Chapitre 2 : Etude de fonctions

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2 : Etude de fonctions"

Transcription

1 Chapitre : Etude de fonctions I. Fonctions carrées, racine carrée et inverse Propriété : La fonction carrée est définie sur. Elle est décroissante sur ; 0 et croissante sur 0; Démonstration : Sur ; 0 : on considère la fonction carrée et deux réels négatifs et tels que. Nous devons montrer que, autrement dit que 0. Comme, nous avons 0. Et comme et sont négatifs, l est également. Le produit de deux nombres négatifs est positif donc est bien positif et. La fonction carrée a donc bien modifier l ordre donc elle est décroissante sur ; 0. Exercice : faire la démonstration de la croissance de la fonction carrée sur 0;. Remarque : attention à ne pas élever au carré trop rapidement dans les inégalités! On peut avoir et!!! Propriété : La fonction racine carrée est définie sur 0;. Elle est croissante sur cet intervalle. Démonstration : On note la fonction racine carrée et on considère deux réels positifs et tels que. On veut montrer que, autrement dit que 0. Or Le fait de multiplier numérateur et dénominateur par (nombre réel non nul) permet d obtenir des termes dont on connaît le signe. Cela s appelle utiliser l expression conjuguée. Comme, nous avons 0. Et comme une racine carrée est toujours positive, nous avons 0. Finalement est négatif et. L ordre est donc bien conservé et la fonction racine carrée est bien croissante sur 0; Propriété : La fonction inverse est définie sur 0. Elle est décroissante sur ; 0 et sur 0;. Démonstration : On note la fonction inverse et on considère deux nombres négatifs et tels que. Nous voulons montrer que, autrement dit que 0. Or Comme, nous avons 0. De plus et sont négatifs donc est positif. Finalement, est positif donc. L ordre est bien modifié et la fonction inverse est bien décroissante sur ; 0. Exercice : faire la démonstration de la décroissance de la fonction inverse sur 0;. Remarque : Attention, la fonction inverse n est pas décroissante sur 0. En effet, on peut avoir et Par exemple 3 et Etude des positions relatives des courbes des fonctions ; et sur 0;. Méthode : pour étudier les positions relatives des courbes de deux fonctions et définies sur un même intervalle, on étudie le signe de. Sur les intervalles où 0, la courbe de sera au dessus de celle de. Sur les intervalles où 0, la courbe de sera en dessous de celle de.

2 Notons, et respectivement les fonctions, et. Ces trois fonctions sont bien définies sur 0;. Pour les courbes de et : Sur 0;, la courbe de est au dessus de celle de et sur ;, la courbe de est en dessous de celle de. Pour les courbes de et : 0 Signe de 0 Signe de 0 Signe de Signe de 0 Signe de 0 Signe de 0 0 Sur 0;, la courbe de est en dessous de celle de et sur ;, la courbe de est au dessus de celle de Finalement : Sur 0; : Sur ; II. Opérations sur les fonctions Propriété : On considère une fonction définie sur un intervalle et un réel. La fonction a les mêmes variations que sur. Démonstration : Supposons que soit croissante sur. On considère deux réels et de tels que. Nous voulons montrer que, autrement dit que 0. Or Ce résultat est bien négatif car est croissante sur et. Exercice : Faire la démonstration dans le cas où est décroissante sur. Exemple : est décroissante sur ; 0 et croissante sur 0;. Donc la fonction 5 est également décroissante sur ; 0 et croissante sur 0;. Propriété : On considère une fonction définie sur un intervalle et un réel. Si 0, alors a les mêmes variations que sur. Si 0, alors a les variations opposées à celles de sur. Démonstration : Supposons que est croissante sur. On considère deux réels et de tels que.

