Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport"

Transcription

1 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une limite réelle quand tend vers a en restant dans I, on dit que la a fonction f est dérivable en a et cette limite réelle, notée f (a), est appelée le nombre dérivé de f en a. On note alors : f f() f(a) (a)=lim a a TANGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et sa courbe représentative dans un repère du plan. La droite passant par le point A(a; f(a)) de la courbe et de coefficient directeur f (a) est appelée la tangente à la courbe au point d abscisse a. f(a) j 0 i a A PROPRIÉTÉ Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et sa courbe représentative dans un repère du plan. L équation réduite de la tangente à la courbe au point A d abscisse a est : = f (a) ( a)+ f(a) EXEMPLE La courbe tracée ci-dessous est la courbe représentative d une fonction f définie surr. T 5 4 T T Par lecture graphique, déterminer f (0), f () et f (). A. YALLOUZ Page sur 6

2 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID. Le nombre dérivé f (0) est égal au coefficient directeur de la tangente T à la courbe au point d abscisse 0. Par lecture graphique, le coefficient directeur de la droite T est égal à. Ainsi, f (0)=. La tangente T à la courbe au point d abscisse est parallèle à l ae des abscisses. Donc f ()=0. La droite T, tangente à la courbe au point d abscisse passe par les points de coordonnées (;0) et (5; ). Son coefficient directeur a est a= 0 5 = Le nombre dérivé f () est égal au coefficient directeur de la tangente à la courbe au point d abscisse. Donc f ()= REMARQUE La courbe représentative d une fonction f peut avoir une tangente en un point a sans que la fonction soit dérivable en a. La courbe représentative de la fonction racine carrée est tangente à la droite d équation = 0 en 0. Or la fonction racine carrée n est pas dérivable en 0 en effet : 0 lim = lim = lim =+ 0 ce n est pas une limite finie donc la fonction racine carrée n est pas dérivable en 0. j 0 i II FONCTION DÉRIVÉE DÉFINITION Soit f une fonction définie sur un intervalle I de R. Lorsque pour tout réel appartenant à I, f est dérivable en, on dit que f est dérivable sur I. La fonction qui associe à tout réel appartenant à I son nombre dérivé f () est appelée la fonction dérivée de f sur l intervalle I. Elle est notée f. DÉRIVÉES DES FONCTIONS DE RÉFÉRENCE fonction définie et dérivable sur : fonction f définie par : fonction dérivée f définie par : R f()=k f ()=0 R f()=a+b a R f()= n (n entier n ) f ()= n n ] ;0[ ou ]0;+ [ f()= f ()= ] ;0[ ou ]0;+ [ f()= n (n entier n ) f ()= n n+ ]0;+ [ f()= f ()= R f()=sin f ()=cos R f()=cos f ()= sin A. YALLOUZ Page sur 6

3 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID DÉRIVÉES ET OPÉRATIONS u et v sont deu fonctions dérivables sur un intervalle I fonction f définie par : fonction dérivée f : Produit d une fonction par un réel k ku ku Somme u+v u + v Produit u v u v+uv Quotient (v 0 sur I) Inverse (v 0 sur I) Composée avec une fonction circulaire u v v sin(u) cos(u) u v uv v v v u cos(u) u sin(u) EXEMPLES. Produit de deu fonctions )( Soit f la fonction définie sur ]0;+ [ par f()= (+ ). Calculer f (). Sur ]0; + [ f est dérivable comme produit de deu fonctions dérivables. f = uv d où f = u v+uv. Avec pour tout réel appartenant à l intervalle ]0;+ [, u()=+ d où u ()= v()= d où v ()= Soit pour tout réel appartenant à l intervalle ]0;+ [, f ()= ( )+ ) (+ = = + 6 Ainsi, f est la fonction définie sur ]0;+ [ par f ()= Quotient de deu fonctions Soit f la fonction définie surrpar f()= 4 +. Calculer f (). SurR, f est dérivable comme somme et quotient de deu fonctions dérivables. f = u v d où f = u v uv v. Avec pour tout réel, u()=4 d où u ()=4 v()= + d où v ()= A. YALLOUZ Page sur 6

4 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID Soit pour tout réel, f ()= 4( + ) (4 ) ( + ) = ( + ) = ( + ) Ainsi, f est la fonction définie surrpar f ()= ( + ).. Une particule est animée d un mouvement rectiligne sinusoïdal d équation (t) = 0,08 sin(t + 0,) où (t) est en mètres et t en secondes. La vitesse instantanée v(t) est donnée par (t) soit v(t)= 0,08 cos(t+ 0,)=0,96cos(t+ 0,) III DÉRIVÉE ET VARIATIONS D UNE FONCTION THÉORÈME Soit f une fonction dérivable et monotone sur un intervalle I de R. Si f est constante sur I, alors pour tout réel appartenant à I, f ()= 0. Si f est croissante sur I, alors pour tout réel appartenant à I, f () 0. Si f est décroissante sur I, alors pour tout réel appartenant à I, f () 0. Le théorème suivant, permet de déterminer les variations d une fonction sur un intervalle suivant le signe de sa dérivée. THÉORÈME Soit f une fonction dérivable sur un intervalle I deret f la dérivée de f sur I. Si f est nulle sur I, alors f est constante sur I. Si f est strictement positive sur I, sauf éventuellement en un nombre fini de points où elle s annule, alors f est strictement croissante sur I. Si f est strictement négative sur I, sauf éventuellement en un nombre fini de points où elle s annule, alors f est strictement décroissante sur I. THÉORÈME Soit f une fonction dérivable sur un intervalle ouvert I deret 0 un réel appartenant à I.. Si f admet un etremum local en 0, alors f ( 0 )=0.. Si la dérivée f s annule en 0 en changeant de signe, alors f admet un etremum local en 0. a 0 b a 0 b f () 0 + f () + 0 maimum f() f() minimum A. YALLOUZ Page 4 sur 6

