Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette

Dimension: px
Commencer à balayer dès la page:

Download "Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette"

Transcription

1 Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1

2 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon Monsieur X

3 Où sommes-nous sur la carte des STIC? Théorie de Shannon Théorèmes de codage Théorie de l Information Théorie de l Information Quantique Sciences de l Information Informatique Théorie de l Estimation Interaction? Codages pratiques (normes) Technologies de l Information Composants 3

4 Une classification des signaux La dimension temps Signaux à temps continu (TC) Signaux à temps discret (TD) La dimension amplitude Signaux continus Signaux discrets 4

5 Théorème d échantillonnage Théorème 1 [Shannon Nyquist Küpfmüller] Hyp: signaux à support spectral fini, continus ou discrets. Concl: signaux à temps continus signaux à temps discrets, pourvu que Dém: [Shannon1949], Communication in the presence of noise. 5

6 A propos des théorèmes de codage Ce qu offre un théorème de codage Partie atteignabilité (démonstration souvent constructive): existence d un bon code, idées et concepts de codage Partie réciproque: performances ultimes du système de compression/transmission Démonstration Quasi-totalité des théorèmes pour les signaux à temps discret Plus difficile pour les signaux discrets Si le cas discret est disponible, on peut généralement en déduire le cas continu (au moins gaussien) Constante de temps! 6

7 Compression sans Pertes 7

8 Deux types de compression Signaux discrets Signaux continus (ex: gaussiens) toujours des pertes 8

9 Débit critique? Entropie d une variable aléatoire discrète et scalaire Remarque: approche de l ingénieur (sémantique, affectif, ). 9

10 Définitions Source et taux de codage (source) Message binaire de longueur 10

11 Théorème CS sans pertes (CSSP) Théorème 2 [Shannon1948 Cover1991] Hyp: source discrète X d alphabet et sans mémoire, soit ε>0. Concl: (i) il existe un code sans préfixe dont le taux de codage est aussi proche du taux critique (l entropie) que l on veut: (ii) tout code dont le taux de codage excède le taux critique ne peut avoir une erreur de reconstruction évanescente Dém: [Shannon1948], A mathematical theory of communications, [Cover1991], Elements of information theory. Idée fondamentale: séquences typiques. LGN x souvent typique 11

12 Grandes lignes de la démonstration Démonstration de l atteignabilité Idée 1: n grand Idée 2: séquence très probable mot court 12

13 CSSP: à la recherche du Graal (1) Codage de Huffman [Huffman1952] Normes: fax, JPEG, HDTV, MP3, Idée du codage (cas scalaire) Propriétés Code sans préfixe Le taux de codage converge vers l entropie FIN DE LA QUETE??? hyperbolique Inconvénients Il faut connaître la distribution de la source Cas des sources binaires Complexité exponentielle en n Remarque: Idées 1 et 2 exploitées 13

14 CSSP: à la recherche du Graal (2) Codage arithmétique [Rissanen1979] Normes: JPEG, H263, Idée du codage (cas scalaire) Représenter une séquence par un réel Associer à ce réel un intervalle de [0,1] dont la longueur est proportionnelle à la probabilité de la séquence Faire une partition de [0,1] à partir de la distribution de la source Caractéristiques Le taux de codage converge vers l entropie Adaptatif (peut apprendre en ligne la distribution de la source et accommoder une source variable). Codage incrémental. Facile à prendre en compte la mémoire de la source. En pratique, meilleures performances que le codage de Huffman Source binaire: OK, particulièrement simple à faire Inconvénients: Complexité Brevets 14

15 CSSP: à la recherche du Graal (3) Plus généralement: autres codages universels [LZ77, LZ78, LZW] Normes: les fameux.zip But: pouvoir être utilisé pour toutes les sources Représenter une séquence par un réel Associer à ce réel un intervalle de [0,1] dont la longueur est proportionnelle à la probabilité de la séquence Faire une partition de [0,1] à partir de la distribution de la source Principe Mettre des séparateurs dans les chaînes de données Remplacer une chaîne par un pointeur Propriété Le taux de codage converge vers l entropie Dictionnaire adaptatif Inconvénients Ignore d éventuels a priori sur la source Optimum pour une classe de machine à états (ex: stationnaire et ergodique) 15

16 Transmission des Signaux 16

17 Rappel du contexte (avant 1948) Codage à répétition Probabilité d erreur Rendement informatif Codage de Hamming Rendement informatif: Probabilité d erreur: ne tend pas vers 0 car elle est déterminée par la distribution des distances de Hamming entre mots, dominée par la distance minimale. Or d min = 3 donc le décodeur ne peut pas corriger plus d une erreur par mot. 17

18 Définitions Canal et taux de codage [Shannon1948] BLER sans mémoire sans retour d info 18

19 Information mutuelle Définition (variables discrètes et scalaires) Lien avec l entropie 19

20 Théorème du codage canal Théorème 3 [Shannon1948 Cover1991] Hyp: canal discret sans mémoire et sans retour d information. On définit Concl: (i) il existe un code de taux de codage R < C dont la probabilité d erreur est évanescente; (ii) le taux de codage de tout code dont la probabilité d erreur est évanescente vérifie nécessairement R C. Dém: [Shannon1949], Communication in the presence of noise, [Cover1991], Elements of information theory. Atteignabilité par typicité conjointe, réciproque par Fano. Idée 1: mettre de la redondance Idée 2: mots longs Idée 3: codage aléatoire (iid et dico variable, la structure importe peu!). 20

21 Retrouvons la capacité du CBS (1/2) Canal binaire symétrique Observation sur le codage à répétition (cas du rendement 1/3) Contenu de la boule de centre 000 et de 111 rayon NB: pas d intersection entre les boules Contenu de la boule de centre 111 et de rayon 1. 21

22 Retrouvons la capacité du CBS (2/2) Empilement de sphères Visualisation Volume d une boule dans {0,1} n Approximation du terme dominant pour n grand Rayon d une boule de bruit Nombre maximal de message distincts (M) 22

23 Capacité de canal pour des modèles très usités Canal binaire symétrique (CBS) Canal à effacement binaire (CEB) Canal gaussien (BBAG) 23

24 Turbo-codage et turbo-décodage [Berrou93] Principaux ingrédients * Mots de code longs * Echange d information souple au décodeur * Complexité maîtrisée (2 codeurs simples au lieu d un compliqué). 24

25 Performances des turbo-codes BER Hypothèses Modulation BPSK Rendement du codeur: ½ Limite de Shannon à 0 db Canal gaussien 0.7 db Un concept générateur d idées Turbo-estimation Turbo-détection Turbo-égalisation Réveil des LDPC SNR 25

26 Codes de contrôle de parité à faible densité LDPC Inventeurs Gallager 1962 Redécouverts par MacKay 1995 Ingrédients Mots longs Immitent le codage aléatoire Information souple Turbo vs LDPC? Out of scope Voir par exemple: 26

27 Compression avec Pertes 27

28 Théorèmes de CS avec pertes Théorème pour les sources discrètes [Shannon1959] Hyp: soit X une source discrète i.i.d et sa représentation approchée Concl: la fonction taux distorsion est donnée par Théorème pour les sources gaussiennes [Shannon1959] Hyp: et Théorie Modèle source Critère (plus arbitraire) Concl: 28

29 Étude (hypercompressée!) du cas JPEG 29

30 Principales étapes Etapes Transformée DCT sur des blocs Quantification Codage RLE Codage entropique 30

31 Zoom sur un bloc Théorie taux distorsion: quantification scalaire vs vectorielle 0,255 bit/symbole 1,53 db «Vide» Pb: sensibilité aux erreurs théorème de séparation! 31

32 Meilleure amie et pire ennemie Uniformité spatiale Uniformité fréquentielle 32

33 Ouverture (fermeture) 1/2 Codage de source canal conjoint Compression robuste aux erreurs de transmission Analogique vs numérique Multi-terminal Capacité pour d autres modèles de canaux point à point Canaux variables dans le temps (sélectivité temporelle) Canaux sélectifs en fréquence Canaux à entrées et sorties vectorielles Connaissance imparfaite du canal au récepteur et/ou l émetteur Autres problèmes Capacité zéro-erreur [Shannon1956] 33

34 Ouverture (fermeture) 2/2 Canaux multi-terminaux: problèmes ouverts! Canal de diffusion [Cover1972] Canal à relais [Cover1979] Canal à interférence Une théorie de l information pour les réseaux unifiée Sécurité de l information [Shannon1949]: une nouvelle forme de cryptographie Evolution des approches Approche classique: lien entre l énergie et l information Nouvelle approches: limite ultime de la quantité d information par élément de volume de matière? Théorie de l information quantique 34

35 Quelques références passionnantes Articles et livres Articles de C. Shannon T. Cover and J. Thomas, Elements of information theory S. Mallat, A wavelet tour of signal processing S. Verdú and S. McLaughlin, Information theory: 50 years of discovery ET BIEN SÛR: R. MacDonald, Compresser, transporter et retrouver vos boeufs avec un nombre de cornes perdues arbitrairement petit 35

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34

Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34 Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second

Plus en détail

Introduction générale au codage de canal

Introduction générale au codage de canal Codage de canal et turbo-codes 15/9/2 1/7 Introduction générale au codage de canal Table des matières Table des matières... 1 Table des figures... 1 1. Introduction... 2 2. Notion de message numérique...

Plus en détail

D.I.I.C. 3 - INC Module COMV - Contrôle 1

D.I.I.C. 3 - INC Module COMV - Contrôle 1 Université de Rennes 1 année 2009-2010 I.F.S.I.C. 11 Décembre 2009 D.I.I.C. 3 - INC Module COMV - Contrôle 1 cours d Olivier LE MEUR Durée : 2 heures Documents autorisés : documents des cours, TD et TP,

Plus en détail

Communications numériques

Communications numériques Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale

Plus en détail

Théorie de l information

Théorie de l information Théorie de l information Exercices Dpt. Génie Electrique Théorie de l information T. Grenier Exercices A Exercice n A. Dans un processus d'automatisation, une source génère de façon indépendante quatre

Plus en détail

Quelques clés pour approcher la théorie de l information selon Claude Shannon. Philippe Picard, le 26/04/2010 Page 1

Quelques clés pour approcher la théorie de l information selon Claude Shannon. Philippe Picard, le 26/04/2010 Page 1 Quelques clés pour approcher la théorie de l information selon Claude Shannon Philippe Picard, le 26/04/2010 Page 1 Avant propos La théorie de l information, sans faire appel - du moins dans ses théorèmes

Plus en détail

Le Constellation ti Shaping dans les Systèmes Modernes de Communications Numériques

Le Constellation ti Shaping dans les Systèmes Modernes de Communications Numériques Le Constellation ti Shaping dans les Systèmes Modernes de Communications Numériques Stéphane Le Goff School of EECE Université de Newcastle upon Tyne Supélec Rennes er avril 2 L application du constellation

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes CNRS SUPÉLEC UPS SUPÉLEC, Plateau de Moulon, 91192 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

Laboratoire Codage de Canal

Laboratoire Codage de Canal 1 BUT D U LAB OR ATO IRE Le but de ce laboratoire est d étudier la notion de codage de canal. Le codage de canal consiste en une signature que l on ajoute sur tout paquet d information à transmettre. Cela

Plus en détail

Ch. 2 : Emetteur en Bande de Base

Ch. 2 : Emetteur en Bande de Base Ch. 2 : Emetteur en Bande de Base 1 1) Les codes en ligne 1-1) Principe des codes en ligne Codes en ligne binaire On suppose que le message numérique est constitué d une suite d éléments binaires α k,

Plus en détail

Initiation à la théorie de l information (Claude Shannon 1948)

Initiation à la théorie de l information (Claude Shannon 1948) Initiation à la théorie de l information (Claude Shannon 1948) Emergence Paris - Santacafé Philippe Picard, le 26/04/2006 Page 1 Avant propos La théorie de l information, sans faire appel - du moins dans

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

Compression d images et de vidéo: pourquoi, comment? Aline ROUMY Chercheur, INRIA Rennes

Compression d images et de vidéo: pourquoi, comment? Aline ROUMY Chercheur, INRIA Rennes Compression d images et de vidéo: pourquoi, comment? Aline ROUMY Chercheur, INRIA Rennes Octobre 2014 SOMMAIRE 1. Pourquoi compresser une vidéo? 2. Comment compresser? 3. Compression avec pertes 4. Compression

Plus en détail

Compression numérique. Image fixe (et vidéo)

Compression numérique. Image fixe (et vidéo) Compression numérique Image fixe (et vidéo) 1 Contexte Codage ou compression des images numériques Réduc:on de la quan:té d éléments binaires représentant l informa:on (image, vidéo) Taux de comp. = Qté

Plus en détail

Chapitre 2 : communications numériques.

Chapitre 2 : communications numériques. Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés

Plus en détail

TELEVISION NUMERIQUE

TELEVISION NUMERIQUE REPUBLIQUE DU CAMEROUN Paix - Travail Patrie --------------------- UNIVERSITE DE YAOUNDE I ---------------------- ECOLE NATIONALE SUPERIEURE POLYTECHNIQUE ---------------------- REPUBLIC OF CAMEROUN Peace

Plus en détail

CODEC. (Compression / Décompression) William PUECH Université Montpellier II IUT Béziers 1/66

CODEC. (Compression / Décompression) William PUECH Université Montpellier II IUT Béziers 1/66 CODEC Codage / Décodage (Compression / Décompression) William PUECH Université Montpellier II IUT Béziers 1/66 Introduction Transmission analogique : le procédé reproduit la forme même du signal que l'on

Plus en détail

UV Théorie de l Information. Codes à longueur variable

UV Théorie de l Information. Codes à longueur variable Cours n 5 : UV Théorie de l Information Compression de l information : Codage de source sans distorsion Ex 1 : Code de Shannon Fano Ex 2 : Code de Huffman Ex 3 : Codage par plage Ex 4 : Codage de Lempel

Plus en détail

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph

Principes généraux de codage entropique d'une source. Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Principes généraux de codage entropique d'une source Cours : Compression d'images Master II: IASIG Dr. Mvogo Ngono Joseph Table des matières Objectifs 5 Introduction 7 I - Entropie d'une source 9 II -

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

Université de La Rochelle. Réseaux TD n 6

Université de La Rochelle. Réseaux TD n 6 Réseaux TD n 6 Rappels : Théorème de Nyquist (ligne non bruitée) : Dmax = 2H log 2 V Théorème de Shannon (ligne bruitée) : C = H log 2 (1+ S/B) Relation entre débit binaire et rapidité de modulation :

Plus en détail

INF4420: Sécurité Informatique Cryptographie I

INF4420: Sécurité Informatique Cryptographie I INF4420: Cryptographie I José M. Fernandez M-3109 340-4711 poste 5433 Aperçu du module Cryptographie (3 sem.) Définitions et histoire Notions de base (théorie de l'information) Chiffrement Méthodes "classiques"

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Quantification Vectorielle

Quantification Vectorielle Quantification Vectorielle Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 14 Décembre 2012 M. Cagnazzo Quantification Vectorielle 1/65 Plan Introduction 1 Introduction

Plus en détail

Techniques de Codage pour la Sécurité Couche Physique

Techniques de Codage pour la Sécurité Couche Physique Techniques de Codage pour la Sécurité Couche Physique LAURA LUZZI SÉMINAIRE ETIS 4 FÉVRIER 2014 Laura Luzzi Codage pour la Sécurité Couche Physique 1 Plan 1 Introduction : sécurité couche physique 2 Canaux

Plus en détail

Chaine de transmission

Chaine de transmission Chaine de transmission Chaine de transmission 1. analogiques à l origine 2. convertis en signaux binaires Échantillonnage + quantification + codage 3. brassage des signaux binaires Multiplexage 4. séparation

Plus en détail

Transmission d informations sur le réseau électrique

Transmission d informations sur le réseau électrique Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en

Plus en détail

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés I Introduction On cherche à moduler des données binaires dans le but de les transmettre sur des canaux vocodés. Afin de transmettre

Plus en détail

Réseaux Multimédia 2002 Damien Magoni

Réseaux Multimédia 2002 Damien Magoni Réseaux Multimédia 2002 Damien Magoni Toutes les illustrations 2001 Pearson Education Limited Fred Halsall Contenu Représentation des informations multimédia Numérisation Structure d un encodeur Structure

Plus en détail

Théorie de l information et codage pour les canaux de Rayleigh MIMO

Théorie de l information et codage pour les canaux de Rayleigh MIMO Théorie de l information et codage pour les canaux de Rayleigh MIMO Philippe Ciblat École Nationale Supérieure des Télécommunications, Paris, France Plan 1 Canal de Rayleigh Modèle Diversité Système MIMO

Plus en détail

Table des matières. Avant-propos... 11

Table des matières. Avant-propos... 11 Table des matières Avant-propos... 11 Introduction..................................... Chapitre 1. Introduction à la théorie de l information... 17 1.1. Introduction..................................

Plus en détail

Quantification Scalaire et Prédictive

Quantification Scalaire et Prédictive Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction

Plus en détail

Codage canal. Décodage canal

Codage canal. Décodage canal Système de communications (TNT, 3G, WIFI, ) source Codage source Codage canal Emetteur Modulateur Canal bruit utilisateur Décodage Source Décodage canal Récepteur Démodulateur Source : parole, musique,

Plus en détail

Compression d images format JPEG

Compression d images format JPEG Compression d images format JPEG 1) Introduction (système de compression, les normes) 2) Formats des images (les couleurs, formats 4:2:0, QCIF ) 3) JPEG (schéma de codage, modes de fonctionnement) D après

Plus en détail

Compression d images. Frédéric Dufaux. 26 janvier 2011. Département Traitement du Signal et des Images TELECOM ParisTech. Compression. F.

Compression d images. Frédéric Dufaux. 26 janvier 2011. Département Traitement du Signal et des Images TELECOM ParisTech. Compression. F. d images Frédéric Dufaux Département Traitement du Signal et des Images TELECOM ParisTech 26 janvier 2011 1 / 91 Plan 1 sur la compression d images 2 Quantification 3 4 Codage par Transformée 5 2 / 91

Plus en détail

Le concept cellulaire

Le concept cellulaire Le concept cellulaire X. Lagrange Télécom Bretagne 21 Mars 2014 X. Lagrange (Télécom Bretagne) Le concept cellulaire 21/03/14 1 / 57 Introduction : Objectif du cours Soit un opérateur qui dispose d une

Plus en détail

Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 24 juin - 13h30 à 15h00

Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 24 juin - 13h30 à 15h00 Communications Numériques et Théorie de l Information Contrôle de Connaissances avec documents Mardi 4 juin - 13h30 à 15h00 Système de télérelevage par satellite On se propose d étudier le fonctionnement

Plus en détail

ENSIL Troisième Année ELT

ENSIL Troisième Année ELT IFORMATIQUE APPLIQUEE TD1 Dans le cadre de ces TD, nous procédons à la simulation d'un système de télécommunication numérique. Cette opération va nous permettre d'étudier la performance du système sous

Plus en détail

Expérience 3 Formats de signalisation binaire

Expérience 3 Formats de signalisation binaire Expérience 3 Formats de signalisation binaire Introduction Procédures Effectuez les commandes suivantes: >> xhost nat >> rlogin nat >> setenv DISPLAY machine:0 >> setenv MATLABPATH /gel/usr/telecom/comm_tbx

Plus en détail

Les codes Pseudo-Aléatoires et leurs applications

Les codes Pseudo-Aléatoires et leurs applications Les codes Pseudo-Aléatoires et leurs applications A) Les codes Pseudo-Aléaoires B) Les Applications : I. Etalement de spectre, II. Cryptage et chiffrement III. Brouillage numérique A) Les codes Pseudo-aléatoires

Plus en détail

Codage hiérarchique et multirésolution (JPEG 2000) Codage Vidéo. Représentation de la couleur. Codage canal et codes correcteurs d erreur

Codage hiérarchique et multirésolution (JPEG 2000) Codage Vidéo. Représentation de la couleur. Codage canal et codes correcteurs d erreur Codage hiérarchique et multirésolution (JPEG 000) Codage Vidéo Représentation de la couleur Codage canal et codes correcteurs d erreur Format vectoriel (SVG - Scalable Vector Graphics) Organisation de

Plus en détail

Les techniques de multiplexage

Les techniques de multiplexage Les techniques de multiplexage 1 Le multiplexage et démultiplexage En effet, à partir du moment où plusieurs utilisateurs se partagent un seul support de transmission, il est nécessaire de définir le principe

Plus en détail

Enseignement (M21) «Numérisation des signaux audio-vidéo, compression et stockage» Cours 1/4

Enseignement (M21) «Numérisation des signaux audio-vidéo, compression et stockage» Cours 1/4 Enseignement (M21) «Numérisation des signaux audio-vidéo, compression et stockage» Cours 1/4 Cette matière fait partie du module M3.21 «Culture scientifique et traitement de l information» (4CM, 2TD, 3TP)

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Chapitre 5 LA COMPRESSION DES IMAGES NUMÉRIQUES

Chapitre 5 LA COMPRESSION DES IMAGES NUMÉRIQUES Chapitre 5 LA COMPRESSION DES IMAGES NUMÉRIQUES 91 PROBLÈMES TRANSMISSION / STOCKAGE Problèmes : Non compressée (c est-à-dire sous forme d un fichier BMP par exemple), une image couleur (en RVB) haute

Plus en détail

Plan du cours. Cours de Traitement Du Signal - Transformées discrètes. Transformée de Fourier d un signal numérique. Introduction

Plan du cours. Cours de Traitement Du Signal - Transformées discrètes. Transformée de Fourier d un signal numérique. Introduction Plan du cours Cours de raitement Du Signal - ransformées discrètes 1 guillaume.hiet@rennes.supelec.fr ESACA 17 octobre 2007 2 3 Guillaume HIE Cours de raitement Du Signal - ransformées discrètes 1/38 Guillaume

Plus en détail

Transmission de données. A) Principaux éléments intervenant dans la transmission

Transmission de données. A) Principaux éléments intervenant dans la transmission Page 1 / 7 A) Principaux éléments intervenant dans la transmission A.1 Equipement voisins Ordinateur ou terminal Ordinateur ou terminal Canal de transmission ETTD ETTD ETTD : Equipement Terminal de Traitement

Plus en détail

Intérêt du découpage en sous-bandes pour l analyse spectrale

Intérêt du découpage en sous-bandes pour l analyse spectrale Intérêt du découpage en sous-bandes pour l analyse spectrale David BONACCI Institut National Polytechnique de Toulouse (INP) École Nationale Supérieure d Électrotechnique, d Électronique, d Informatique,

Plus en détail

Organisation de journée

Organisation de journée Organisation de journée Introduction et principes généraux - contexte et définition des besoins - rappels en théorie de l information Compression sans pertes - codage entropique - codage par plage - algorithme

Plus en détail

Sommaire. Introduction au codage multimédia et la compression. Forme d un fichier. Introduction

Sommaire. Introduction au codage multimédia et la compression. Forme d un fichier. Introduction Sommaire au codage multimédia et la compression Sebastien.Kramm@univ-rouen.fr IUT SRC Rouen 2012-2013 Codage des images Format matriciel (bitmap) Codage du son Compression de données Compression avec pertes

Plus en détail

Compression d images dans des bases d ondelettes

Compression d images dans des bases d ondelettes MADA-ETI, ISSN -673, Vol.1, 1 www.madarevues.gov.mg Compression d images dans des bases d ondelettes Raotomalala M. A. 1, Raotondraina T. E., Raotomiraho S. 3 Laboratoire de Télécommunication, d Automatique,

Plus en détail

Partie 0: Rappel de communications numériques

Partie 0: Rappel de communications numériques Partie 0: Rappel de communications numériques Philippe Ciblat Télécom ParisTech, France Introduction (I) Sauf la radio, communications actuelles en numérique - GSM, 3G, TNT, Wifi - ADSL, - MP3, DVD Types

Plus en détail

Quatrième Conférence sur le Génie Electrique, le 03-04 Novembre2010, Université de Bechar, Algérie