3 Comme est croissante sur, nous avons que 0. Si 0, alors est négatif et ce qui signifie que est croissante sur. Elle a donc bien les mêmes variations que. Si 0, alors est positif et ce qui signifie que est décroissante sur. Elle a donc bien les variations contraires de. Exercice : Faire la démonstration dans le cas où est décroissante sur. Exemple : est croissante sur ; 0 et décroissante sur 0;. Propriété : On considère une fonction définie sur un intervalle. La fonction est définie pour les réels de tels que 0. De plus, les variations de sont les mêmes que celles de. Démonstration : Pour l ensemble de définition, cela vient du fait que la fonction racine carrée est définie sur 0;. Il faut donc que ce qui est sous la racine soit positif. Pour les variations, supposons que soit croissante sur et considérons deux nombres et de tels que (et bien sûr 0 et 0). Comme est croissante sur, nous avons 0. Comme la fonction racine carrée est croissante sur 0;, on a Ceci montre bien que la fonction est croissante, autrement dit qu elle a le même sens de variations que. Exercice : Faire la démonstration dans le cas où est décroissante. Exemple : On considère la fonction : 4 Pour l ensemble de définition de : on doit résoudre 4 0 : Δ donc 4 est du signe de sauf entre les racines et. Autrement dit, 4 est positif sur ; qui est l ensemble de définition de. Pour les variations : est de la forme avec : 4 est de la forme avec 0 donc ce polynôme du second degré est croissant puis décroissant. Son maximum est atteint en soit en. Donc est croissante sur ; et décroissante sur ;. a les mêmes variations que donc est croissante sur ; et décroissante sur ;. Propriété : On considère une fonction définie sur un intervalle. La fonction est définie pour l ensemble des réels de tels que 0. De plus, les variations de, sur chaque intervalle où elle est définie, sont les opposées de celles de. Démonstration : Pour l ensemble de définition, cela vient du fait que la fonction inverse est définie sur 0. Pour les variations, supposons que soit croissante et non nulle sur un intervalle inclus dans et considérons deux réels et de cet intervalle tels que. Comme est croissante sur, on a. De plus, comme est non nul sur, et sont de même signe. En utilisant la décroissance de la fonction inverse, nous avons donc Ceci montre que la fonction est décroissante sur.. Exercice : Faire la démonstration dans le cas où est décroissante et non nulle sur un intervalle. Remarque : pour les études des fonctions de la forme, il faut faire très attention aux ensembles de définition

4 Exemple : On considère la fonction :. Pour l ensemble de définition : on doit résoudre 4 0 pour déterminer les valeurs interdites. On obtient et (voir l exemple précédent). est donc définie sur ;. Pour les variations : est de la forme avec 4. Comme dans l exemple précédent, nous avons que est croissante sur, et décroissante sur ;. De plus est positif sur ; et négatif sur ; ;. Sur ; : est non nulle et strictement croissante. Donc est décroissante. Sur ;, est non nulle et croissante donc est décroissante. Sur ;, est non nulle et décroissante donc est croissante. Sur ;, est non nulle et décroissante donc est croissante. Finalement, on obtient le tableau de variations suivant : Variations de 9 III. Valeur absolue Définition : On considère un nombre réel. Sur une droite graduée d origine, on considère d abscisse. On appelle la valeur absolue de la distance. On la note. Propriété : La valeur absolue d un nombre est toujours positive. Si 0, alors et si 0, alors. Exemples : 5 5 ; 5,8 5,8 ; 5 5 car Car 3 0 ; 0 ; et Propriété : La fonction valeur absolue est définie sur. Elle est décroissante sur ; 0 et croissante sur 0;. Démonstration : On note la fonction valeur absolue. Sur ; 0, Ceci est l expression d une fonction affine dont la droite représentative a un coefficient directeur négatif. La fonction est donc décroissante. Sur 0;, Ceci est l expression d une fonction affine dont la droite représentative a un coefficient directeur positif. La fonction est donc croissante Propriété : pour tous réels et, correspond à la distance entre et. Démonstration : si 0 si 0 si si Or cette dernière expression correspond à la distance entre et (le plus grand moins le plus petit)