5 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID REMARQUES. Dans la proposition. du théorème l hpothèse en changeant de signe est importante. Considérons la fonction cube définie surrpar f()= qui a pour dérivée la fonction f définie surrpar f ()=. f (0)=0 et pour tout réel non nul, f ()>0. La fonction cube est strictement croissante sur R et n admet pas d etremum en 0.. Une fonction peut admettre un etremum local en 0 sans être nécessairement dérivable. Considérons la fonction f définie surrpar f()= +. f est une fonction affine par morceau, f admet un minimum f() = or f n est pas dérivable en. 0 0 POINT MÉTHODE En pratique, pour étudier les variations d une fonction f dérivable sur son ensemble de définition D f : on détermine la dérivée f de f ; on étudie le signe de f sur D f ; on applique le théorème sur chacun des intervalles de D f où le signe de f est constant ; on dresse le tableau des variations en indiquant les etremums, s il a lieu et éventuellement les limites au bornes de son ensemble de définition. EXEMPLE : ÉTUDE D UNE FONCTION Soit f la fonction définie surrpar f()= Calculer f (). SurR f est dérivable comme somme et quotient de deu fonctions dérivables. f = u v d où f = u v uv v. Avec pour tout réel, Soit pour tout réel, u()=4 d où u ()=4 v()= + d où v ()= f ()= 4( + ) (4 ) ( + ) = ( + ) = ( + ) Ainsi, f est la fonction définie surrpar f ()= ( + ) A. YALLOUZ Page 5 sur 6

6 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID. Étudier les variations de la fonction f Les variations de la fonction f se déduisent du signe de sa dérivée. Étudions le signe de f ()= ( + ) : Pour tout réel, ( + ) > 0. Par conséquent, f () est du même signe que le polnôme du second degré avec a= 4, b=6 et c=4. Le discriminant du trinôme est =b 4ac Soit Comme >0, le trinôme admet deu racines : =6 4 4 ( 4)=00 = b a et = b+ a Soit = Soit = = = Un polnôme du second degré est du signe de a sauf pour les valeurs comprises entre les racines. Nous pouvons déduire le tableau du signe de f () suivant les valeurs du réel ainsi que les variations de la fonction f : + f () f() 4 A. YALLOUZ Page 6 sur 6

7 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID EXERCICE La courbe ci-dessous est la représentation graphique d une fonction f définie surrdans un repère du plan. On note f la fonction dérivée de f. La courbe vérifie les propriétés suivantes : La tangente à la courbe au point A d abscisse est parallèle à l ae des abscisses ; la tangente à la courbe au point B(0;) passe par le point de coordonnées (;0). A 4 B Donner les valeurs de f( ), f ( ) et f (0). EXERCICE - Sur la figure ci-dessous les droites d, d, d et d 4 sont tangentes à la courbe représentative d une fonction f dérivable sur R. d d d d - -. Déterminer graphiquement f (0), f (), f (4) et f (8).. Déterminer graphiquement les nombres dérivés f (0), f (), f (4) et f (8).. En déduire les équations réduites des tangentes d, d, d et d 4. EXERCICE Sur la figure ci-dessous, est la courbe représentative d une fonction f dérivable surr.les droites d, d, d et d 4 sont tangentes à la courbe. A. YALLOUZ Page 7 sur 6

8 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID d d d 4 A 4 B d. Déterminer graphiquement f( 4), f( ) et f().. Déterminer graphiquement les nombres dérivés f ( 4) et f ().. La tangente à la courbe au point A d abscisse passe par l origine du repère. Déterminer f ( ). ( 4. La tangente T à la courbe au point B 6; 8 ) est parallèle à la droite d 4. Déterminer f ( 6) puis, donner une équation de la tangente T à la courbe au point B. Tracer cette droite sur le graphique précédent. EXERCICE 4 Dans chacun des cas suivants, f est une fonction définie et dérivable sur un intervalle I. Calculer la dérivée f ().. f est définie surrpar f()= f est définie sur ]0;+ [ par f()= +. f est définie sur ]0;+ [ par f()= + 5 EXERCICE 5 Calculer la dérivée des fonctions suivantes.. f est définie surrpar f()=( ) ( 0,5 + ). g est la fonction définie surrpar f()= +. h est la fonction définie surrpar h(t)= sint +cost EXERCICE 6. Donner une équation de la tangente à la parabole d équation = +5 au point d abscisse.. Soit f la fonction définie sur ];+ [ par f ()= Déterminer une équation de la tangente à la courbe représentative de la fonction f au point A d abscisse. A. YALLOUZ Page 8 sur 6

9 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID EXERCICE 7 Soit f une fonction définie et dérivable surr. On note f la dérivée de la fonction f. On donne ci-dessous la courbe représentant la fonction f. ( La courbe passe par les points A( ;0), B(;), C(4;,) et D ; 5 ). 6 L ae des abscisses est tangent en A à la courbe. La courbe admet une deuième tangente parallèle à l ae des abscisses au point C. La tangente à la courbe au point B passe par le point M( 4; ). C B D A À partir du graphique et des données de l énoncé, répondre au questions suivantes.. Dresser sans justification le tableau de variations de la fonction f surr.. Déterminer f ( ), f (4) et f ().. Quel est l ensemble solution de l inéquation f () 0? 4. On donne f (5,5)=,5. Calculer les coordonnées du point d intersection de la tangente à la courbe au point D avec l ae des ordonnées. 5. Une des trois courbes ci-dessous est la représentation graphique de la fonction f. Déterminer laquelle Courbe C -4 Courbe C -4 Courbe C EXERCICE 8 Soit f la fonction définie sur l intervalle] ;+ [ par f()= +. On note sa courbe représentative dans le plan muni d un repère orthonormal.. On note f la dérivée de la fonction f. Calculer f ().. Étudier le signe de f ().. Donner le tableau des variations de f. A. YALLOUZ Page 9 sur 6

10 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID EXERCICE 9 Soit f la fonction définie sur ] ;+ [ par f()= 8+7. On note f la dérivée de la fonction f. + Sa courbe représentative dans un repère orthogonal du plan, notée, est donnée ci-dessous à titre indicatif.. Calculer f ().. Étudier le signe de f ().. Donner le tableau des variations de f. 4. Déterminer une équation de la tangente T à la courbe au point d abscisse. Tracer sur le graphique donné, la tangente T. ( ) 0 EXERCICE 0 Soit f la fonction définie surrpar f() = On note sa courbe représentative dans le plan muni d un repère.. Calculer la dérivée de la fonction f.. Étudier les variations de f.. Donner une équation de la tangente T à la courbe au point d abscisse. EXERCICE Sur la figure ci-dessous est tracée la courbe représentative notée d une fonction f dérivable surr. On sait que : la droite D est tangente à la courbe au point A( ;) ; la courbe admet deu tangentes parallèles à l ae des abscisses au points d abscisse et. A. YALLOUZ Page 0 sur 6

11 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID 4 D A Pour chacune des questions de ce QCM, une seule réponse est eacte.. On désigne par f la fonction dérivée de la fonction f alors : - f ( )= f ( )= f ( )> f (0). L équation f ()=0 admet : une solution deu solutions trois solutions. f est définie surrpar : f ()= ( )( + ) +9 EXERCICE f ()= ( ) (+) +7 f ()= ( )(+) La courbe (C) ci-dessous représente une fonction f définie et dérivable surr. On note f la dérivée de la fonction f. On sait que : la courbe (C) coupe l ae des ordonnées au point A(0; ) ; la tangente en A à la courbe (C) coupe l ae des abscisses au point d abscisse 4. 0 (C). À partir du graphique et des renseignements fournis, déterminer f(0) et f (0).. Soit g la fonction définie surrpar g()= f(). Déterminer une équation de la tangente à la courbe représentative de la fonction g au point d abscisse 0. A. YALLOUZ Page sur 6

12 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID EXERCICE Sur la figure ci-dessous est tracée la courbe représentative notée d une fonction f dérivable surr. On désigne par f la fonction dérivée de la fonction f. La courbe admet une tangente parallèle à l ae des abscisses au point A(;). A 0. À partir du graphique et des renseignements fournis déterminer f() et f ().. Une seule des trois propositions suivantes est eacte, déterminer laquelle. a. f () f (4)<0 b. f () f (4)=0 c. f () f (4)>0. Quelle est parmi les trois courbes tracées ci-dessous, la courbe représentative de la fonction f? 0,5 0 0 Courbe C Courbe C 0 Courbe C 4. On considère la fonction h inverse de la fonction f. C est-à-dire la fonction h définie surrpar h()= f(). a) Calculer h () b) Quelle est parmi les trois courbes de la question 4, celle qui représente la fonction h? EXERCICE 4 Soit f la fonction définie pour tout réel par f()= On note sa courbe représentative.. Calculer la dérivée de la fonction f. Vérifier que f ()= + ( +5) A. YALLOUZ Page sur 6

13 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID. a) Étudier le signe de f (). b) En déduire le tableau des variations de la fonction f.. Donner une équation de la tangente T à la courbe au point d abscisse. Tracer la tangente T dans le repère ci-dessous EXERCICE 5 Soit f la fonction définie sur l intervalle [ π;π] par f()=sin() sin. Montrer que la fonction f est impaire. On note f la fonction dérivée de f. Calculer f ().. On donne ci-dessous la représentation graphique de la fonction f sur l intervalle [0;π]. 4 π 5π 4π π π π 0 π π 4π 5π π π - - a) Vérifier par le calcul, que l équation f ()=0 admet quatre solutions dans l intervalle [0;π] b) À l aide du graphique, donner le signe de f (). 4. Donner le tableau des variations de la fonction f sur l intervalle [0;π] 5. Recopier et compléter le tableau suivant : 0 f() π π 6. Tracer la courbe représentative de la fonction f sur l intervalle [ π; π] dans le repère précédent. - A. YALLOUZ Page sur 6 π 4π π π

14 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID EXERCICE 6 Soit f la fonction définie surrpar f ()=( ) ( ). On note f sa fonction dérivée. Sa courbe représentative dans un repère orthogonal du plan est donnée ci-dessous.. Calculer f ().. Étudier les variations de la fonction f.. Déterminer une équation de la tangente T à la courbe au point d abscisse. Tracer la tangente T dans le repère ci-dessous. 5 0 EXERCICE 7 Soit f la fonction définie sur l intervalle ]0;+ [ par f() = a+b+ c où a, b et c sont trois réels. Sa courbe représentative notée est tracée ci-dessous dans un repère orthogonal. On note f la dérivée de la fonction f. La courbe passe par les points A(;0) et B(;). La tangente à la courbe au point B est parallèle à l ae des abscisses. B A Déterminer f ().. Eprimer f () à l aide de a, b et c.. Calculer a, b et c et donner l écriture de f(). 4. Vérifier que f ()= 4. Étudier le signe de f (), en déduire le tableau des variations de la fonction f. A. YALLOUZ Page 4 sur 6

15 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID 5. Donner une équation de la tangente T à la courbe au point A. Tracer cette droite sur le graphique précédent. 6. Des trois courbes représentées ci-dessous, quelle est celle qui est la représentation graphique d une fonction F définie sur l intervalle ]0; + [ et aant pour dérivée la fonction f? Courbe Courbe Courbe EXERCICE 8 Soit f une fonction définie définie et dérivable sur l intervalle donné ci-dessous. ] [ ;+ dont le tableau des variations est + f(). On note f la dérivée de la fonction f. Déterminer f ().. Déterminer les réels a et b tels que f()=a+b On admet que f est la fonction définie sur l intervalle ] [ ;+ par f()= Justifier par le calcul les résultats obtenus dans le tableau de variation. 6 EXERCICE 9 On a tracé ci-dessous, la courbe représentative d une fonction f définie sur l intervalle ] ;+ [. On note f la dérivée de la fonction f A. YALLOUZ Page 5 sur 6

16 Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID PARTIE A. Par lecture graphique, donner les valeurs de f() et de f (). Une des trois courbes ci-dessous est la représentation graphique de la fonction f. Déterminer laquelle Courbe C Courbe C Courbe C PARTIE B La fonction f est définie sur l intervalle ] ;+ [ par f()= Calculer f ().. Donner le tableau complet des variations de f. A. YALLOUZ Page 6 sur 6

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c.

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c. Chapitre I : Révisions I. Le second degré a) fonction trinôme La représentation graphique d une fonction f définie sur par f() = a² + b + c (a non nul) est une parabole. La fonction f est appelée fonction

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Dérivabilité Etudier la dérivabilité de la fonction : 1 en 1. On considère la fonction définie sur 1; par 1 1 Etudier la dérivabilité de en 1.

Plus en détail

Exercice 1 ( Pondichéry 2011) ( 5 points)

Exercice 1 ( Pondichéry 2011) ( 5 points) Terminale STG ANNALES de bac sur la fonction ln 00-0 Eercice ( Pondichér 0) ( 5 points) Soit f la fonction définie sur l intervalle [ ; 8] par f() = 30 ln() + 0 0.. n admet que la fonction f est dérivable

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Chapitre 7 Généralités sur les fonctions numériques Étude d une fonction réelle d une variable réelle On munit le plan d un repère orthonormé O; i, j.. Fonction réelle d une variable réelle Définition

Plus en détail

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Tableaux de variations et tableaux de signes Les exercices 1 et se réfèrent au graphique

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Christophe ROSSIGNOL Année scolaire 2008/2009 Table des matières 1 Rappels et compléments 3 1.1 Fonctions affines............................................. 3 1.2 Fonctions

Plus en détail

LOGARITHME NÉPÉRIEN. I Définition - Propriétés - Relation fonctionnelle. Définition. Propriétés (voir démonstration 01) Rappel.

LOGARITHME NÉPÉRIEN. I Définition - Propriétés - Relation fonctionnelle. Définition. Propriétés (voir démonstration 01) Rappel. LOGARITHME NÉPÉRIEN I Définition - Propriétés - Relation fonctionnelle e Rappel La fonction eponentielle est une fonction continue et strictement croissante sur IR. On a lim e = 0 et - lim e = +. D'après

Plus en détail

T ES/L DEVOIR SURVEILLE 2 12 OCTOBRE 2012

T ES/L DEVOIR SURVEILLE 2 12 OCTOBRE 2012 T ES/L DEVOIR SURVEILLE 2 12 OCTOBRE 2012 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Voir des propriétés sur la calculette et de les démontrer par des calculs : ensemble de définition solutions d'équations et d'inéquations croissance et décroissance symétries

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

Extremums d une fonction

Extremums d une fonction Extremums d une fonction I) Définitions (rappels de seconde : voir la fiche de cours correspondante) Soit une fonction définie sur un ensemble D inclus dans, et deux réels. est le maximum de sur D si et

Plus en détail

EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako. 12 ) lim 2 ; 4 ) + 7. x + ; 11 ) ; 14 ) lim.

EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako. 12 ) lim 2 ; 4 ) + 7. x + ; 11 ) ; 14 ) lim. EXERCICE :01 EXERCICES SUR LES FONCTIONS NUMÉRIQUES Site MathsTICE de Adama Traoré Lycée Technique Bamako Calculer les ites suivantes : + 1 + 1 1 ) ; ) ; ) 5 + + + + 5 ) ; 6 ) + + 6 + 6 + 9 ) ( + ) ; 10

Plus en détail

EXERCICES ÉTUDES DE FONCTIONS Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES ÉTUDES DE FONCTIONS Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICE 0 EXERCICES ÉTUDES DE FONCTIONS Site MathsTICE de Adama Traoré Lycée Technique Bamako Soit la fonction f définie par f () a + b + c ; où a ; b et c sont des réels ) Calculer f () ) Déterminer

Plus en détail

FONCTIONS DE RÉFÉRENCE

FONCTIONS DE RÉFÉRENCE Fonctions affines Fonctions de référence Seconde Fonctions affines. Activité Trois tais T, T et T proposent les tarifs suivants : T : de prise en charge, puis 0,0 du kilomètre ; T : de prise en charge,

Plus en détail

Etudes de fonctions. Exercice 1

Etudes de fonctions. Exercice 1 Etudes de fonctions Eercice Faire une étude complète des fonctions suivantes : a) Domaines de définition, de continuité ; b) Parité et éléments de symétrie du graphe ; c) Limites au bornes du domaine,

Plus en détail

Etude de fonctions polynômes, cours, terminale STMG

Etude de fonctions polynômes, cours, terminale STMG Etude de fonctions polynômes, cours, terminale STMG F.Gaudon 8 juillet 2015 Table des matières 1 Fonction dérivée 2 2 Opérations sur les fonctions dérivables 2 2.1 Somme..............................................

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

ETUDES DE FONCTIONS. = +. On a : a = -1, b = 4 et c = 0.

ETUDES DE FONCTIONS. = +. On a : a = -1, b = 4 et c = 0. 1 sur 9 ETUDES DE FONCTIONS I. Fonctions polynômes de degré 1. Définition Une fonction polynôme de degré f est définie sur R par f () = a + b + c, où a, b et c sont des nombres réels donnés et a 0. Eemples

Plus en détail

2. GENERALITES SUR LES FONCTIONS

2. GENERALITES SUR LES FONCTIONS . GENERALITES SUR LES FONCTIONS. Fonction d'une variable réelle à valeurs réelles.. Fonction et ensemble de déinition On appelle onction d'une variable réelle à valeurs réelles une application qui à tout

Plus en détail

( ) = b. Chapitre 5 : Fonction logarithme népérien. I. Fonction logarithme népérien. 1. Définition et propriétés

( ) = b. Chapitre 5 : Fonction logarithme népérien. I. Fonction logarithme népérien. 1. Définition et propriétés Chapitre 5 : Fonction logarithme népérien I. Fonction logarithme népérien 1. Définition et propriétés La fonction exponentielle est strictement croissante sur! à valeurs dans 0;+, donc d'après le théorème

Plus en détail

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1

Chapitre 3 Étude de fonctions. Table des matières. Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions TABLE DES MATIÈRES page -1 Chapitre 3 Étude de fonctions Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Suites : Résumé de cours et méthodes

Suites : Résumé de cours et méthodes Suites : Résumé de cours et méthodes Généralités ne suite numérique est une liste de nombres, rangés et numérotés : à l entier 0 correspond le nombre noté 0 à l entier correspond le nombre noté à l entier

Plus en détail

Dérivation Étude de fonctions

Dérivation Étude de fonctions Dériation Étude de fonctions Christophe ROSSIGNOL Année scolaire 2011/2012 Table des matières 1 Nombre dérié et tangente 2 2 Fonction dériée 3 2.1 Définition.............................................

Plus en détail

Le second degré. Forme canonique

Le second degré. Forme canonique 1 ES Chapitre 3 Activités 1, et 3 page 6/8 I. Définition Le second degré Définition : Un trinôme du second degré est une fonction de la forme a +b+c, où a,b et c sont des réels avec a ý0 Par abus de langage,

Plus en détail

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008 Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 La ligne droite fait partie de notre environnement naturel, mais comme tout objet mathématique, elle nécessite une définition.

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 9 septembre 2015

Corrigé du baccalauréat S Métropole La Réunion 9 septembre 2015 Corrigé du baccalauréat S Métropole La Réunion 9 septembre 215 A. P. M. E. P. Eercice 1 Commun à tous les candidats 5 points Question 1 On considère l arbre de probabilités ci-contre :,6 A A,2,3 B B B

Plus en détail

EQUATIONS DIFFERENTIELLES 4 ème Mathématiques

EQUATIONS DIFFERENTIELLES 4 ème Mathématiques EQUATIONS DIFFERENTIELLES 4 ème Mathématiques Exercice 1 Résoudre dans R les équations différentielles suivantes : 1) 2 = 0 2) 4 + 3 = 0 3) 2 + + 3 = 0 4) 2 + 3 + 1 = 0 5) + + 2 = 0 6) 4 + 9 = 0. Exercice

Plus en détail

Fonctions carrée et inverse. Autres fonctions élémentaires

Fonctions carrée et inverse. Autres fonctions élémentaires TABLE DES MATIÈRES Fonctions carrée et inverse. Autres fonctions élémentaires Paul Milan LMA Seconde le 6 février 200 Table des matières La fonction carrée 2. Fonction paire................................

Plus en détail

Chapitre 3 : Étude de fonctions; Rappels

Chapitre 3 : Étude de fonctions; Rappels ECSB Carnot Chapitre 3 03/04 Chapitre 3 : Étude de fonctions; Rappels Objectifs : Connaître toutes les notions du lycée (parité, monotonie, périodicité) Connaître les fonctions de référence (l étude des

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Généralités sur les fonctions numériques. Rappels sur les fonctions.. Généralités Définition : On appelle fonction f un procédé qui à tout nombre réel tente d'associer un unique nombre réel f(), appelé

Plus en détail

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe

4. En déduire l existence d une asymptote oblique pour (C f ) en +. 3 x 2 + 2x 3, et on note (C f) sa courbe de la ère S à la TS. Exercice n : On donne la fonction f définie sur R par : = x 4 + x +. On appelle Γ la courbe représentative de f dans un repère orthonormé (O; ı, j).. Étudier la parité de f.. Déterminer

Plus en détail

Exercice 4 Seconde/Fonctions-Généralités/exo-071/texte

Exercice 4 Seconde/Fonctions-Généralités/exo-071/texte åò ÓäÒ ê Exercice 1 /Fonctions-Généralités/exo-07/texte Soit k la fonction définie par la courbe donnée ci-dessous : 8 0 Répondre par vrai (V) ou par faux (F) aux affirmations cidessous en cochant la case

Plus en détail

Chapitre 2 : Etude de fonctions

Chapitre 2 : Etude de fonctions Chapitre : Etude de fonctions I. Fonctions carrées, racine carrée et inverse Propriété : La fonction carrée est définie sur. Elle est décroissante sur ; 0 et croissante sur 0; Démonstration : Sur ; 0 :

Plus en détail

Fonctions carrée et inverse. Autres fonctions élémentaires

Fonctions carrée et inverse. Autres fonctions élémentaires DERNIÈRE IMPRESSIN LE 29 janvier 205 à 9:44 Fonctions carrée et inverse. Autres fonctions élémentaires Table des matières La fonction carrée 2. Fonction paire............................... 2.2 Étude de

Plus en détail

17 exercices de dérivation avec Q.C.M. - première. Les Dérivées

17 exercices de dérivation avec Q.C.M. - première. Les Dérivées Les Dérivées exercice 1 Trouver la (ou les) réponse(s) exacte(s) : Le plan est muni d'un repère (O,, ); C 3 f désigne la courbe représentative de la fonction f dans ce repère : f la fonction définie par

Plus en détail

Fonctions : Limites et asymptotes

Fonctions : Limites et asymptotes Fonctions : Limites et asymptotes Christophe ROSSIGNOL Année scolaire 205/206 Table des matières Limite à l infini 3. Limite infinie en, en...................................... 3.2 Limite finie en, en

Plus en détail

Le second degré dans R

Le second degré dans R S-Second degré dans R-Cours Septembre 0 Livre pages à 9 Le second degré dans R Fonctions polynômes du second degré Définition P est une fonction polynôme à coefficients réels de degré n n N) si et seulement

Plus en détail

CHAPITRE 8 : FONCTIONS TRIGONOMETRIQUES

CHAPITRE 8 : FONCTIONS TRIGONOMETRIQUES CHAPITRE 8 : FONCTIONS TRIGONOMETRIQUES. PLAN D ÉTUDE D UNE FONCTION TRIGONOMÉTRIQUE PERIODIQUE On considère un repère orthogonal ( Oi,, j). Déterminer le domaine de déinition D de la onction.. Recherche

Plus en détail

Géométrie analytique et équation de droite

Géométrie analytique et équation de droite Géométrie analtique et équation de droite ) Géométrie analtique.. Généralités. Définitions : Dire que ( ; ) sont les coordonnées du point M dans le repère (O ; i ; j ) signifie que : OM = i + j et on note

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Exercices : Étude de fonctions Exercice : Calculer les limites suivantes :. lim + lnx+x x+e x.. lim 3. lim x4 e x +3x x x 4. lim 5. lim 6. lim e x (lnx) (e 3 ) x e 3x +x ( (lnx) 3 +x ) x 7. lim x e x +e

Plus en détail

La fonction dérivée. Exercice I : Exercices. Nombre dérivé

La fonction dérivée. Exercice I : Exercices. Nombre dérivé La fonction dérivée Exercices Exercice I : Nombre dérivé 1) La courbe représentative f est donnée ci-dessous. En chacun des points indiqués, la courbe admet une tangente qui est tracée. Lire, en vous servant

Plus en détail

Intégration d une fonction trigonométrique Exercices corrigés

Intégration d une fonction trigonométrique Exercices corrigés Intégration d une fonction trigonométrique Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : calculer l intégrale de la fonction sinus ou de

Plus en détail

fonction logarithme népérien

fonction logarithme népérien fonction logarithme népérien Table des matières 1 présentation et propriétés algébriques 2 1.1 activité.................................................. 2 1.2 corrigé activité..............................................

Plus en détail

Baccalauréat ES Amérique du Nord 3 juin 2010

Baccalauréat ES Amérique du Nord 3 juin 2010 Baccalauréat ES Amérique du Nord 3 juin 2010 EXERCICE 1 On considère la fonction f définie et dérivable sur l intervalle ( [ 2 ; 11], et on donne sa courbe représentative C f dans un repère orthogonal

Plus en détail

Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013

Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013 Seconde Chapitre III : Fonctions affines Année scolaire 2012/2013 I) Généralités sur les fonctions affines : 1) Définition : Une fonction f définie sur R est dite affine si il existe deux nombres réels

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Fonctions exponentielles de base q et logarithme décimal

Fonctions exponentielles de base q et logarithme décimal Fonctions eponentielles de base q et logarithme décimal I) Fonctions eponentielles de base q : 1) Définition : q étant un nombre strictement positif différent de 1 Toute fonction qui à tout nombre réel

Plus en détail

Corrigé du Devoir Surveillé n 2

Corrigé du Devoir Surveillé n 2 Corrigé du Devoir Surveillé n Exercice : Autour de la fonction Arc cosinus Représentons la fonction définie par f(x) = Arccos (cosx) + Arccos (cos x). f est définie sur R, f est paire, f est π périodique

Plus en détail

A.P soutien maths. Exercice 2 : Ci-contre, voici la représentation graphique de g dans un repère

A.P soutien maths. Exercice 2 : Ci-contre, voici la représentation graphique de g dans un repère A.P soutien maths Exercice 1 : Soit la fonction f définie sur IR par f(x) = 4x 2 + 16 x + 29 a) Quelle est la nature de f? b) Déterminer les variations de f c) Tracer la représentation graphique de f dans

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Exercices sur la fonction carrée et la fonction inverse

Exercices sur la fonction carrée et la fonction inverse Exercices 4 février 203 Exercices sur la fonction carrée et la fonction inverse Exercice Fonction carrée ) f est la fonction carrée. Calculer les images par f des nombres suivants : a) 4 b) 00 c) 0 d)

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS)

ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS) Fiche professeur second ordre () ÉQUATIONS DIFFÉRENTIELLES DU SECOND ORDRE (EXOS) TI-Nspire CAS 1. Objectifs Résoudre à la main et à l aide de la calculatrice les équations différentielles linéaires du

Plus en détail

EXERCICES SUR LE SECOND DEGRÉ

EXERCICES SUR LE SECOND DEGRÉ EXERCICES SUR LE SECOND DEGRÉ Eercice 1 Dans un triangle ABC rectangle en A, on place les points D et E B respectivement sur [AC] et [AB] tels que AD = BE =. (Voir figure ci-contre). E Déterminer pour

Plus en détail

Chapitre 11 Fonctions homographiques. Table des matières. Chapitre 11 Fonctions homographiques TABLE DES MATIÈRES page -1

Chapitre 11 Fonctions homographiques. Table des matières. Chapitre 11 Fonctions homographiques TABLE DES MATIÈRES page -1 Chapitre Fonctions homographiques TABLE DES MATIÈRES page - Chapitre Fonctions homographiques Table des matières I Exercices I-................................................ I-................................................

Plus en détail

[ ], suit une loi de probabilité de densité f [ ] : inclus dans a;b. ( ) = f t. , l axe des abscisses, et les droites d équations x = c et x = d.

[ ], suit une loi de probabilité de densité f [ ] : inclus dans a;b. ( ) = f t. , l axe des abscisses, et les droites d équations x = c et x = d. I Généralités Dans cette partie, l'univers Ω est un intervalle de, a et b sont deu réels tels que a < b 1 Densité On appelle densité de probabilité sur [ a;b] toute fonction f continue et positive sur

Plus en détail

lim f ( x ) = L si tout intervalle ouvert contenant L contient toutes les valeurs f ( x ) dès que x est

lim f ( x ) = L si tout intervalle ouvert contenant L contient toutes les valeurs f ( x ) dès que x est Chapitre II : Limite de fonctions Etrait du programme : I. Limite d une fonction en l infini. Limite finie en Définition : f ( ) = L si tout intervalle ouvert contenant L contient toutes les valeurs f

Plus en détail

Séquence 1. Second degré. Sommaire

Séquence 1. Second degré. Sommaire Séquence 1 Second degré Sommaire Pré-requis Différentes formes d une fonction polynôme de degré Équation du second degré Signe du trinôme Synthèse du cours Exercices d approfondissement 1 1 Pré-requis

Plus en détail

Fonction. Résolution graphique Fonction affine

Fonction. Résolution graphique Fonction affine janvier 05 Fonction. Résolution graphique Fonction affine Représentation d une fonction EXERCICE Parmi les courbe suivantes, quelles sont celles qui ne sont pas des représentations de fonction? Epliquez

Plus en détail

Fonctions affines par morceaux

Fonctions affines par morceaux Fonctions affines par morceaux Année scolaire 2006/2007 Table des matières 1 Fonctions affines par morceaux 2 1.1 Définition Représentation graphique................................. 2 1.2 Un cas particulier

Plus en détail

r= v t (2.4) v= Δ x =constante (2.5) r=( x, constante)=x Δ r=(δ x, 0)=Δ x v=(v x a=(a y,0)=a r = x Δ r = Δ x v = v a = a Δ x=v Δt (2.6) ) (2.

r= v t (2.4) v= Δ x =constante (2.5) r=( x, constante)=x Δ r=(δ x, 0)=Δ x v=(v x a=(a y,0)=a r = x Δ r = Δ x v = v a = a Δ x=v Δt (2.6) ) (2. CHAPITRE. CINEMATIQUE DU MOUVEMENT RECTILIGNE. 1. Mouvement rectiligne On appelle mouvement rectiligne, un mouvement pour lequel la trajectoire du mobile est une droite ou plus exactement un segment de

Plus en détail

K ABCDEFGH désigne un cube de côté 1 on appelle P le plan (AFH) le point I est le milieu du segment [AE]

K ABCDEFGH désigne un cube de côté 1 on appelle P le plan (AFH) le point I est le milieu du segment [AE] Sujet Antilles Guyane 20 EXERCICE. [5 pts] Géométrie Description de la figure dans l espace muni du H repère orthonormé(a ; AB, AD, AE) : K ABCDEFGH désigne un cube de côté on appelle P le plan (AFH) le

Plus en détail

Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés

Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : vecteur normal à un plan Exercice 2

Plus en détail

Chapitre 10 - Fonctions inverse et homographiques

Chapitre 10 - Fonctions inverse et homographiques 2 nde Chapitre 0 - Fonctions inverse et homographiques 202-20 Chapitre 0 - Fonctions inverse et homographiques I Fonction inverse TD : Coût horaire d une location Pendant les mois de juillet et août, la

Plus en détail

Terminale ST2S juin 2009

Terminale ST2S juin 2009 Terminale STS juin 009 Polynésie 1. Exercice 1 5 points Cet exercice est un questionnaire à choix multiples. ucune justification n est demandée. Pour chacune des questions, une seule des réponses proposées

Plus en détail

Fonctions de 2 et 3 variables

Fonctions de 2 et 3 variables Fonctions de 2 et 3 variables Administration Économique et Sociale Mathématiques XA100M 1 Définitions Une fonction à 2 variables est un objet qui à tout couple de nombres réels (x, y) associe au plus un

Plus en détail

FONCTIONS DE DEUX VARIABLES SURFACES LIGNES DE NIVEAU EXERCICES CORRIGES

FONCTIONS DE DEUX VARIABLES SURFACES LIGNES DE NIVEAU EXERCICES CORRIGES Exercice n 1. FONCTIONS DE DEUX VARIABLES SURFACES LIGNES DE NIVEAU EXERCICES CORRIGES On considère la fonction f des variables réelles x et y définie par : 1 f ( xy, ) = x xy + 5xy La surface S est la

Plus en détail

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : donner la partie réelle et la partie

Plus en détail

Baccalauréat STI Génie mécanique, civil Métropole 21 juin 2012

Baccalauréat STI Génie mécanique, civil Métropole 21 juin 2012 Durée : 4 heures Baccalauréat STI Génie mécanique, civil Métropole 21 juin 2012 EXERCICE 1 On considère le puzzle représenté ci-contre. Il est constitué de 3 pièces : le triangle AEF et les quadrilatères

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS

LIMITES DE SUITES ET DE FONCTIONS LIMITES DE SUITES ET DE FONCTIONS I Limites de suites Définition Soit (u n ) une suite et l un nombre réel. Si tout intervalle ouvert contenant l contient tous les termes de la suite à partir d'un certain

Plus en détail

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2 Lcée JANSON DE SAILLY 04 septembre 014 SECOND DEGRÉ 1 re STID I POLYNÔMES DU SECOND DEGRÉ 1 DÉFINITION Une fonction polnôme de degré est une fonction f définie surrpar f)=a + b+c où a, b, c sont des réels

Plus en détail

Fiche méthode : équations de droites

Fiche méthode : équations de droites Table des matières 1 Coefficient directeur 2 11 Cas général 2 12 Calcul du coefficient directeur connaissant deux points de la droite 2 13 Lecture graphique du coefficient directeur 2 2 Equation réduite

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien DERNIÈRE IMPRESSION LE 3 décembre 04 à 0:07 La fonction logarithme népérien Table des matières La fonction logarithme népérien. Définition.................................. Représentation................................3

Plus en détail

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3 I INTRODUCTION Dans le plan muni d un repère O; i, j, on cherche à établir une relation entre les coordonnées (x;) des points du plan appartenant à une droite D. EXEMPLE 1 Dans le plan muni d un repère

Plus en détail

Soit la fonction f définie sur ]2 ; 10] par 2

Soit la fonction f définie sur ]2 ; 10] par 2 T le ES 2 Chapitre 10 Convexité 2014-2015 Exercice 1 : On considère une fonction f définie et dérivable sur l intervalle [ 2 ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f représente

Plus en détail

par : Bx: 10* 1 lnx /x 10* x x Bx = 0,x

par : Bx: 10* 1 lnx /x 10* x x Bx = 0,x Métropole Juin 20 Série ES Eercice Dans une entreprise, le résultat mensuel, eprimé en milliers d euros, réalisé en vendant centaines d objets fabriqués est modélisé par la fonction B définie et dérivable

Plus en détail

Quatre études de fonctions

Quatre études de fonctions Énoncé Quatre études de fonctions Eercice 1 On définit la fonction f : e 1/ ( +. 1. Préciser le domaine de définition, de continuité, de dérivabilité de f.. Indiquer les limites de f au bornes de son domaine

Plus en détail

Baccalauréat ES/L Amérique du Nord 30 mai 2014

Baccalauréat ES/L Amérique du Nord 30 mai 2014 Durée : 3 heures Baccalauréat ES/L Amérique du Nord 30 mai 2014 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte

Plus en détail

Baccalauréat ES France Métropolitaine 19 juin 2008

Baccalauréat ES France Métropolitaine 19 juin 2008 Baccalauréat ES France Métropolitaine 9 juin 008 EXERCICE 6 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chacune des questions, trois réponses sont proposées.

Plus en détail

Exemple de sujet oral bac S enseignement obligatoire n 1

Exemple de sujet oral bac S enseignement obligatoire n 1 Eemple de sujet oral bac S enseignement obligatoire n - Les eercices du sujet suivant constituent une base d argumentation pour l entretien : Eercice Chaque question peut avoir une seule ou plusieurs bonnes

Plus en détail

TES/spé TL Corrigé de l évaluation n 1 de Mathématiques du Jeudi 7 Novembre 2013 Calculatrice autorisée - Aucun document n'est autorisé.

TES/spé TL Corrigé de l évaluation n 1 de Mathématiques du Jeudi 7 Novembre 2013 Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Corrigé de l évaluation n 1 de Mathématiques du Jeudi 7 Novembre 013 Calculatrice autorisée - Aucun document n'est autorisé. Exercice 1. Probabilités (6 points) Durée : 3 h Un commerçant spécialisé

Plus en détail

BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S

BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi 07 mai 013 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTORISÉES spécialité Coefficient : 9 Le

Plus en détail

AMERIQUE DU NORD (juin 2004)

AMERIQUE DU NORD (juin 2004) AMERIQUE DU NORD (juin 004) Eercice 1 : (6 points) Commun à tous les candidats Les parties A et B sont indépendantes. A la rentrée scolaire, on fait une enquête dans une classe de siième comprenant 5 élèves.