Quatrième Conférence sur le Génie Electrique, le 03-04 Novembre2010, Université de Bechar, Algérie EVALUATION DES PERFORMANCES DES CODEURS D IMAGES DANS UN CANAL SANS FIL A. Moulay lakhdar 1, Mohammed Beladgham 1, Nasreddine Taleb 2, R. Méliani 2, M. Kandouci 2 1 Université de bechar, rue Kenadza. Béchar

Plus en détail

Chapitre 18 : Transmettre et stocker de l information

Chapitre 18 : Transmettre et stocker de l information Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant

Plus en détail

Bases du traitement des images. Transformée de Fourier Avancée - Numérisation

Bases du traitement des images. Transformée de Fourier Avancée - Numérisation Transformée de Fourier Avancée - Numérisation Nicolas Thome 6 octobre 2015 1 / 87 Outline 1 Numérisation Fenetrage Échantillonnage Quantification 2 2 / 87 Principe Du continu au discret Un signal continu

Plus en détail

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires

Chapitre 2 : Systèmes radio mobiles et concepts cellulaires Chapitre 2 : Systèmes radio mobiles et concepts cellulaires Systèmes cellulaires Réseaux cellulaires analogiques de 1ère génération : AMPS (USA), NMT(Scandinavie), TACS (RU)... Réseaux numériques de 2ème

Plus en détail

Sommaire. Communications numériques Introduction. Sommaire. Laurent Oudre laurent.oudre@univ-paris13.fr

Sommaire. Communications numériques Introduction. Sommaire. Laurent Oudre laurent.oudre@univ-paris13.fr Communications numériques Introduction Laurent Oudre laurent.oudre@univ-paris13.fr Université Paris 13, Institut Galilée Ecole d ingénieurs Sup Galilée Parcours Informatique et Réseaux Alternance - 2ème

Plus en détail

Traitement du signal et Applications cours 6

Traitement du signal et Applications cours 6 Traitement du signal et Applications cours 6 Master Technologies et Handicaps 1 ère année Philippe Foucher 1 Introduction Potentialités du traitement du signal sont énormes Mais traitement du signal n

Plus en détail

Théorie de l information et codage (Notes de cours)

Théorie de l information et codage (Notes de cours) Théorie de l information et codage (Notes de cours) Marie-Pierre Béal Nicolas Sendrier 2 novembre 202 Institut Gaspard Monge, Université de Marne-la-Vallée, 77454 Marne-la-Vallée Cedex 2, France. beal@univ-mlv.fr.

Plus en détail

La représentation des réels en machine nécessite de choisir la taille mémoire : souvent 4 octets ou 8 octets, des fois 16 octets.

La représentation des réels en machine nécessite de choisir la taille mémoire : souvent 4 octets ou 8 octets, des fois 16 octets. Conclusion La représentation des réels en machine nécessite de choisir la taille mémoire : souvent 4 octets ou 8 octets, des fois 16 octets. Les nombres réels représentables en machine sont en nombre fini,

Plus en détail

Université Montpellier II. Bibliographie sur le cours UMSIE115

Université Montpellier II. Bibliographie sur le cours UMSIE115 Bibliographie sur le cours UMSIE115 Auteurs Titre Editeur D. BATTU Télécommunications, Principes, Infrastructures et services Dunod Informatiques P. LECOY Technologie des Télécoms Hermes C. SERVIN Télécoms

Plus en détail

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd

UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd abelaid@loria.fr http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le

Plus en détail

RESEAUX. Supports de transmission Câble coaxial. Supports de transmission Fibre optique. Supports de transmission. Supports de transmission

RESEAUX. Supports de transmission Câble coaxial. Supports de transmission Fibre optique. Supports de transmission. Supports de transmission RESEAUX Câble coaxial Cœur de cuivre Isolant Tresse conductrice Gaine protectrice isolante Bonne résistance aux bruits Support encombrant. Télévision et téléphone. 1 Base 2 (1MHz sur 2m) 1 Base 5 (1MHz

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

INTRODUCTION À LA THÉORIE DE L INFORMATION POUR LE CODAGE

INTRODUCTION À LA THÉORIE DE L INFORMATION POUR LE CODAGE INTRODUCTION À LA THÉORIE DE L INFORMATION POUR LE CODAGE Master Systèmes de Radiocommunications, année 2007. Version : 2.1. Samson LASAULCE lasaulce@lss.supelec.fr 2 Table des matières 1 Introduction.

Plus en détail

Plan de la présentation

Plan de la présentation Thomas Quang Khoi TA Équipe ETSN, Supélec, campus de Rennes Mitsubishi -TCL, Rennes 08 décembre 2003 1 Plan de la présentation 1- Codes produits, 2- Décodage itératif des codes produits : turbo codes en

Plus en détail

TI Traitement d'images Semaine 12 : Compression d'images Olivier Losson

TI Traitement d'images Semaine 12 : Compression d'images Olivier Losson TI Traitement d'images Semaine : Compression d'images Olivier Losson Master Informatique : http://www.fil.univ-lille.fr Spécialité IVI : http://master-ivi.univ-lille.fr Plan du cours Généralités sur la

Plus en détail

S. Zozor Information, inégalités et relations d incertitude

S. Zozor Information, inégalités et relations d incertitude Information, inégalités et relations d incertitude Steeve Zozor GIPSA-Lab CNRS Grenoble INP, Grenoble, France 17-21 Mai 2010 Plan du cours 1 Entropie mesure d incertitude Axiomes, entropie de Shannon et

Plus en détail

Modulations numériques 1

Modulations numériques 1 ENSA ECOLE NATIONALE DES SCIENCES APPLIQUEES D EL JADIDA DEPARTEMENT DE TELECOMMUNICATIONS Cours: T5 Communications numériques Présenté par Prof. Dr. A. Berraissoul Cycle Ingénieur 2012/2013 2 Cours: T

Plus en détail

1-p. 1-p. 1-p. 1-p. On se propose d'utiliser ce canal pour transmettre le contenu d'une source binaire S.

1-p. 1-p. 1-p. 1-p. On se propose d'utiliser ce canal pour transmettre le contenu d'une source binaire S. EXERCICES EXERCICE On considère le canal à uatre entrées et cin sorties: A B C D - - - - A B E C D. Montrer ue ce canal est symétriue. 2. Calculer sa caacité. On se roose d'utiliser ce canal our transmettre

Plus en détail

Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO

Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO Systèmes MIMO OSTBCB pour le standard IEEE802.16 Doctorante: Patricia ARMANDO 04/11/08 Sommaire Présentation du standard IEEE802.16 Option MIMO Présentation du code OSTBCB Modulations : OFDM SC Détection

Plus en détail

Compression des images hyperspectrales et son impact sur la qualité des données

Compression des images hyperspectrales et son impact sur la qualité des données Hyperspectral QI Compression Flexibilité Conclusion Compression des images hyperspectrales et son impact sur la qualité des données Emmanuel CHRISTOPHE Corinne Mailhes, Co-directrice de thèse, TéSA/IRIT

Plus en détail

Plan. Codes Correcteurs d Erreurs Les codes cycliques. Division Euclidienne. Définition. Exercice. Marc Chaumont. Exercice.

Plan. Codes Correcteurs d Erreurs Les codes cycliques. Division Euclidienne. Définition. Exercice. Marc Chaumont. Exercice. Plan Codes Correcteurs d Erreurs Les codes cycliques November 12, 2008 1 2 Définition Division Euclidienne Un polynôme à coefficients dans F 2 est une fonction de la forme P(X ) = a 0 + a 1 X + a 2 X 2

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

Information mutuelle et capacité

Information mutuelle et capacité Université d Aix-Marseille Cryptographie Semestre 2 Exercices et corrections pour le TP 2 2014 2015 Pour les fonctions pour ce cours, on lit Crypto.sage du site du cours. crypto = "http://iml.univ-mrs.fr/~kohel/crypto/"

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Support Vector Machines

Support Vector Machines Support Vector Machines Séparateurs à vaste marge Arnaud Revel revel.arnaud@gmail.com Plan 1 Introduction 2 Formalisation 3 Utilisation des noyaux 4 Cas multi-classes 5 Applications des SVM 6 Bibliographie

Plus en détail

Répétitions du Cours d Introduction aux Réseaux Informatiques Contrôles d erreur et de flux François Cantin Département Montefiore Research Unit in Networking Université de Liège Année académique 2008

Plus en détail

Codes correcteurs d erreurs

Codes correcteurs d erreurs Codes correcteurs d erreurs 1 Partie théorique 1.1 Définition Un code correcteur est une technique de codage de l information basée sur la redondance, qui vise à détecter et corriger des éventuelles erreurs

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail

Traitement Numérique de l Image

Traitement Numérique de l Image ESIAL 2A TRS - SIE Traitement Numérique de l Image Numérisation - Mémorisation (MdC 6ème Section) Centre de Recherche en Automatique de Nancy -UMR CNRS 7039- Équipe : SYstèMes de Production Ambiants E.R.T.

Plus en détail

COMMUNICATIONS NUMERIQUES INTRA VEHICULE : CARACTERISATION DES BRUITS ET DES INTERFERENCES

COMMUNICATIONS NUMERIQUES INTRA VEHICULE : CARACTERISATION DES BRUITS ET DES INTERFERENCES COMMUNICATIONS NUMERIQUES INTRA VEHICULE : CARACTERISATION DES BRUITS ET DES INTERFERENCES Virginie DEGARDIN*, Marc HEDDEBAUT**, Martine LIENARD*, Virginie DENIAU** et Pierre DEGAUQUE* (*): Université

Plus en détail

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques

Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les ordinateurs dispositifs électroniques fonctionnant sur la principe de création, transmission et conversion d impulses électriques Les informations traitées par l ordinateur (nombres, instructions,