5 Exemples : 3 représente la distance entre et 3. représente la distance entre et car Résoudre : 4 5 ; 3 ; : la distance entre et 4 est égale à 5. On trouve donc 9; Autre méthode de résolution : 4 5 si si 4 0 si 4 9 si 4 3 : La distance entre et est égale à 3. On trouve 5; 3 si si 0 5 si si 3 La distance entre et est égale à et on obtient : ; 3 si si 0 si si Résoudre 3 ; 4 3 : la distance entre et 3 est inférieure à et on obtient : ; si si si 3 si 3 3; 5 ; 3 et en regroupant, on obtient bien ; 5 4 : la distance entre et 4 est strictement supérieure à. On obtient : ; 5 3; 4 4 si si si 4 5 si 4 Ceci donne bien : ; 5 3; Résoudre 4 ; 3 4 : la distance entre et 4 est égale à la distance entre et. est donc la moyenne entre 4 et et on obtient 4 4 ou 4 4 ou La ère égalité étant clairement fausse, il n y a qu une solution :. 3 3 ou 3 ou 4 3 On a donc deux solutions et 4 que nous n aurions pas pu déterminer avec la droite graduée. Résoudre 5 5 Signe de 5 0 Expression de Signe de 0 Expression de Inéquation 5 4 On obtient : 4; ; 4; 5 5 4

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

NIMEGUE V3. Fiche technique 3.07 : Sauvegarde / Restauration manuelle

NIMEGUE V3. Fiche technique 3.07 : Sauvegarde / Restauration manuelle NIMEGUE V3 Fiche technique 3.07 : Sauvegarde / Restauration manuelle Version au 2 mai 2011 Toute donnée mémorisée sur un ordinateur, quelque soit le support, peut-être supprimée/effacée suite à un dysfonctionnement

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES 6 cm I) Synthèse sur la proportionnalité : 1) Définition : Grandeurs proportionnelles : Dire que deux grandeurs sont proportionnelles revient à dire

Plus en détail

Pourcentage d évolution

Pourcentage d évolution Pourcentage d évolution I) Proportion et pourcentage. 1) Proportion Soit E un ensemble fini et A une partie de l ensemble E. est le nombre d éléments de E et le nombre d éléments de A. La proportion ou

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Taux d évolution moyen.

Taux d évolution moyen. Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique

I- Mise en situation. II- Systèmes de numération 1.Système décimal: 2. Système binaire: 3.Système octal : 4.Système hexadécimal : 3éme technique Objectifs : Exploiter les codes numériques & Convertir une information d un code à un autre. I- Mise en situation Réaliser l activité de découverte page 6 ; Manuel d activités II- Systèmes de numération

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme? Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version

Plus en détail

Séquence 1. Notion de fonctions Fonctions linéaires et affines. Sommaire

Séquence 1. Notion de fonctions Fonctions linéaires et affines. Sommaire Séquence Notion de fonctions Fonctions linéaires et affines Sommaire. Prérequis. Notion de Fonctions 3. Sens de variation d une fonction 4. Fonctions linéaires et fonctions affines 5. Algorithmique 6.

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Auto-Entreprise : Activités : Eric SOTY - Siret n 47868353500023. Formation Bureautique, continue d'adultes. Tél : 0953020032 - Fax : 0958020032

Auto-Entreprise : Activités : Eric SOTY - Siret n 47868353500023. Formation Bureautique, continue d'adultes. Tél : 0953020032 - Fax : 0958020032 Auto-Entreprise : Activités : Eric SOTY - Siret n 47868353500023 Formation Bureautique, APE : 8559A formation continue d'adultes. identité visuelle, charte T.V.A. non applicable, article 293 B du CGI.

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

De la composition de taux à l'espace vectoriel des taux

De la composition de taux à l'espace vectoriel des taux De la composition de taux à l'espace vectoriel des taux Marcel Délèze, Collège du Sud, 630 Bulle Dans la majorité des livres scolaires, les chapitres consacrés à l'utilisation des taux font intensément

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS LOGIQUE COMBINATOIRE

4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS LOGIQUE COMBINATOIRE 4 DU BINAIRE AU MICROPROCESSEUR - D. ANGELIS Leçon 2 - OPÉRATIONS ARITHMÉTIQUES DANS LE SYSTÈME BINAIRE Avec les connaissances que nous venons d'acquérir, nous sommes en mesure maintenant d'écrire la suite