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 202/203 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

Fonctions hyperboliques

Fonctions hyperboliques Chapitre III Fonctions hyperboliques A Fonctions hyperboliques directes A. Sinus hyperbolique et cosinus hyperbolique A.. Définition On appelle fonction sinus hyperbolique la fonction sh : R R, x sh x

Plus en détail

FONCTION AFFINE a et b étant deux nombres fixés, on appelle fonction affine tout processus opératoire qui au nombre x associe le nombre ax + b :

FONCTION AFFINE a et b étant deux nombres fixés, on appelle fonction affine tout processus opératoire qui au nombre x associe le nombre ax + b : ONCTIONS AINES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ONCTION LINEAIRE Soit a un nombre fié. On appelle fonction linéaire de coefficient a le processus

Plus en détail

1 e S - programme 2011 mathématiques ch.1 cahier élève Page 1 sur 34 Ch.1 : Second degré Partir d'un bon pied

1 e S - programme 2011 mathématiques ch.1 cahier élève Page 1 sur 34 Ch.1 : Second degré Partir d'un bon pied 1 e S - programme 011 mathématiques ch1 cahier élève Page 1 sur 3 Ch1 : Second degré Partir d'un bon pied RAPPELS DE NDE Exercice n A page 18 : Reconnaître une fonction polynôme de degré Vrai ou faux?

Plus en détail

Résolution d équations

Résolution d équations Résolution d équations Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Quelques rappels 2 1.1 Définition Première propriétés..................................... 2 1.2 Équations du premier

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. Epreuve : MATHÉMATIQUES. Séries : STI2D et STL spécialité SPCL

BACCALAURÉAT TECHNOLOGIQUE. Epreuve : MATHÉMATIQUES. Séries : STI2D et STL spécialité SPCL BACCALAURÉAT TECHNOLOGIQUE Session 2015 Epreuve : MATHÉMATIQUES Séries : STI2D et STL spécialité SPCL Durée de l épreuve : 4 heures Coefficient : 4 Le sujet comporte 7 pages, numérotées de 1 à 7. Les calculatrices

Plus en détail

POLYNOMES. On appelle polynôme ou fonction polynôme (ou fonction polynomiale) à une indéterminée x sur R (ou C) l'expression définie par , 2 0

POLYNOMES. On appelle polynôme ou fonction polynôme (ou fonction polynomiale) à une indéterminée x sur R (ou C) l'expression définie par , 2 0 POLYNOMES.. Introduction. Nous vous proposons dans cette annee le chapitre sur les polynômes et les fractions rationnelles. Ce module est important pour la suite du cours. Il ne comporte pas d eercices

Plus en détail

Travaux Dirigés. Mathématiques L1 Semestre 1. Ce dossier contient les énoncés des exercices qui seront résolus au cours des séances de TD.

Travaux Dirigés. Mathématiques L1 Semestre 1. Ce dossier contient les énoncés des exercices qui seront résolus au cours des séances de TD. Travaux Dirigés Mathématiques L1 Semestre 1 Ce dossier contient les énoncés des exercices qui seront résolus au cours des séances de TD. La présence des étudiants à ces séances est obligatoire. Les modifications

Plus en détail

C est donné par : ( ) 2) Calculer le nombre n de sacs fabriqués pour un coût de production de 288 000. ( n) P( n) C( n)

C est donné par : ( ) 2) Calculer le nombre n de sacs fabriqués pour un coût de production de 288 000. ( n) P( n) C( n) EXERCICES SUR LES FONCTIONS DÉRIVÉES Exercice 1 Pour une fabrication comprise entre 1000 et 3000 sacs par an, le bureau d'étude établit les éléments suivants (n désigne le nombre de sacs produits, les

Plus en détail

Ch.7 : Etude des variations d une fonction

Ch.7 : Etude des variations d une fonction e S - programme 20 - mathématiqes ch.7 - cors Page sr 6 Ch.7 : Etde des variations d ne fonction SENS DE VARIATION ET OPÉRATIONS SUR LES FONCTIONS THÉORÈME Somme de fonctions Soit n réel k et dex fonctions

Plus en détail

Thème N 1 : NOMBRES RELATIFS ET DECIMAUX

Thème N 1 : NOMBRES RELATIFS ET DECIMAUX Thème N : NOMBRES RELATIFS ET DECIMAUX SENS ET CALCULS () ACITIVITES GRAPHIQUES () A la fin du thème, tu dois savoir : Introduire la notion de nombre relatif. Ranger des nombres relatifs courants en écriture

Plus en détail

LES FONCTIONS AFFINES

LES FONCTIONS AFFINES LES FNCTINS FFINES 1. PRESENTTIN a. Définition Soit a et b deu réels. La fonction f telle que f ( ) = a+ b est appelée fonction affine. Son ensemble de définition est Df = ] ; + [ = b. Représentation graphique.

Plus en détail

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)).

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)). 1S1: doc 5 Dérivation 2015-2016 I Pour bien commencer I.1 Limite en 0 d une fonction Soit I un intervalle contenant 0, I = I\ {0} et f : I R D é f i n i t i o n : On dit que f admet une limite finie L

Plus en détail

Suites numériques Généralités Exercices corrigés

Suites numériques Généralités Exercices corrigés Suites numériques Généralités Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : définition d une suite, notion de rang et termes d une suite Exercice 2 : calcul avec les termes d une suite

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : nombre dérivé et évolution temporelle Contexte pédagogique Objectifs Calculer un nombre

Plus en détail

Chapitre 5: Croissance et Études de fonctions

Chapitre 5: Croissance et Études de fonctions CROISSANCE ET ETUDES DE FONCTIONS 83 Chapitre 5: Croissance et Études de fonctions Prérequis: Généralités sur les fonctions, Calcul de dérivées Requis pour: Études de fonctions, Optimisation. 5.1 Croissance

Plus en détail

Baccalauréat STI2D/STL spécialité SPCL Antilles-Guyane 18 juin 2015

Baccalauréat STI2D/STL spécialité SPCL Antilles-Guyane 18 juin 2015 Durée : heures Baccalauréat STID/STL spécialité SPCL Antilles-Guyane 8 juin 05 EXERCICE 3 points. Le temps d attente en minute à un péage est une variable aléatoire qui suit la loi eponentielle de paramètre

Plus en détail