p p, Cov, Vr... p Cov, p p, p Covp, Cov,... p Vrp Les p- coefficients sont ensuite obtenus pr résolution du système. Avec deu vribles eplictives X et X et une vrible à epliquer Y on pr eemple : ( VrX * Cov ) ( ) YX Cov * YX Cov XX ( Vr * Vr ) Cov X X XX σ Y * ( ryx ( r ) YX * r XX * ( r ) σ X XX ( VrX * Cov ) ( ) Y Cov * YX Cov XX ( Vr * Vr ) Cov X X XX σ Y * ( ryx ( r ) YX * r XX * ( r ) σ X XX Le coefficient de corréltion multiple est lors donnée pr : ( r r ( r * r * r ) YX YX R Y, XX YX r X X YX X X r YY '... L nottion mtricielle L éqution de type : est donnée sous form mtricielle pr :

10 y Xβ ε Où : y..., X y y y n y n, n,,..., n, n,,..., n β, β β, ε β 0 ε ε ε n ε... n Il s git dès lors de clculer le vecteur des estimteurs β ) défini pr l églité suivnte : ) β ( X * X ') X ' y En nottion mtricielle X signifie l mtrice X trnsposée et X - l mtrice inverse. Dns l eemple qui suit nous rélisons une régression multiple pour epliquer l huteur de neige en fonction de l ltitude, de l rugosité, de l pente, de l orienttion, de l ltitude et de l longitude (tble A). H_NEIGE vecteur ltitude rugosite pente orient. lt long

11 Tble A : Huteur de neige et vribles environnementles Le produit X X donne : D où (X X) - : Le produit X X est donnée pr l formule : Où : : mtrice résultt ; b et c : mtrices initiles ; i : lignes ; j : colonnes. Le produit d une mtrice de k lignes et l colonnes pr une mtrices de l lignes pr k colonnes donne une mtrice crrée de k lignes et colonnes. D où l mtrice crrée suivnte :

12 L inversion d une mtrice fit ppel à des notions de clculs mtriciels poussés que nous ne développerons ps ici. Retenons qu en théorie toute mtrice dont le déterminnt est non nul peut être inversée (règle de Crmer). D où dns notre eemple (X X) - : Et X y : Donc (X X )- X y donne les termes de l éqution multiple : Constnte : Altitude : Rugosité :.0379 Pente : Orienttion : Ltitude : 0.59 Longitude : 3.640

13 . EXEMPLES D APPLICATION L utilistion des régressions multiples dépsse lrgement le cdre clssique de l epliction d une vrible dépendnte à prtir de n vribles indépendntes comme on l dmet générlement. Nous verrons tout d bord un eemple ppliqué à l nlyse du trchome en fonction de prmètres biogéogrphiques pour illustrer cette pproche clssique. Trois utres eemples nous permettront d ller plus en vnt dns l ppliction des régressions multiples : l justement non linéire en nlyse bivriée ; l nlyse pr surfces de tendnce d un phénomène géogrphique et l définition des équtions d un modèle de correction géométrique... Indicteurs environnementu et Trchome Le trchome est une mldie contgieuse qui se trnsmet d enfnt à enfnt ou de mère à enfnt. L infection se mnifeste dès l première nnée et l prévlence ugmente très rpidement pour tteindre un mimum qui serit d utnt plus précoce que le niveu de l endémie est élevé. L prévlence du trchome ctif diminue ensuite progressivement et lisse plce à des lésions cictricielles dont l fréquence ugmente vec l âge. Il n y ps de différence de prévlence selon le see significtive dns l enfnce, pr contre à l âge dulte les femmes sont plus fréquemment tteintes du fit des contcts vec les enfnts, elles présenteront pr l suite plus fréquemment un entropion trichisis que les hommes. Le trchome ctif est crctérisé pr une inflmmtion de l conjonctive trsle supérieure vec envhissement de l cornée pr un voile vsculire (pnnus). Ce stde inflmmtoire représente l phse contgieuse de l mldie. L inflmmtion trchomteuse en milieu hyper-endémique persister quelques nnées vnt d évoluer vers l cictristion qui pourr se fire selon deu modlités :