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Leçon N 1 : Taux d évolution et indices

Leçon N 1 : Taux d évolution et indices Leçon N : Taux d évolution et indices En premier un peu de calcul : Si nous cherchons t [0 ;+ [ tel que x 2 = 0,25, nous trouvons une solution unique x = 0, 25 = 0,5. Nous allons utiliser cette année une

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Correction Exam Final Macro du 14/05/2013

Correction Exam Final Macro du 14/05/2013 Correction Exam Final Macro du 14/05/2013 Sumudu Kankanamge : sumudu.kankanamge@univ-tlse1.fr Remarque Un mot sur la correction : comme il s agit d un devoir de Macroéconomie, je pense que c est important

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Examen de la maturita bilingue de physique. Corrigé officiel

Examen de la maturita bilingue de physique. Corrigé officiel Examen de la maturita bilingue de physique Session de mai 2013 Corrigé officiel Questions de cours Mécanique I. 1a) Référentiel le cadre par rapport auquel on étudie le mouvement. 1b) Réf. terrestre est

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

Intérêts. Administration Économique et Sociale. Mathématiques XA100M

Intérêts. Administration Économique et Sociale. Mathématiques XA100M Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

PETIT MEMENTO SCILAB

PETIT MEMENTO SCILAB PETIT MEMENTO SCILAB FRANÇOIS DUCROT 1. manipulation de vecteurs et matrices 1.1. Création de matrices. D abord quelques briques élémentaires utiles pour construire des choses plus compliquées. 1:4.5 nombres

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier)

Clemenceau. Présentation de l AOP. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.Granier) Lycée Clemenceau PCSI 1 (O.Granier) Présentation de l AOP Liens vers : TP-Cours AOP n 1 TP-Cours AOP n 2 TP-Cours AOP n 3 I Présentation et propriétés de l AOP : 1 Description de l AOP : Aspects historiques

Plus en détail

Installation de serveurs DNS, WINS et DHCP sous Windows Server 2003

Installation de serveurs DNS, WINS et DHCP sous Windows Server 2003 Installation de serveurs DNS, WINS et DHCP sous Windows Server 2003 Contexte : Dans le cadre de l optimisation de l administration du réseau, il est demandé de simplifier et d optimiser celle-ci. Objectifs

Plus en détail

COURS 470 Série 07. Comptabilité Générale

COURS 470 Série 07. Comptabilité Générale COURS 470 Série 07 Comptabilité Générale Administration générale de l'enseignement et de la Recherche scientifique Direction de l'enseignement à distance REPRODUCTION INTERDITE Communauté française de

Plus en détail

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo. PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.fr I.A.M. de Grenoble et I.R.E.M. de Toulouse 1. UN ACCÈS RAPIDE

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1

u n+1 = qu n 100 100 (diminution) (augmentation) ou 1 I SUITES GÉOMÉTRIQUES 1 DÉFINITION Dire qu une suite(u n ) est géométrique signifie qu il existe un nombre réel q non nul tel que, pour tout entier n, u n+1 = qu n Le réel q est appelé la raison de la

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

Exercice 1 : Taux de Rendement Interne et Rentabilité des Projets d Investissement

Exercice 1 : Taux de Rendement Interne et Rentabilité des Projets d Investissement ED 5 L IVESTISSEMET Exercice 1 : Taux de Rendement Interne et Rentabilité des Projets d Un investisseur envisage cinq projets d investissement donc il connait respectivement le Taux de Rendement Interne

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette logique détermine le fonctionnement de la commande. Dans ce dossier nous traiterons les différents

Plus en détail

Dossier Logique câblée pneumatique

Dossier Logique câblée pneumatique Dossier Logique câblée pneumatique Festo Belgium SA Rue Colonel Bourg 11 BE-13 Bruxelles www.festo.com Logique câblée pneumatique Chaque schéma de commande est élaboré selon une logique déterminée. Cette

Plus en détail

1. Faire Démarrer, Paramètres, Panneau de configuration, Outils d administration, Gestion de l ordinateur.

1. Faire Démarrer, Paramètres, Panneau de configuration, