L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.

Dimension: px
Commencer à balayer dès la page:

Download "L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états."

Transcription

1 ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie cette grndeur un signl inire (0,) en fixnt des seuils, le pssge d'un seuil crctérise le pssge de l'étt à O et réciproquement. Pour éviter les miguïtés on définit souvent une zone dns lquelle ucun étt logique n'est défini. 0 seuil2 seuil ignl logique informtion img ignl réel informtion sourc On peut ssocier insi à un grnd nomre de phénomènes physique un étt logique (porte ouverte/fermée; voynt écliré/éteint;...). On ssocie générlement à l étt logique l sitution ctionné du composnt. 2. Convention élément d'informtion (outons et détecteurs) Contct étlissement de Contct à coupure de Circuit circuit étt physique ctionné Non ctionné ctionné Non ctionné étt électrique pssnt Non pssnt Non pssnt Pssnt étt logique 0 0 Exemple Interrupteur Le cournt psse s'il est ctionné ctionneurs ctionneur étt physique en fonction ne fonctionne ps étt logique 0 poussoir de réfrigérteur (pssnt lorsque l porte est ouverte, le contct est non ctionné). 3. Algère de Boole L'lgère de BOOLE ou lgère logique est l'lgère définie pour des vriles ne pouvnt prendre que deux étts. 4. Opérteurs logiques fondmentux On distingue l opérteur identité ou opérteur OUI, l opérteur complémenttion (opérteur NON), l somme logique (opérteur OU) et le produit logique (opérteur ET) ) Opérteur OUI L opérteur OUI ou opérteur identité f()= f() /0/03 ystèmes logiques pge /5

2 ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot NON ET OU propriétés de l complémenttio n f ( ) = ( rre ou non ) =0 et 0= d'où l propriété d'involution = 0.0=0.0=0 0.=0.= Propriétés du produit logique.0=0.=.=. = 0 0+0=0 +0= += 0+= Propriétés de l somme logique 0+= += += += 5. Propriétés des opérteurs logiques Commuttivité, ssocitivité, distriutivité Le produit et l somme logique sont commuttifs et ssocitifs. Propriétés cominées de l somme et du produit +.= propriété d'sorption +.=+ +.c=(+).(+c) distriutivité de l somme / produit Vérifier les propriétés précédentes vec l tle de vérité 6. Théorème de De Morgn - Le complément d'un produit est égl à l somme des compléments des termes du produit. =. =.=+ 2- Le complément d'une somme est égl u produit des compléments des termes de l somme. =+ =+ =. B. pécifiction d'un fonction ooléenne:. Tle de vérité Une tle de vérité permet de décrire le fonctionnement d'un système comintoire, l'étt de chque entrée est représenté pr s vleur logique, de même pour les sorties. Il est possile de déterminer l'éqution de fonctionnement en recherchnt toutes les vleurs pour lesquelles l sortie= L'éqution de fonctionnement est égle à l somme logique de toutes les cominisons pour lesquelles l sortie vut. 2. Fonctions logiques de se à 2 vriles ) Fonctions fondmentles 28/0/03 ystèmes logiques pge 2/5

3 ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot OUI NON ET OU Amplifiction Inversion logique Produit logique omme logique églité Complémenttion = = = ET & = + OU utilistion d un contct NC X Contcts en série contcts en prllèle x Utilistion d un relis ) Autres fonctions NAND NOR OUX NON OUX Inhiition Non ET Non OU OU exclusif identité = = + = + = = = + = = + = & = = & 28/0/03 ystèmes logiques pge 3/5

4 ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot v et vient Tout fonctionnement peut être décrit en utilisnt les fonctions logiques de se. Et, OU, OUI, et NON *Les fonctions NAND, NOR, OUX sont des fonctions universelles, c est à dire que l on peut réliser vec chcune de ces fonctions toutes les utres fonctions. Ces fonctions sont principlement utilisées en technologie électronique (circuits intégrés) pour optimiser les circuits ( seul type de composnt pour toutes les fonctions). 3. Exercices ) Eclirge intérieur utomoile L lumière intérieure d'un véhicule s'éclire si une des deux portes vnts est ouverte (cpteurs pd et pg à coupure de circuit) ou si l'interrupteur du plfonnier est ppuyé. ) Décrire le fonctionnement pr une tle de vérité. 2) Déterminer l'éqution. 3) Etlir le schém électrique. 4) Etlir le schém logique. ) Fonctions universelles. Donner le schém logique des fonctions NON, ET, OU à l ide de fonction NAND et NOR. 4. Représenttion des fonctions logiques à l'ide d'un chronogrmme Un chronogrmme est un grphique sur lequel on représente l'évolution des différentes vriles en fonction du temps. Fonction ET Fonction OU t t C. Techniques de simplifiction élémentire. Utilistion des propriétés des fonctions logiques Utilistion des règles de l'lgère de Boole 2. Tleu de Krnugh Un tleu de Krnugh est un tleu dns le quel on regroupe tous les étts des sorties d un système n (un tleu pr sorties). Ce tleu comporte 2 cellules vec n n de vriles d entrées du système. on indique ussi les étts qui ne correspondent ps à un fonctionnement du système (étt incomptile) 28/0/03 ystèmes logiques pge 4/5

5 ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot 3. Exemple: description du fonctionnement d'un système à l'ide d'une tle de vérité - utilistion du tleu de KARNAUGH. Le niveu d'une cuve est contrôlé pr 2 cpteurs de niveu (n, nh) et 2 cpteurs de tempérture (th, t). Une vnne permet le remplissge tnt que le niveu hut n'est ps tteint. Une résistnce chuffnte ssure le chuffge jusqu à l tempérture mximle. une sécurité de fonctionnement interdit le chuffge si le niveu s est tteint, de même le remplissge est rrêté si l tempérture minimle est tteinte. Les cpteurs de niveu sont à l'étt logique lorsque l'eu est présente devnt le cpteur. Les cpteurs de tempérture sont à l'étt logique si l tempérture est supérieure à l tempérture à détecter. Décrire le fonctionnement pr une tle de vérité. Déterminer les équtions de fonctionnement. 28/0/03 ystèmes logiques pge 5/5

STI2D Logique binaire SIN. L' Algèbre de BOOLE

STI2D Logique binaire SIN. L' Algèbre de BOOLE L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.

Plus en détail

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE

3 LES OUTILS DE DESCRIPTION D UNE FONCTION LOGIQUE 1GEN ciences et Techniques Industrielles Pge 1 sur 7 Automtique et Informtiques Appliquées Génie Énergétique Première 1 - LA VARIABLE BINAIRE L électrotechnique, l électronique et l mécnique étudient et

Plus en détail

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE

SYSTEMES LOGIQUES LOGIQUE COMBINATOIRE Ch.I Commnde des systèmes logiques ogique comintoire - p1 SYSTEMES OGIQUES OGIQUE COMBINATOIRE I Commnde des systèmes logiques 1. Structure des systèmes utomtisés Reprenons l structure étlie dns le cours

Plus en détail

CAP PRO E SCHEMA : LE MOTEUR

CAP PRO E SCHEMA : LE MOTEUR CAP PRO E SCHEMA : E MOTEUR folio folio folio folio folio folio folio 7 folio 8 folio 9 plque signlétique d un moteur puissnce sorée pr un moteur plque à ornes d un moteur triphsé e couplge étoile e couplge

Plus en détail

Les langages de programmations.

Les langages de programmations. Communiction technique: L utomte progrmmle industriel (les lngges) Leçon Les lngges de progrmmtions. Introduction : L écriture d un progrmme consiste à créer une liste d instructions permettnt l exécution

Plus en détail

Systèmes logiques combinatoires

Systèmes logiques combinatoires «'enseignement devrit être insi : celui qui le reçoit le recueille comme un don inestimle mis jmis comme une contrinte pénile.» Alert Einstein Systèmes logiques comintoires Définitions. es vriles inires

Plus en détail

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1

2.1 Comment implanter en C un reconnaisseur de mots? Aut2 q 0 q 1 Lngges Automtes Non-déterminisme Grmmires Attiuées et Génértives Expressions régulières Correction Prtielle de Progrmmes Ceci n'est ps un cours de Lngge C++ 2.1 Comment implnter en C un reconnisseur de

Plus en détail

Kit de survie - Bac ES

Kit de survie - Bac ES Kit de survie - Bc ES. Étude du signe d une expression ) Signe de x + Ü Ü ½ Ò µ¼ Ò ½ 0) On détermine l vleur de x qui nnule x +, puis on pplique l règle : «signe de près le 0». ) Signe de x + x + c ܾ

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV

2008 2010 MODULE M4 MATHEMATIQUES TERMINALE STAV LEGTHP Sint Nicols STAV Promotion 8 MODULE M4 MATHEMATIQUES TERMINALE STAV Fiches de cours S. FLOQUET Septemre 9 Lycée Sint Nicols Igny Promotion 8 SOMMAIRE STAV PARTIE : RESUMES DE COURS Équtions de droites

Plus en détail

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf.

Tableau d extension de mise en sécurité pour CMSI type B modulable Réf. : 322 001 Module deux lignes de mise en sécurité Réf. Tleu d extension de mise en sécurité pour CMSI type B modulle Réf. : 00 Module deux lignes de mise en sécurité Réf. : 00 DE MISE EN MISE EN 5 7 8 8 PROGRAM. SYSTEME Fus. F, 5H50V MANUEL DE MISE EN ŒUVRE

Plus en détail

Mesure de résistances

Mesure de résistances GEL 1002 Trvux prtiques Lortoire 2 1 Trvux prtiques Lortoire 2 (1 sénce) Mesure de résistnces Ojectifs Les ojectifs de cette phse des trvux prtiques sont : ) d utiliser déqutement l plquette de montge

Plus en détail

/HVV\VWqPHVFRPELQDWRLUHV

/HVV\VWqPHVFRPELQDWRLUHV /HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x