14 - soit l infection est restée modérée et l évolution se fer vers l guérison spontnée u pri de quelques cictrices conjonctivles minimes sns conséquence fonctionnelles : c est le trchome cictriciel bénin. - soit l inflmmtion conjonctivle été intense et prolongée : l cictristion pourr lors dépsser son but et entrîner une fibrose rétrctile de l pupière supérieure. Il s git lors d un trchome cictriciel grve susceptible d boutir à une déformtion du trse vec dévition des cils vers l cornée rélisnt un entropion trichisis. Le frottement des cils à chque clignement entretien une érosion cornéenne prticulièrement douloureuse, fvorisnt une surinfection qui évoluer vers une cécité complète et irréversible pr opcifiction de l cornée. Une fois les lésions cictricielles constituées, le seul moyen d'méliorer le pronostic et si possible d empêcher l cécité est l chirurgie du trichisis : les techniques chirurgicles sont reltivement efficces et sûres, mis elles sont insuffismment diffusées et utilisées. C est l durée et surtout l intensité de l inflmmtion trchomteuse qui déterminent le risque de l évolution vers l cécité. Cette intensité est conditionnée pr deu fcteurs : les surinfections bctériennes et les réinfections. L plus grnde grvité des réinfections est epliquée pr un mécnisme combiné d hypersensibilité et d uto-immunité. Un certin nombre de fcteurs de risque ssociés u trchome ont été identifiés. Ces fcteurs sont individuels, comportementu, sociu et ussi environnementu. C'est insi que l difficulté d'ccès à l'eu, l'ccumultion d'ordures, l proimité vec le bétil et l pullultion des mouches fvorise l survenue d'un trchome. L influence de l géogrphie et du climt est évoquée depuis longtemps dns le complee pthogène du trchome. En zone intertropicle sèche, l diminution de l humidité tmosphérique dessèche les muqueuses conjonctivles et fvoriserit l infection pr les chlmydi. Les poussières pourrient jouer un rôle non négligeble en gressnt l conjonctive et l cornée. Pr illeurs en hiver, le froid nocturne ugmente l promiscuité dns les chmbres et fvoriserit l circultion interhumine du germe. Dns une étude épidémiologique Slim rpporte qu u Soudn l prévlence du trchome ctif est inversement corrélée vec l pluviométrie et l hygrométrie. Nous vons ussi observé dns l'enquête ntionle rélisée u Mli, que le trchome ctif étit plus fréquent dns les régions sèches du nord comme Go ou Tombouctou.

15 L eemple développé ci-dessous s inscrit pleinement dns l qutrième prtie de l ouvrge. Il s git de déterminer des fcteurs environnementu du risque u Mli.. Les données sont issues d une enquête biomédicle rélisée uprès de 000 personnes en Afrique de l ouest. Elles sont confrontés à différentes vribles environnementles susceptibles d être liées à l mldie : ltitude (LAT), longitude (LONG), pluviométrie (PLUVIO), tempérture moyenne nnuelle (TMOY) et hygrométrie (HYGRO) à prtir du fichier des villges. Ces vribles ont été récupérées dns le fichier des individus femmes. Les données mnquntes ont été etrpolées pr régression linéire multiple vec les vribles LAT et LONG. Les données sur le trchome sont qunt à elles : trchome ctif (TT), trchome ches les femmes (TF), trchome chez les enfnts (TI) et trchome suspecté (TS). L figure A9 présente les crtes des vribles environnementles retenues.

16 Figure A9 : Les vribles environnementles Pr régression linéire multiple, on clcule les degrés de liisons entre les tu de prévlence entre l ltitude, l longitude, l pluviométrie, l ltitude, l tempérture moyenne et l hygrométrie (tble ).

17 Tble A3 : Tbles des corréltions multiples Les coefficients de corréltion multiple sont donnés pr l tble XX. A titre indictif le cs présente les vleurs pour une régression n intégrnt que l ltitude et l longitude, le cs intègre toutes les vribles environnementles retenues. On constte que les corréltions obtenues sont toujours significtivement plus élevées dns l cs. Cs Cs TT TS TI TF O Tble A4 : Tu de corréltion multiple On peut dès lors envisger de produire des crtes de prédiction des tu de prévlence du trchome et des résidus connissnt les vribles environnementles. Les coefficients des équtions sont donnés pr l mtrice A5. TF (0.33) TI (0.3) TS (0.50) TT (0.45) Constnte LAT LONG PLUVIO E-05 ALT TMOY HYGRO Tble A5 : Coefficients de régression multiple

18 D où, pr eemple, pour TT : TT estimé ( * LAT) ( * LONG) (7.5743E-05 * PLUVIO) ( * ALT) ( * TMOY) ( * HYGRO) L figure A0 présente les crtes des vleurs estimées de prévlence de TT, TI, TF et TS. On constte bien évidemment des écrts entre l simultion et les vleurs mesurées dns les villges, le modèle n epliqunt que 40 % de l distribution. Une crte de tu de prévlence de TT obtenue pr interpoltion sptile inversement proportionnelle à l distnce - est présentée en vis-à-vis de celle issue de l modélistion pr régression multiple. Les deu documents sont très différents et l on pourr retenir que ce n est ps l proimité à un lieu crctérisé pr de fort tu qui eplique l réprtition sptile de TT. Figure A0 : Estimtion des tu de prévlence pr régression multiple

19 .. Ajustement non-linéire et régression multiple L eemple théorique développé en introduction montrit un nuge de points distribués de mnière non linéire, d où un fible coefficient de détermintion (0.53) obtenu à prtir d un justement linéire. Figure A : Ajustement linéire et non-linéire d ordre On voit bien sur l figure A que les points répondent à une distribution qui s ligne sur un morceu de prbole de type polynôme de degré : Y ' X X b

20 Il s git en fit d une régression linéire multiple à prtir d une même vrible X dont les termes sont élevés à l huteur du degré du polynôme selon l formule générique : Y ' X X... n X n ε Dns l eemple présenté plus hut, un justement d un degré permet d obtenir un coefficient de détermintion de l ordre de Lorsque les formes de l distribution sont plus complees, on peut élever encore l ordre du polynôme comme l illustre l figure A. Figure A : Ajustements non linéire d ordre 3 à 5 Lorsque l distribution ne suit ps une loi polynomile on peut observer les limites de l justement comme l illustre l figure ci-dessous. On peut lors voir recours, selon l

21 forme, à une trnsformtion logrithmique de l vrible X pour donner une éqution ffine de type (figure A3) : Y '.ln( X ) b Figure A3 : Ajustements polynomil et logrithmique

22 .3. Surfces de tendnces, régression multiple selon l ltitude et l longitude Lorsque les phénomènes étudiés sont fortement dépendnts de leur position géogrphique on recours u surfces de tendnces pour etrpoler à l ensemble de l espce des vleurs initilement observées ponctuellement. Prenons un eemple théorique d un phénomène mrqué pr un fort grdient sud ouest nord est comme l illustre les figures A4 et A5. Figure A4 : Crtogrmme d un grdient Une régression linéire multiple vec comme vribles indépendntes l ltitude et l longitude nous donne ici un coefficient de détermintion de et une éqution :

23 Connissnt l ltitude et l longitude on peut désormis etrpoler l vrible X à tout l espce géogrphique découpé en un millge plus ou moins fin. On obtient lors un pln de régression ou surfce de tendnce d ordre comme l illustre le schém suivnt : Figure A5 : Surfce de tendnce d ordre pln de régression On peut imginer isément une distribution géogrphique non linéire d un phénomène quelconque, une ondultion pr eemple comme l illustre les figures A6 et A7..

24 Figure A6 : Crtogrmme d une ondultion L justement d un pln de régression ne serit lors ps du tout représenttif, dns notre eemple le coefficient de détermintion est même nul. Comme on vit recours à des polynômes de degré n on peut envisger ici des surfces polynomiles de degré n. Pr eemple, l éqution d une surfce de degré est : Soit présentement un coefficient de détermintion de 0.95 et une éqution : On obtient lors l surfce suivnte :

25 Figure A7 : Surfce de tendnce d ordre Pour des distributions plus complees, on peut ugmenter le degré du polynôme, pr eemple une surfce de degré 3 comme l illustre les figures A8 et A9..

26 Figure A8 : Crtogrmme d une vgue Figure A9 : Surfce de tendnce d ordre 3

27 On tteint cependnt rpidement des limites eut égrd u nombre d inconnus dns le système d équtions à résoudre. Celui-ci est donné pr l formule : t Ninc où t, degré du polynôme. L éqution polynomile d ordre t se générlise ensuite selon : t i i j j j i k y Z 0 0 ' où j j i i k. Pour un polynôme de degré 3, l éqution générique est de l forme : ε ' Y XY Y X X Y XY X Y X Z Pour un polynôme de degré 4, elle devient : ε ' Y Y X Y X Y X X Y XY Y X X Y XY X Y X Z

28 Au-delà, le système d éqution à résoudre devient difficile à mettre en œuvre et, surtout, l surfce etrpolée ne représente plus un phénomène géogrphique fortement dépendnt de l ltitude et de l longitude. Nous verrons dns un cours conscré u vriogrmme et covriogrmme comment etrpoler des surfces qui mettent en vnt des cycles ou des phénomènes ponctuels..4. Anlyse du relief et indicteur de rugosité Un cs prticulier de d ppliction des surfces de tendnces, donc des régressions multiples, et celui de l nlyse de l «rugosité» du relief à prtir d un Modèle Numérique de Terrin (MNT). Un MNT est une bse de données rster composée de NC colonnes et NL lignes dont les milles renseignent sur l ltitude. Figure A0 : Filtre de rugosité du relief Afin d obtenir une informtion synthétique sur les formes locles du relief on fit glisser sur chque piel de l imge une fenêtre de n milles de côtés à l intérieur de lquelle on jsute une surfce de tendnce d ordre locle. L rugosité correspond à l écrt-type clculé sur les résidus entre les ltitudes du MNT et celles de l surfce de tendnce. Plus l vleur de l écrt-type est élevée plus le relief est loclement ccidenté (creu, bosses,

29 crêtes, tlwegs ) et inversement (pln d un versnt, d une pline ). L figure A0 illustre l méthode mise en œuvre. Sns prler de l résolution du MNT, le choi de l tille de l fenêtre repose sur le niveu d observtion ttendu pr l utilisteur. Une fenêtre de l ordre de 3 à 9 piels donner des indicteurs locu, ils seront plus globu u-delà. L figure A présente une vue où différentes rugosités ont été clculées selon qutre tilles de fenêtres. Les teintes du rose u mrron sont une grdtion des vleurs de rugosité, respectivement de l plus fible à l plus forte. Figure A : Rugosité et tille des piels.4. Régression multiple et géoréférencement Un dernier eemple d ppliction des régressions multiples est conscré à l présenttion des géoréférencements fondés sur un modèle polynomile. Le principe d un géoréférencement consiste à modifier les coordonnées d une imge ou d un vecteur pour l rendre comptible vec un utre système de coordonnées, en l occurrence celui d une crte. Pr eemple, le cdstre initilement levé pr tringultion géodésique sur le terrin doit être rectifié pour être comptible vec les crtes à grnde échelle de l IGN. De même, une photogrphie érienne et/ou une imge de stellite doivent être géoréférencées pour

30 épouser les formes de l crte. Nous verrons plus loin que si les équtions nécessires à de telles trnsformtions sont les mêmes pour les imges ou les vecteurs, leur mise en œuvre poser plus de problèmes pour les imges. À ce sujet, notons dès à présent qu une correction géométrique et un géoréférencement sont deu notions différentes trop souvent confondues. L première pour but de corriger l géométrie de l imge qui, à l étt brut, est très perturbée pr l combinison : - des écrts d ttitude du stellite (lcet, roulis et tngge) ; - des propriétés de l orbite, elles-mêmes fonction du géoïde ; - de l rotondité de l terre (déformtion pnormique) ; - de l vitesse de rottion de l terre ( km.h - à l équteur, soit 4.7 km prcourus pendnt les 9 s que durent l cquisition d une imge Spot, pr eemple) ; - de l ngle de prise de vue des piels composnts l imge ; - des erreurs de prlle dues à l forme du relief (corrigées en intégrnt les données d un MNT : orthorectifiction) ; - des erreurs liées à l optique du cpteur ; Figure A : Prise de points d ppui

31 Selon les cs et les moyens finnciers dont on dispose tout ou prtie de ces perturbtions seront corrigées. Très souvent, certines des corrections sont rélisées en même temps que le géoréférencement, d où l confusion citée plus hut. L mise en œuvre d un géoréférencement consiste à relever les coordonnées de points identifibles sur les deu documents en question, l crte de référence (ltitude et longitude) et l imge ou le vecteur (colonne et ligne) comme l illustre l figure A. Il est souhitble de réprtir u mieu les points sur l ensemble des zones en commun dns les deu documents. On obtient l mtrice de coordonnées suivnte :.

32 Un géoréférencement consiste à définir les termes de deu polynômes d justement de mnière à estimer les ltitudes et les longitudes observées à prtir des coordonnées lignes et colonnes du document à modifier. Pr eemple, pour un polynôme de degré : Lt ' Lon ' Lig * b Col ε Lig * b Col ε où Lt et Lon : l ltitude et l longitude estimées ; Lig et Col : les coordonnées en ligne et en colonne de l imge ou du vecteur; n, b n et ε n : les termes du polynôme. Notons qu un minimum de points de contrôle est à prendre en fonction du degré du polynôme, ce seuil répond à l formule : S ( t )( t ) où t, degré du polynôme. Le prllèle vec les surfces de tendnces présentées plus hut est évident et l on peut de l même mnière élever le degré des polynômes pour obtenir un meilleur justement. Notons cependnt que l fibilité du modèle n est plus estimée pr le coefficient de détermintion mis pr un incteur qudrtique moyen (Root Meu Squre ou RMS) donnnt les distnces entre l position observée et celle estimée : RMS n ' ' ( ltn ltn ) ( lonn lonn ) où n : numéro du point ; lt et lon : ltitude et longitude estimées ; lt et lon : ltitude et longitude observées.

33 Les lignes surlignées en couleur dns l mtrice indiquent des points berrnts qu il conviendrit d éliminer de l collection initile. Ces berrtions sont souvent dues à des erreurs de sisies ou à des muvises interpréttions entre l imge et l crte ou bien encore à grnde différence d échelle voire de qulité entre l imge et l crte. Après vérifiction de l qulité du modèle celui-ci est ppliqué à l imge pour obtenir une nouvelle imge désormis correctement géoréférencée comme l illustre l figure A3. Figure A3 : Imge corrigée et crte IGN Le géoréférencement fondé sur un modèle polynomile tteint rpidement ses limites puisqu il n intègre ps les ltitudes sources d importntes erreurs de prlle. Il est nénmoins fcile à mettre en œuvre et efficce vec des données vectorielles ou des imges de secteurs offrnt peu de dénivelé.

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

Module 2 : Déterminant d une matrice

Module 2 : Déterminant d une matrice L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

ANALYSE NUMERIQUE NON-LINEAIRE

ANALYSE NUMERIQUE NON-LINEAIRE Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

3- Les taux d'intérêt

3- Les taux d'intérêt 3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Influence du milieu d étude sur l activité (suite) Inhibition et activation

Influence du milieu d étude sur l activité (suite) Inhibition et activation Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu

Plus en détail

MATHEMATIQUES GENERALES partim A

MATHEMATIQUES GENERALES partim A Fculté des Sciences MATHEMATIQUES GENERALES prtim A Première nnée de bchelier en Biologie, Chimie, Géogrphie, Géologie, Physique et Informtique, Philosophie Année cdémique 04-05 Frnçoise BASTIN Introduction

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances

Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (

Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) ( Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est

Plus en détail

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,

Plus en détail

Microéconomie de l Incertitude M1 Banque et Marchés Financiers

Microéconomie de l Incertitude M1 Banque et Marchés Financiers Microéconomie de l Incertitude M1 Bnque et Mrchés Finnciers Emmnuel DUGUET Notes de Cours, V1 2 1 Concepts de bse 5 1.1 Les loteries................................ 6 1.2 Le critère d espérnce mthémtique..................

Plus en détail

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!

Pour développer votre entreprise. Compta LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI! Pour développer votre entreprise Compt Avec EBP Compt, vous ssurez le suivi de l ensemble de vos opértions et exploitez les données les plus complexes en toute sécurité. Toutes les fonctionnlités essentielles

Plus en détail

REGLEMENT DU CLASSEMENT NATIONAL

REGLEMENT DU CLASSEMENT NATIONAL REGLEMET DU CLASSEMET ATIOAL / Les règles indiquées ici sont celles utilisées pour clculer les ttributions de points de l sison -. I. PRICIPES DE BASE Le clssement ntionl de l F.F.B. est le seul uquel

Plus en détail

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états. ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etb=MK2, Timbre=G430, TimbreDnsAdresse=Vri, Version=W2000/Chrte7, VersionTrvil=W2000/Chrte7 Direction des Études et Synthèses Économiques Déprtement des Comptes Ntionux Division des Comptes Trimestriels

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure

Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure République Algérienne Démocrtique et Populire Ministère de l enseignement supérieur et de l recherche scientifique Université Mentouri de Constntine Fculté des sciences et sciences de l ingénieur Déprtement

Plus en détail

Détermination des épaisseurs Formule générale

Détermination des épaisseurs Formule générale Formule générle Hors le cs des vitrges pour le bâtiment, trité pr l NF DTU 39 P4, on peut clculer à l ide des formules de Timoshenko : - l épisseur minimle à donner ux vitrges plns monolithiques soumis

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

semestre 3 des Licences MISM annnée universitaire 2004-2005

semestre 3 des Licences MISM annnée universitaire 2004-2005 MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................

Plus en détail

Conseils et astuces pour les structures de base de la Ligne D30

Conseils et astuces pour les structures de base de la Ligne D30 Conseils et stuces pour les structures de bse de l Ligne D30 Conseils et stuces pour l Ligne D30 Ligne D30 - l solution élégnte pour votre production. Rentbilité optimle et méliortion continue des séquences

Plus en détail

Guide des bonnes pratiques

Guide des bonnes pratiques Livret 3 MINISTÈRE DE LA RÉFORME DE L'ÉTAT, DE LA DÉCENTRALISATION ET DE LA FONCTION PUBLIQUE 3 Guide des bonnes prtiques OUTILS DE LA GRH Guide des bonnes prtiques Tble des mtières 1. Introduction p.

Plus en détail

Intérêt de l isocinétisme dans le bilan et la rééducation d un genou opéré. Docteur Patrick GAUTHIER

Intérêt de l isocinétisme dans le bilan et la rééducation d un genou opéré. Docteur Patrick GAUTHIER Intérêt de l isocinétisme dns le biln et l rééduction d un genou opéré Docteur Ptrick GAUTHIER INTERET DE L ISOCINETISME DANS LE BILAN ET LA REEDUCATION D UN GENOU OPERE Dr Ptrick GAUTHIER SPORTIVA ISOCINETISME???

Plus en détail

Licence M.A.S.S. Cours d Analyse S4

Licence M.A.S.S. Cours d Analyse S4 Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,

Plus en détail

Menu outils de navigation mennavi.htm

Menu outils de navigation mennavi.htm Pge de lncement index.htm Voici l représenttion schémtique de l structure du site Wllonie, toutes les crtes en mins... Pge d ccueil win.htm nevs générl menwin.htm À propos de l structure des données :

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO

Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................

Plus en détail

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2

GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE 2-2013-2014 CONTRÔLE CONTINU 2 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

Le Calcul Intégral. niveau maturité. Daniel Farquet

Le Calcul Intégral. niveau maturité. Daniel Farquet Le Clcul Intégrl niveu mturité Dniel Frquet Eté 8 Tble des mtières Introduction Intégrle indéfinie 3. Définitions et générlités................................ 3.. Déf. d une primitive..............................

Plus en détail

Choix binaires avec influences sociales : mode d emploi et conséquences économiques

Choix binaires avec influences sociales : mode d emploi et conséquences économiques Choix binires vec influences sociles : mode d emploi et conséquences économiques Denis Phn * * CREM UMR CNRS 6, Université de Rennes /3/5 Résumé : Cette note propose une synthèse de quelques trvux conscrés

Plus en détail

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel

COURS D ANALYSE. Licence d Informatique, première. Laurent Michel COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................

Plus en détail

Créer des jeux avec GLUP

Créer des jeux avec GLUP Créer des jeux vec GLUP GLUP (générteur ludopédgogique) est un service en ligne du CRDP de l cdémie de Versilles. Il permet de trnsformer des exercices à se de texte en mini-jeux téléchrgeles. Les jeux

Plus en détail

Les règles de Descartes et de Budan Fourier

Les règles de Descartes et de Budan Fourier Ojectifs de ce chpitre Mthémtiques ssistées pr ordinteur Chpitre 4 : Rcines des polynômes réels et complexes Michel Eisermnn Mt49, DLST LS4, Année 8-9 www-fourierujf-grenolefr/ eiserm/cours # mo Document

Plus en détail

Le Guide 2012. des logiciels et services EBP. Les 5 BONNES RAISONS DE VOUS ÉQUIPER

Le Guide 2012. des logiciels et services EBP. Les 5 BONNES RAISONS DE VOUS ÉQUIPER Les 5 BONNES RAISONS DE VOUS ÉQUIPER 1. Vous en êtes cpble. 2. C est efficce et vous llez ggner du temps chque jour. 3. Cel fit vendre : vlorisez votre entreprise pr vos documents. 4. C est profitble :

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

Transfert. Logistique. Stockage. Archivage

Transfert. Logistique. Stockage. Archivage Trnsfert Logistique Stockge Archivge Trnsfert, logistique, stockge Pour fire fce ux nouveux enjeux, il est importnt de pouvoir compter sur l'expertise d'un spéciliste impliqué à vos côtés, en toute confince.

Plus en détail

Statuts ASF Association Suisse Feldenkrais

Statuts ASF Association Suisse Feldenkrais Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

Magister en : Génie Mécanique

Magister en : Génie Mécanique الجمهورية الجزاي رية الديمقراطية الشعبية République Algérienne Démocrtique et Populire وزارة التعليم العالي و البحث العلمي Ministère de l enseignement supérieur et de l recherche scientifique Université

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

Partie 4 : La monnaie et l'inflation

Partie 4 : La monnaie et l'inflation Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que

Plus en détail

Résumé. Introduction. N. D. Riediger, M. Sc. (1); S. G. Bruce, Ph. D. (1); T. K. Young, M.D., Ph. D. (2)

Résumé. Introduction. N. D. Riediger, M. Sc. (1); S. G. Bruce, Ph. D. (1); T. K. Young, M.D., Ph. D. (2) Risque de mldies crdiovsculires en fonction des profils plsmtiques d polipoprotéines et de lipides chez une communuté des Premières ntions du Cnd* N. D. Riediger, M. Sc. (1); S. G. Bruce, Ph. D. (1); T.

Plus en détail

WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE

WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE WEBDOC DEMANDE D ASSURANCE SOCIALE EN CAS DE FAILLITE OU DE CESSATION FORCÉE FORMULAIRE À RENVOYER PAR RECOMMANDÉ À : ACERTA CAS, BP 24000, 1000 Bruxelles (Centre de Monnie) Cse destinée à Acert Dte de

Plus en détail

Notes de révision : Automates et langages

Notes de révision : Automates et langages Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s

Plus en détail

Maladies chroniques et traumatismes

Maladies chroniques et traumatismes Mldies chroniques et trumtismes Hospitlistions pour excerbtions de BPCO : comment les identifier à prtir des données du progrmme de médiclistion des systèmes d informtion (PMSI)? Sommire Abrévitions 2

Plus en détail

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages

Modification simultanée de plusieurs caractéristiques d un bien hédonique : une nouvelle méthode de calcul de la variation de bien-être des ménages Modifiction simultnée de plusieurs crctéristiques d un bien hédonique : une nouvelle méthode de clcul de l vrition de bien-être des ménges Trvers Muriel * Version provisoire Résumé : De nombreuses situtions

Plus en détail

LOGICIEL FONCTIONNEL EMC VNX

LOGICIEL FONCTIONNEL EMC VNX LOGICIEL FONCTIONNEL EMC VNX Améliortion des performnces des pplictions, protection des données critiques et réduction des coûts de stockge vec les logiciels complets d EMC POINTS FORTS VNX Softwre Essentils

Plus en détail

Portes coupe feu EI 2 30 pour tout type de construction

Portes coupe feu EI 2 30 pour tout type de construction L nouvelle génértion de portes coupe feu élégntes Portes coupe feu EI 30 pour tout type de construction L nouvelle génértion de portes métlliques NovoPort Premio devient l référence dns l protection incendie

Plus en détail

Evaluation de la performance des barrages poids basée sur la formalisation et l agrégation des connaissances

Evaluation de la performance des barrages poids basée sur la formalisation et l agrégation des connaissances Evlution de l performnce des brrges poids bsée sur l formlistion et l grégtion des connissnces Curt Corinne 1, Perldi Audrey 1, Félix Huguette 1 1 Irste, UR OHAX Ouvrges Hydruliques et Hydrologie, 375

Plus en détail

Toyota Assurances Toujours la meilleure solution

Toyota Assurances Toujours la meilleure solution Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou

Plus en détail

Les Dossiers Du Mois. 006 Janvier 2013

Les Dossiers Du Mois. 006 Janvier 2013 Les Dossiers Du Mois No. 006 Jnvier 2013 DÉVELOPPEMENT DE LA POLICE NATIONALE D'HAÏTI: cp sur 2016 Le Gouvernement hïtien doté s police ntionle d'un pln quinquennl de développement pour l période 2012-2016.

Plus en détail

FIG. 1 Module de stockage en position horizontale ; positionnement des jauges de déformation.

FIG. 1 Module de stockage en position horizontale ; positionnement des jauges de déformation. Anlyse thermo-mécnique dun prototype de stockge hybride (solide-gzeux) dhydrogène D. CHAPELLE, O. GILLIA b, M. FELDIC. Institut FEMTO ST, UMR 6174, Déprt. Mécnique Appliquée, 24 rue de l Epitphe, 25000

Plus en détail

Le canal étroit du crédit : une analyse critique des fondements théoriques

Le canal étroit du crédit : une analyse critique des fondements théoriques Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux

Plus en détail

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds

(Chapitre 4) 3 La bourse ou la vie ou Comment faire des ronds Φ (Chpitre 4) 3 L bourse ou l vie ou Comment fire des ronds Imginez que vous possédez un portefeuille de vleurs boursières. Voici le grphe de ses fluctutions en fonction du temps (bscisse, x) et de l rgent

Plus en détail

VN-8700PC VN-8600PC VN-8500PC

VN-8700PC VN-8600PC VN-8500PC ENREGISTREUR VOCAL NUMÉRIQUE VN-8700PC VN-8600PC VN-8500PC FR MODE D EMPLOI Merci d voir porté votre choix sur cet enregistreur vocl numérique. Lisez ce mode d emploi pour les informtions concernnt l emploi

Plus en détail

VIBRATIONS COUPLEES AVEC LE VENT

VIBRATIONS COUPLEES AVEC LE VENT VIBRATIONS OPLEES AVE LE VENT Pscl Hémon Lbortoire d Hydrodynmique, LdHyX Ecole Polytechnique, Pliseu Octobre 00 Vibrtions couplées vec le vent Si vous pense que j i révélé des secrets, je m en ecuse.

Plus en détail

Paul Horowitz & Winfield HiIl

Paul Horowitz & Winfield HiIl m m Pul Horowitz & Winfield HiIl I l, m VOLUME 1 TECHNIQUES ANALOGIQUES m m m m m m / l E LE KTO R m m m m TABLE DES MATIÈREiS PRÉFACE XVII 1 LES BASES INTRODUCTION 1 TENSION. COURANT ET RÉSISTANCE 1.1

Plus en détail

LANGAGES - GRAMMAIRES - AUTOMATES

LANGAGES - GRAMMAIRES - AUTOMATES LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront

Plus en détail

Baccalauréat S Asie 19 juin 2014 Corrigé

Baccalauréat S Asie 19 juin 2014 Corrigé Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps

Plus en détail

TRam «Gestion de la Toxicité en zone Ramsar» Toxicity management in Ramsar area

TRam «Gestion de la Toxicité en zone Ramsar» Toxicity management in Ramsar area TRm «Gestion de l Toxicité en zone Rmsr» Toxicity mngement in Rmsr re Progrmme Evlution et réduction des risques liés à l utilistion des Pesticides Rpport finl- Juillet_2014 CIHEAM-IAMM 3191 Route de Mende

Plus en détail

Santé et sécurité psychologiques en milieu de travail

Santé et sécurité psychologiques en milieu de travail CAN/CSA-Z1003-13/BNQ 9700-803/2013 Norme ntionle du Cnd Snté et sécurité psychologiques en milieu de trvil Prévention, promotion et lignes directrices pour une mise en œuvre pr étpes Avilble in English

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

INSTALLATION DE DETECTION INCENDIE

INSTALLATION DE DETECTION INCENDIE reglement > > instlltion E ETECTON NCENE NSTALLATON E ETECTON NCENE Une instlltion de détection incendie pour objectif de déceler et signler, le plus tôt possible, d une mnière fible, l nissnce d un incendie,

Plus en détail

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)

AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*) Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,

Plus en détail

EY-BU 292 : interface Ethernet novanet, modunet292

EY-BU 292 : interface Ethernet novanet, modunet292 Fiche technique 96.015 EY-BU 292 : interfce, Votre tout en mtière d'efficcité énergétique SAUTER EY-modulo 2 intégré dns l technologie IP connue Crctéristiques Produit de l fmille de systèmes SAUTER EY-modulo

Plus en détail

Guide d'utilisation Easy Interactive Tools Ver. 2

Guide d'utilisation Easy Interactive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver. 2 Guide d'utilistion Esy Interctive Tools Ver.2 Présenttion de Esy Interctive Tools 3 Crctéristiques Fonction de dessin Vous pouvez utiliser Esy Interctive

Plus en détail

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf.

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf. Tleu d extension de mise en sécurité pour CMSI type B modulle Réf. : 00 Module deux lignes de mise en sécurité Réf. : 00 DE MISE EN MISE EN 5 7 8 8 PROGRAM. SYSTEME Fus. F, 5H50V MANUEL DE MISE EN ŒUVRE

Plus en détail

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement.

Réalisation de sites Internet PME & Grandes entreprises Offre Premium. Etude du projet. Webdesign. Intégration HTML. Développement. Rélistion de sites Internet PME & Grndes entreprises Offre Premium Etude du projet Réunions de trvil et étude personnlisée de votre projet Définition d une strtégie de pré-référencement Webdesign Définition

Plus en détail

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2

Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2 Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques

Plus en détail

Algorithmes sur les mots (séquences)

Algorithmes sur les mots (séquences) Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)

Plus en détail

Chapitre 1 : Fonctions analytiques - introduction

Chapitre 1 : Fonctions analytiques - introduction 2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux

Plus en détail

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch

ManSafe. pour les Utilitiés. La Protection antichute pour les Industries de l'energie. Français. TowerLatch LadderLatch MnSfe pour les Utilitiés L Protection ntichute pour les Industries de l'energie Frnçis TowerLtch LdderLtch Les questions de protection nti-chute Les chutes de huteur sont l cuse de mortlité l plus importnte

Plus en détail

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement.

Fiabilité, sécurité et enfichage intégral éprouvés. Tous les connecteurs sont équipés de dispositifs de verrouillage antiarrachement. Fibilité, sécurité et enfichge intégrl éprouvés Tous les connecteurs sont équipés de dispositifs de verrouillge ntirrchement. 100% stekerbr Qu est-ce qu une instlltion 100 % enfichble? Mtériel fourni en

Plus en détail

Meg Gawler Bréhima Béridogo. Mars 2002

Meg Gawler Bréhima Béridogo. Mars 2002 EVALUATION FINALE PROJET D APPUI A LA GESTION DES ZONES HUMIDES DANS LE DELTA INTERIEUR DU FLEUVE NIGER RAPPORT FINAL Meg Gwler Bréhim Béridogo ARTEMIS Services pour l conservtion de l nture et le développement

Plus en détail

Traitement multicritère des résultats d ACV, adaptation de la méthode ScanActor

Traitement multicritère des résultats d ACV, adaptation de la méthode ScanActor Triteent ulticritère des résultts d ACV, dpttion de l éthode ScnActor RECRD 991010/1A rs 2000 RECRD ETUDE N 991010/1A TRAITEMENT MULTICRITERE DES RESULTATS D ACV, ADAPTATIN DE LA METHDE SCANACTR RAPPRT

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Les formations professionnelles Livret d information des services Application

Les formations professionnelles Livret d information des services Application ² Services "Utilisteur" Confince, Expertise, Performnce Les formtions professionnelles Livret d informtion des services Appliction Answers for Life (*) (*) Des réponses pour l vie Sommire 3 L formtion

Plus en détail

EnsEignEmEnt supérieur PRÉPAS / BTS 2015

EnsEignEmEnt supérieur PRÉPAS / BTS 2015 Enseignement supérieur PRÉPAS / BTS 2015 Stnisls pour mbition de former les étudints à l réussite d exmens et de concours des grndes écoles de mngement ou d ingénieurs. Notre objectif est d ccompgner chque

Plus en détail

Les maladies respiratoires ont rarement été considérées comme des priorités de santé

Les maladies respiratoires ont rarement été considérées comme des priorités de santé G U I D E P R É V E N T I O N Les mldies respirtoires un enjeu mjeur de snté publique ÉDITORIAL Ne nous y trompons ps. Il n y ur ps en Frnce de mîtrise durble et efficce des dépenses d ssurnce mldie sns

Plus en détail

Compte rendu de la validation d'un observateur cascade pour la MAS sans capteurs mécaniques sur la plate-forme d'essai de l'irccyn

Compte rendu de la validation d'un observateur cascade pour la MAS sans capteurs mécaniques sur la plate-forme d'essai de l'irccyn Compte rendu de l vlidtion d'un oservteur cscde pour l MAS sns cpteurs mécniques sur l plte-forme d'essi de l'irccyn Mlek GHANES, Alin GLUMINEAU et Roert BOISLIVEAU Le 1 vril IRCCyN: Institut de Recherche

Plus en détail

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE

ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 jen-pierre.dedieu@mth.univ-toulouse.fr jen-pierre.rymond@mth.univ-toulouse.fr

Plus en détail