Plus en détail

Quelques points de traitement du signal

Quelques points de traitement du signal Quelques points de traitement du signal Introduction: de la mesure au traitement Source(s) BRUIT BRUIT Système d acquisition Amplitude (Pa) Temps (s) Amplitude (Pa) Mesure Opérations mathématiques appliquées

Plus en détail

Internet et Multimédia Exercices: flux multimédia

Internet et Multimédia Exercices: flux multimédia Internet et Multimédia Exercices: flux multimédia P. Bakowski bako@ieee.org Applications et flux multi-média média applications transport P. Bakowski 2 Applications et flux multi-média média applications

Plus en détail

Master 1 Informatique MIF11 - Réseau Codage et éléments de théorie de l'information

Master 1 Informatique MIF11 - Réseau Codage et éléments de théorie de l'information Master 1 Informatique MIF11 - Réseau Codage et éléments de théorie de l'information Florent Dupont Université Claude Bernard Lyon1 / Laboratoire LIRIS Florent.Dupont@liris.cnrs.fr http://liris.cnrs.fr/florent.dupont

Plus en détail

Introduction aux réseaux mobiles

Introduction aux réseaux mobiles Mooc Introduction aux réseaux mobiles Mooc Supports de cours Année 2014 Xavier Lagrange, Alexander Pelov, Gwendal Simon Table des matières Semaines 4-5 : Le concept cellulaire..............................

Plus en détail

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours

GEL-7064 : Théorie et pratique des codes correcteurs Codes cycliques Notes de cours linéaires GEL-7064 : Théorie et pratique des codes correcteurs Notes de cours Département de génie électrique et de génie informatique Université Laval jean-yves.chouinard@gel.ulaval.ca 12 février 2013

Plus en détail

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4.

codage correcteur d erreurs convolutionnel 1. Définition...2 2. représentation en treillis...3 3. Décodage : algorithme de Viterbi...3 4. codage correcteur d erreurs convolutionnel. éfinition.... représentation en treillis...3 3. écodage : algorithme de Viterbi...3 4. istance libre...5 5. iagramme d état. Fonction de transfert...5 6. écodage

Plus en détail

Systèmes de communications numériques 2

Systèmes de communications numériques 2 Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette ciuciu@lss.supelec.fr Université

Plus en détail

GEF 411A Théorie de Communication. Modulation. Partie V

GEF 411A Théorie de Communication. Modulation. Partie V ELG 4571 Systèmes de télécommunications GEF 411A Théorie de Communication GELE 4521 Télécommunications Modulation Partie V J.-Y. Chouinard/M. Hefnawi/Y. Bouslimani ELG-4571 Systèmes de télécommunications/gef

Plus en détail

COURS ELE112 BASES DE COMMUNICATIONS NUMERIQUES. Didier LE RUYET. Département Electronique Automatique et Systèmes (EASY) CNAM Paris

COURS ELE112 BASES DE COMMUNICATIONS NUMERIQUES. Didier LE RUYET. Département Electronique Automatique et Systèmes (EASY) CNAM Paris . COURS ELE112 BASES DE COMMUNICATIONS NUMERIQUES Didier LE RUYET Département Electronique Automatique et Systèmes (EASY) CNAM Paris didier.le_ruyet@cnam.fr 1 PROGRAMME Cours 1 : Introduction, paradigme

Plus en détail

Estimation et compensation en mouvement pour codage vidéo

Estimation et compensation en mouvement pour codage vidéo Groupe des Ecoles des Télécommunications Institut National des Télécommunications Estimation et compensation en mouvement pour codage vidéo MEP, 2006 Marius Preda Unité de Projets ARTEMIS Advanced Research

Plus en détail

Technique de codage des formes d'ondes

Technique de codage des formes d'ondes Technique de codage des formes d'ondes Contenu Introduction Conditions préalables Conditions requises Composants utilisés Conventions Modulation par impulsions et codage Filtrage Échantillon Numérisez

Plus en détail

Synchronisation trame et estimation de phase aveugles pour les systèmes codés

Synchronisation trame et estimation de phase aveugles pour les systèmes codés Synchronisation trame et estimation de phase aveugles pour les systèmes codés Département Signal et Communications Encadrants: Sébastien Houcke Catherine Douillard Directeur de thèse: Ramesh Pyndiah Introduction

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Formats d images. 1 Introduction

Formats d images. 1 Introduction Formats d images 1 Introduction Lorsque nous utilisons un ordinateur ou un smartphone l écran constitue un élément principal de l interaction avec la machine. Les images sont donc au cœur de l utilisation

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Commentaires Examen TS219 Codage Canal 2011-2012

Commentaires Examen TS219 Codage Canal 2011-2012 Commentaires Examen TS219 Codage Canal ENSEIRB-MATMECA / T2 2011-2012 Évolution de la moyenne à l examen de TS219 16 14 12 10 8 6 4 2 0 MOYENNE : 5,5 Moyenne TS219 Questions de cours Codage Questions n

Plus en détail