Plus en détail

SYSTEME DE TELEPHONIE

SYSTEME DE TELEPHONIE YTEME DE TELEPHOIE LE OUVEUTE PTIE MOITEU COULEU Le système de téléphonie comporte un moniteur vec un écrn couleurs de intégré u téléphone. Cette prtie est disponile en lnc, nthrcite et Tech. TLE DE MTIEE

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

Chapitre 9: Primitives et intégrales

Chapitre 9: Primitives et intégrales PRIMITIVES ET INTEGRALES 7 Chpitre 9: Primitives et intégrles Prérequis: Limites, dérivées Requis pour: Emen de mturité 9. «À quoi ç sert?» Un peu d histoire Isc Newton (64-77) Les clculs d ire de figures

Plus en détail

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr

Cours d informatique théorique de M. Arfi. FMdKdD fmdkdd [à] free.fr Cours d informtique théorique de M. Arfi FMdKdD fmdkdd [à] free.fr Université du Hvre Année 2009 2010 Tle des mtières 1 Reltions et lois de composition internes 2 1.1 Reltions.....................................

Plus en détail

Cours de mathématiques. Chapitre 12 : Calcul Intégral

Cours de mathématiques. Chapitre 12 : Calcul Intégral Cours de mthémtiques Terminle S1 Chpitre 12 : Clcul Intégrl Année scolire 2008-2009 mise à jour 5 mi 2009 Fig. 1 Henri-Léon Leesgue et Bernhrd Riemnn n les confond prfois 1 Tle des mtières I Chpitre 12

Plus en détail

Automates à états fnis Damien Nouvel

Automates à états fnis Damien Nouvel Automtes Automtes à étts fnis Automtes à étts fnis Pln Représenttion des utomtes (FSA) Défnition formelle (DFA) Équivlence DFA / NFA / ε-nfa Licence Informtique L1 Automtes 2 / 30 Automtes à étts fnis

Plus en détail

Des extraits de cette norme seront présentés pour la compréhension de la démarche.

Des extraits de cette norme seront présentés pour la compréhension de la démarche. Estimtion de l incertitude de l mesure : Appliction à l incertitude sur le clcul de l concentrtion d EDTA lors de l détermintion de l dureté d une eu nturelle Pour cette démrche, nous nous ppuierons sur

Plus en détail

gfaubert septembre 2010 1

gfaubert septembre 2010 1 Notes de cours Pour l e secondire Compiltion et/ou crétion Guyline Fuert Septemre 00 gfuert septemre 00 Géométrie------------------------------------------------------------------------------------------------------------------------

Plus en détail

Continuité - Limites Asymptotes à une courbe

Continuité - Limites Asymptotes à une courbe Continuité - Limites Asymptotes à une cre Continuité - Théorème des vleurs intermédiires Notion de continuité Grphiquement, on peut reconnître une fonction continue sur un intervlle I pr le fit que le

Plus en détail

4. PROTECTION À L OUVERTURE

4. PROTECTION À L OUVERTURE 42 4. PROTECTION À L OUVERTURE 4.1. Générlités Afin de lever l miguïté de l norme NF EN 16005 sur l exigence des prgrphes 4.6.2.1 et 4.6.3.1 (4) qunt à l définition de «lrge proportion», suf nlyse de risque

Plus en détail

LOIS A DENSITE (Partie 1)

LOIS A DENSITE (Partie 1) LOIS A DENSITE (Prtie ) I. Loi de probbilité à densité ) Rppel Eemple : Soit l'epérience létoire : "On lnce un dé à si fces et on regrde le résultt." L'ensemble de toutes les issues possibles Ω = {; ;

Plus en détail

Préparation à l'examen écrit de maturité Mathématiques 2013

Préparation à l'examen écrit de maturité Mathématiques 2013 Wechter Loïc Mturité 2013 Mthémtiques Cours de M. Flcoz 2013 Préprtion à l'exmen écrit de mturité Mthémtiques 2013 1.Primitives et intégrles 1.1Primitives (CRM pp.77-80) Une primitive pourrit se définir

Plus en détail

Chapitre 3 Dérivées et Primitives

Chapitre 3 Dérivées et Primitives Cours de Mthémtiques Clsse de Terminle STI - Chpitre : Dérivées et Primitives Chpitre Dérivées et Primitives A) Rppels de première et compléments ) Dérivées usuelles Fonction définie sur Fonction f() =

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

Séquence 8. Probabilité : lois à densité. Sommaire

Séquence 8. Probabilité : lois à densité. Sommaire Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit

Plus en détail

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet.

edatenq est une application qui permet aux entreprises de compléter et d'envoyer leurs déclarations statistiques par internet. Sttistique mensuelle tourisme et hôtellerie Introduction edatenq est une ppliction qui permet ux entreprises de compléter et d'envoyer leurs déclrtions sttistiques pr internet. Il s'git d'une ppliction

Plus en détail

LOGIQUE COMBINATOIRE

LOGIQUE COMBINATOIRE MPI/PCI LOGIQUE COMBINATOIRE I. VARIABLE LOGIQUE. Rappel : structure d une chaine fonctionnelle d un système automatisé. Les ordres et les informations peuvent être : Analogique (par exemple une tension

Plus en détail

Fonctions de référence

Fonctions de référence Chpitre 7 Clsse de Seconde Fonctions de référence Ce que dit le progrmme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Fonctions de référence Fonctions linéires et fonctions ffines Vritions de l fonction

Plus en détail

Industrie, Agriculture, Habitat, Tertiaire

Industrie, Agriculture, Habitat, Tertiaire Méthodologie pour les projets réduisnt l consommtion de combustibles fossiles dns une instlltion préexistnte de production d énergie thermique pour chuffge, pr optimistion de l gestion de l production.

Plus en détail

Mécanique: chapitre 2. Forces; Moments

Mécanique: chapitre 2. Forces; Moments écnique: chpitre orces; oents INTRDUCTIN Toute ction écnique s'eerçnt sur un objet pour eet soit: de odiier son ouveent ou de le ettre en ouveent, de le intenir en équilibre, de le déorer. Toute ction

Plus en détail

Chapitre 11 : L inductance

Chapitre 11 : L inductance Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4

Plus en détail

Le Plancher Rayonnant Surfacique à faible inertie

Le Plancher Rayonnant Surfacique à faible inertie Le Plncher Ryonnnt Surfcique à file inertie Vue en coupe mm *4 mm 0 5 4 * Selon le type d isolnt et selon le niveu d isoltion du plncher G r n t 0 i e ns Avis technique CSTB 4/-55 Grntie 0 ns GAN M34-0-058/059

Plus en détail

animeo La commande automatique de Somfy pour une gestion dynamique des façades

animeo La commande automatique de Somfy pour une gestion dynamique des façades nimeo L commnde utomtique de Somfy pour une gestion dynmique des fçdes nimeo Le système de Somfy pour une gestion dynmique des fçdes ENERGY SAVING solutions nimeo est une gmme de produits qui offre une

Plus en détail

Guide de référence installateur

Guide de référence installateur Guide de référence instllteur Dikin Altherm sse tempérture iloc + ERLQ004 006 008CA EHVH04S18CA3VF EHVH08S18CA3VF Guide de référence instllteur Dikin Altherm sse tempérture iloc Frnçis Tle des Mtières

Plus en détail

Statuts ASF Association Suisse Feldenkrais

Statuts ASF Association Suisse Feldenkrais Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion

Plus en détail

Option informatique :

Option informatique : Option formtique : l deuxième nnée Lurent Chéno été 1996 Lycée Louis-le-Grnd, Pris Tle des mtières I Arres 13 1 Arres ires 15 1.1 Défitions et nottions... 15 1.1.1 Défition formelle d un rre ire... 15

Plus en détail

Guide de référence sur l'architecture et les flux de données BES 12

Guide de référence sur l'architecture et les flux de données BES 12 Guide de référence sur l'rchitecture et les flux de données BES 12 Pulié : 2016-01-04 SWD-20160104143441780 Tle des mtières À propos de ce guide... 5 Architecture : solution EMM BES12...6 Composnts utilisés

Plus en détail

Chimie Avancement d une réaction chimique Chap.8

Chimie Avancement d une réaction chimique Chap.8 ère S Thème : Couleurs et imges TP n 6 Chimie Avncement d une réction chimique Chp.8 Notions et contenus Réction chimique réctif limitnt stœchiométrie notion d vncement Compétences eigiles Identifier le

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

CHAPITRE 9 : PRIMITIVES - INTEGRALES

CHAPITRE 9 : PRIMITIVES - INTEGRALES Primitives et intégrles Cours CHAPITRE 9 : PRIMITIVES - INTEGRALES. Primitives d une fonction Définition Soit f une fonction définie sur un intervlle I. Une fonction F est une primitive de f sur I, si

Plus en détail

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION

UNIVERSITE PARIS 1 PANTHEON SORBONNE UFR DE GESTION UNIVERSITE PRIS PNTHEON SORBONNE UFR DE GESTION MTHEMTIQUES PPLIQUEES L ECONOMIE ET L GESTION LICENCE nnée Cours de Thierry LFY TRVUX DIRIGES semestre 7-8 Thème n : Rppels Eercice Déterminez l ensemble

Plus en détail

Electromagne tisme 2 : Induction

Electromagne tisme 2 : Induction Electromgne tisme : Induction Induction de Neumnn Eercice 1 : Clcul d une force électromotrice induite n dispose d'un cdre crré fie de côté comportnt N spires d'un fil conducteur d'etrémités A et C dns

Plus en détail

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY)

Strasbourg, 12 novembre 2013 (projet) T-CY (2013) 26. Comité de la Convention Cybercriminalité (T-CY) www.coe.int/tcy Strsourg, 12 novemre 2013 (projet) T-CY (2013) 26 Comité de l Convention Cyercriminlité (T-CY) Note d orienttion n 8 du T-CY Otention, dns le cdre d une enquête pénle, de données reltives

Plus en détail

EXERCICES SUR LES PROPRIETES DES ONDES

EXERCICES SUR LES PROPRIETES DES ONDES EXERCICES SUR LES PROPRIETES DES ONDES EXERCICE 1 : Les ondes rdio Un élève consulte Internet pour récolter des informtions sur les ondes rdio. Il lit: «Lorsqu'une onde rencontre un obstcle de grnde dimension

Plus en détail

2.1 L'automate minimal

2.1 L'automate minimal CH.2 Minimistion 2.1 L'utomte miniml 2.2 L'lgorithme de minimistion Automtes ch2 1 2.1 L'utomte miniml Le lngge L définit sur Σ* l reltion d'équivlence R L : x R L y ssi ( z, xz L yz L). L'AFD M définit

Plus en détail

MANUEL D UTILISATION MARINE CHRONOGRAPHE AUTOMATIQUE

MANUEL D UTILISATION MARINE CHRONOGRAPHE AUTOMATIQUE MANUEL D UTILISATION MARINE CHRONOGRAPHE AUTOMATIQUE MODE D EMPLOI DE VOTRE MARINE CHRONOGRAPHE AUTOMATIQUE L.LEROY Le modèle chronogrphe utomtique de l ligne Mrine est inspiré des fmeux chronomètres de

Plus en détail

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL

DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL Première Distnces de l Terre à l Lune et u Soleil Pge 1 TRAVAUX DIRIGES DISTANCES DE LA TERRE A LA LUNE ET AU SOLEIL -80 II ème siècle p J-C 153 1609 1666 1916 199 ARISTARQUE de Smos donne une mesure de

Plus en détail

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3

Relations binaires. Table des matières. Marc SAGE. 18 octobre 2007. 1 Amuse gueule 2. 2 Combinatoire dans les quotients 2. 3 Problème d extréma 3 Reltions binires Mrc SAGE 8 octobre 007 Tble des mtières Amuse gueule Combintoire dns les quotients 3 Problème d extrém 3 4 Un théorème de point xe 3 5 Sur l conjugisons dns R 3 6 Sur les corps totlement

Plus en détail

Cours 1 - La numération

Cours 1 - La numération Cours - L numértion I - éfinitions I-) Expression générle L se d'un système de numértion représente le nomre d'unités d'un certin rng, nécessires pour former une unité de rng imméditement supérieur. L'ensemle

Plus en détail

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine

Cours de «concepts avancés de compilation» Travaux pratiques. Auteur : F. Védrine Cours de «onepts vnés de ompiltion» Trvux prtiques Auteur : F. Védrine Les utomtes et les expressions régulières Les utomtes sont onstitués d étts et de trnsitions. Un étt définit l vnée dns l reonnissne

Plus en détail

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales

Utiliser l inverse d une matrice pour résoudre un système d équations & courbes polynomiales Utiliser l inverse d une mtrice pour résoudre un système d équtions & coures polynomiles Exercice : Dns une ferme, il y des lpins et des poules. On dénomre 58 têtes et 60 pttes. Comien y -t-il de lpins

Plus en détail

TP 10 : Lois de Kepler

TP 10 : Lois de Kepler TP 10 : Lois de Kepler Objectifs : - Estimer l msse de Jupiter à prtir de l troisième loi de Kepler. - Utiliser Stellrium, un simulteur de plnétrium «photo-réel». Compétences trvillées : - Démontrer que,

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 2011 ACADEMIE DE BESANÇON Durée : 4 heures Les clcultrices sont utorisées. Le sujet comprend qutre exercices indépendnts qui peuvent être trités dns l'ordre que

Plus en détail

Cours Mathématiques Discrètes IUT Belfort Montbéliard. Pierre-Cyrille HEAM

Cours Mathématiques Discrètes IUT Belfort Montbéliard. Pierre-Cyrille HEAM Cours Mthémtiques Discrètes IUT Belfort Montélird Pierre-Cyrille HEAM 23 septemre 2014 Chpitre 1 Grphes finis orientés 1.1 Premières définitions Un grphe fini orienté est un couple (V, E) où V est un ensemle

Plus en détail

4. Logique séquentielle asynchrone

4. Logique séquentielle asynchrone Liene d Informtique MARSEILLELUMINY. Logique séquentielle synhrone. Introdution.. Représenttion de fontionnement : les étts.. Équivlene et pseudoéquivlene d étts.. Rédution du système.. Attriution de vriles

Plus en détail

ABB-Welcome Le portier connecté

ABB-Welcome Le portier connecté ABB-Welcome Le portier connecté Fonctions Deux finitions pour les pltines de rue : cier inoxydle rossé et lnc mt Fce vnt des pltines de rue en cier inoxydle V2A poli Système fonctionnnt sur un us 2 fils

Plus en détail

Chapitre 2 Les automates finis

Chapitre 2 Les automates finis Chpitre 2 Les utomtes finis 28 2.1 Introduction Automtes finis : première modélistion de l notion de procédure effective.(ont ussi d utres pplictions). Dérivtion de l notion d utomte fini de celle de progrmme

Plus en détail

Analyse statique et domaines abstraits symboliques

Analyse statique et domaines abstraits symboliques Anlyse sttique et domines strits symoliques Mémoire d hilittion à diriger des recherches Lurent Muorgne Hilittion soutenue le 12 février 2007 à l Université Pris-Duphine Jury : Ptrick Cousot (rpporteur)

Plus en détail

2006-2007 PARTIE I (VERSION 1.0) (VERSION 4.0)

2006-2007 PARTIE I (VERSION 1.0) (VERSION 4.0) INITIATION A SCILAB M1-M2 MODELISATION EN BIOLOGIE DES POPULATIONS ET DES ECOSYSTEMES MODELISATION DU FONCTIONNEMENT DES ECOSYSTEMES 2006-2007 PARTIE I (VERSION 1.0) (VERSION 4.0) Soudni Kmel (Mître de

Plus en détail

Techniques d analyse de circuits

Techniques d analyse de circuits Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre

Plus en détail

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique

LITE-FLOOR. Dalles de sol et marches d escalier. Information technique LITE-FLOOR Dlles de sol et mrches d esclier Informtion technique Recommndtions pour le clcul et l pose de LITE-FLOOR Générlités Cette rochure reprend les règles de se à respecter pour grntir l rélistion

Plus en détail

CHAPITRE 13 : CIRCUIT ELECTRIQUE & ALLUMAGE

CHAPITRE 13 : CIRCUIT ELECTRIQUE & ALLUMAGE CHAPITRE : CIRCUIT ELECTRIQUE CIRCUIT ELECTRIQUE LOCALISATIS DES PIECES ROADSTER CHAPITRE : CIRCUIT ELECTRIQUE 0. Boines et ougies. Démrreur. Alternteur. Relis, mxifusile 0 A. Contcteur point mort, mnocontct

Plus en détail

Devoir de physique-chimie n 4bis (2H)

Devoir de physique-chimie n 4bis (2H) TS jn 2014 Devoir de physique-chimie n 4bis (2H) Nom:...... LES EXERIES SNT INDEPENDANTS ALULATRIE AUTRISEE PHYSIQUE : ETILE BINAIRE /20 1. Le télescope 8 Les 3 prties sont indépendntes. Document 1 : L

Plus en détail

Savoir-faire expérimentaux.

Savoir-faire expérimentaux. LYCEE LOUIS DE CORMONTAIGNE. 12 Plce Cormontigne BP 70624. 57010 METZ Cedex 1 Tél.: 03 87 31 85 31 Fx : 03 87 31 85 36 Sciences Appliquées. Svoir-fire expérimentux.. Référentiel.. :. S5 Sciences. Appliquées......

Plus en détail

Automates finis. porte

Automates finis. porte utomtes finis Il s git d un modèle très souple, qui s dpte à des domines très différents en informtique. D une fçon générle, il sert à représenter les divers étts d un système (mécnique, électronique ou

Plus en détail

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145.

École de technologie supérieure Service des enseignements généraux Local B-2500 514-396-8938 Site internet : http://www.etsmtl.ca/ MAT145. École de technologie supérieure Service des enseignements généru Locl B-500 54-96-898 Site internet : http://www.etsmtl.c/ MAT45 CALCUL DIFFÉRENTIEL ET INTÉGRAL NOTES DE COURS e PARTIE PAR GENEVIÈVE SAVARD,

Plus en détail

Calcul de la rugosité surfacique

Calcul de la rugosité surfacique VI èmes Journées d Etudes Techniques 200 The Interntionl congress for pplied mechnics L mécnique et les mtériux, moteurs du développement durble du 05 u 07 mi 200, Mrrkech Mroc Clcul de l rugosité surfcique

Plus en détail

P hotographies aériennes. Photographies aériennes actuelles. La BD ORTHO de l IGN. Les photographies «satellitales»

P hotographies aériennes. Photographies aériennes actuelles. La BD ORTHO de l IGN. Les photographies «satellitales» P hotogrphies ériennes Pr rpport ux crtes, les photogrphies ériennes pportent deux vntges mjeurs : leur mise à jour est eucoup plus fréquente ; leur possiilité d nlyse est ien supérieure : on distingue

Plus en détail

Logiciel Anti-Spyware Enterprise Module

Logiciel Anti-Spyware Enterprise Module Logiciel Anti-Spywre Enterprise Module version 8.0 Guide Qu est-ce qu Anti-Spywre Enterprise Module? McAfee Anti-Spywre Enterprise Module est un module d extension qui permet d étendre les cpcités de détection

Plus en détail

Portiers audio et vidéo ABB-Welcome et ABB-Welcome M

Portiers audio et vidéo ABB-Welcome et ABB-Welcome M Portiers udio et vidéo ABB-Welcome et ABB-Welcome M Connectivité Votre regrd vers l'extérieur et ce, où que vous soyez Flexiilité Des esoins les plus simples ux instlltions les plus complexes Gmmes ABB-Welcome

Plus en détail

Algorithmique et Programmation. Automates finis. Chap. I/9

Algorithmique et Programmation. Automates finis. Chap. I/9 Algorithmique et Progrmmtion. Automtes finis. Chp. I/9 Jen-Eric Pin To cite this version: Jen-Eric Pin. Algorithmique et Progrmmtion. Automtes finis. Chp. I/9. J. Akok et I. Comyn-Wttiu. Encyclopédie de

Plus en détail

Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11

Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11 Electrovnne double Dimension nominle 3/8 - DMV-D/11 DMV-DLE/11 7.30 M Edition 11.13 Nr. 223 926 1 6 Technique L électrovnne double DUNGS DMV intère deux électrovnnes dns un même bloc compct : - vnnes d

Plus en détail

devant l Université de Rennes 1

devant l Université de Rennes 1 N o d ordre: 3708 THÈSE Présentée devnt devnt l Université de Rennes 1 pour otenir le grde de : Docteur de l Université de Rennes 1 Mention Informtique pr Thoms Gzgnire Équipe d ccueil : DistriCom - IRISA

Plus en détail

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr

Automates temporisés. Amal El Fallah Seghrouchni Amal.Elfallah@lip6.fr Automtes temporisés Aml El Fllh Seghrouchni Aml.Elfllh@lip6.fr Pln Introduction Définition d un utomte temporisé Composition d utomtes temporisés Automtes hybrides Conclusion Le problème à résoudre monde

Plus en détail

AMETRA TRAVAIL SUR ECRAN DE VISUALISATION. Santé au travail. Guide destiné aux personnels exposés

AMETRA TRAVAIL SUR ECRAN DE VISUALISATION. Santé au travail. Guide destiné aux personnels exposés AMETRA Snté u trvil TRAVAIL SUR ECRAN DE VISUALISATION Guide destiné ux personnels exposés IMPLANTATION GÉNÉRALE Norme NF X 35-109 Les limites cceptbles du port mnuel de chrges pr une personne : Le slrié,

Plus en détail

2015 /16. We know how. Catalogue complet Process Heat. A chaque application sa solution adaptée. Version 5.0

2015 /16. We know how. Catalogue complet Process Heat. A chaque application sa solution adaptée. Version 5.0 2015 /16 Ctlogue complet Process Het A chque ppliction s solution dptée. Version 5.0 We know how. Leister Technologies AG, Corporte Center, Kegiswil, Suisse Leister Technologies AG, Production, Srnen,

Plus en détail

AVERTISSEMENT ATTENTION

AVERTISSEMENT ATTENTION Appreil intérieur ASU9RL ASURL Appreil extérieur AOU9RL AOURL CLIMATISEUR Type à montge murl Tle des mtières Précutions de sécurité... Aperçu de l ppreil intérieur et opértions... Aperçu de l télécommnde

Plus en détail

Impact Recherche. St-Jean / St-Hyacinthe. Outremont / Roberval Lac-St. - Bagot 17 septembre élections partielles Rapport Final

Impact Recherche. St-Jean / St-Hyacinthe. Outremont / Roberval Lac-St. - Bagot 17 septembre élections partielles Rapport Final Impct Recherche Outremont / Roervl Lc-St St-Jen / St-Hycinthe - Bgot 17 septemre élections prtielles Rpport Finl Tle des mtières SOMMAIRE EXÉCUTIF 3 CONTEXTE, OBJECTIFS, ET MÉTHODOLOGIE 6 PROFIL 12 NOTORIÉTÉ

Plus en détail

GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A

GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A GDA CANALISATION MOYENNE PUISSANCE DE 63 À 2500 A Une conception prticulièrement innovnte pour une cnlistion de moyenne puissnce. L enveloppe en luminium plus légère est pte à résister ux environnements

Plus en détail

INFORMATIONS TECHNIQUES

INFORMATIONS TECHNIQUES 0 INFORMATIONS TECHNIQUES tle des mtieres 06 Alimenttions et ccessoires 08 Postes extérieurs Sfer Postes extérieurs minisfer 9 Postes internes Accessoires d instlltion Centrux téléphoniques PABX Cmérs

Plus en détail

LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR

LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR ÉCLAIRAGES À LED CH OL/AOL ET OFR/AFR LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR NOUVELLES SÉRIES D ÉCLAIRAGES À LED PUISSANCE LUMINEUSE ET DESIGN INGÉNIEUX PERFORMANTS,

Plus en détail

Automates et langages

Automates et langages Automtes et lngges L exmen corrigé RICM 9 jnvier 22 Grmmire Automte Expression On considère l grmmire régulière G =(Γ,Σ,S,Π) vec Γ = {S,P,R}, Σ={,} et Π={S P,P R,P S,R,R P }.. Construire un utomte A cceptnt

Plus en détail

LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR

LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR ÉCLAIRAGES À LED CH OL/AOL ET OFR/AFR LUMINAIRES D EXTÉRIEUR À LED SÉRIE OL/AOL ET PROJECTEURS À LED SÉRIE OFR/AFR NOUVELLES SÉRIES D ÉCLAIRAGES À LED PUISSANCE LUMINEUSE ET DESIGN INGÉNIEUX PERFORMANTS,

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Biostatistiques et statistiques appliquées aux sciences expérimentales

Biostatistiques et statistiques appliquées aux sciences expérimentales Biosttistiques et sttistiques liquées ux sciences exérimentles ANOVA à deux fcteurs Pscl Bessonneu, Christohe Llnne et Jérémie Mttout* Cogmster A4 2006-2007 * jeremiemttout@yhoo.fr. 1/16 Progrmme de l

Plus en détail

9 Annexe III : Analyse du risque foudre et étude technique

9 Annexe III : Analyse du risque foudre et étude technique MEDOC ENERGIES Réf : MET.ICPE.13.002 Dossier de demnde d Autoristion ICPE Dte : 30/12/2013 Issue : 2 9 Annexe III : Anlyse du risque foudre et étude technique 93 Document confidentiel propriété du MOA.

Plus en détail

CARACTÉRISTIQUES MÉTHODES DE RÉPARATION

CARACTÉRISTIQUES MÉTHODES DE RÉPARATION CARACTÉRISTIQUES Générlités - Trin vnt de type pseudo McPherson vec ressorts hélicoïdux et mortisseurs hydruliques. Brre ntidévers - Dimètre de l rre ntidévers (mm)... Couples de serrge (en dn.m) - Ecrou

Plus en détail

Systèmes de transitions Automates à états finis

Systèmes de transitions Automates à états finis M2P GLRE Génie Logiciel, logiciels Réprtis et Embrqués Systèmes de trnsitions Automtes à étts finis Z. Mmmeri 1. Comportement de système L description de comportement d un système désigne l expression

Plus en détail

860-1100. Avant toute utilisation, lire attentivement ce manuel. DELTA-SYSTEMES Z.I. de Fauillet B.P. 20 47400 TONNEINS (France)

860-1100. Avant toute utilisation, lire attentivement ce manuel. DELTA-SYSTEMES Z.I. de Fauillet B.P. 20 47400 TONNEINS (France) MANUEL D'UTILISATION 860-1100 Avnt toute utilistion, lire ttentivement ce mnuel. TEL : (33) 53-84-85-11 DELTA-SYSTEMES FAX : (33) 53-79-06-87 1 2 SOMMAIRE 1 SOMMAIRE DESCRIPTION GENERALE 1 2 2.1. Description

Plus en détail

PROTEKTOR PROFILÉS POUR LES SYSTÈMES COMPOSÉS D'ISOLATION THERMIQUE

PROTEKTOR PROFILÉS POUR LES SYSTÈMES COMPOSÉS D'ISOLATION THERMIQUE PROTEKTOR PROFILÉS POUR LES SYSTÈMES COMPOSÉS D'ISOLATION THERMIQUE PROFILÉS POUR LA CONSTRUCTION MODERNE 1 1 11 11 11 11 11 10 1 1 11 1 1 1 1 1 1 1 1 1 11 1 1 1 0 0 0 0 0 11 11 1 1 1 1 1 11 11 11 1 1

Plus en détail

CH.1 Automates finis

CH.1 Automates finis CH.1 Automtes finis 1.1 Les utomtes finis déterministes 1.2 Les utomtes finis non déterministes 1. Les utomtes vec -trnsitions 1.4 Les expressions régulières 1.5 L'équivlence des modèles Automtes ch1 1

Plus en détail

Prospection électrique. Guy Marquis, EOST Strasbourg

Prospection électrique. Guy Marquis, EOST Strasbourg Prospection électrique Guy Mrquis, EOST Strsbourg Le 9 Avril 005 Chpitre Bses physiques L prospection électrique est l une des plus nciennes méthodes de prospection géophysique. S mise en oeuvre est reltivement

Plus en détail

Séquence 7. Intégration. Sommaire

Séquence 7. Intégration. Sommaire Séquence 7 Intégrtion Sommire. Prérequis. Aire et intégrle d une fonction continue et positive sur [ ; ]. Primitives 4. Primitives et intégrles d une fonction continue 5. Synthèse de l séquence Dns ce

Plus en détail

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes

Intégration (suite) 1 Champs de vecteurs et intégrales curvilignes . Intégrtion (suite) e qui suit comporte trois prties : l première correspond à peu près à ce qui été trité lors du dernier cours, certins exemples du cours et d utres clculs sont présentés dns l deuxième,

Plus en détail

Kit de survie - Bac S

Kit de survie - Bac S Kit de survie - Bc S. Inéglités - Étude du signe d une expression Opértions sur les inéglités Règles usuelles : Pour tout x < y x + < y + même sens Pour tout k > : x < y kx < ky même sens Pour tout k

Plus en détail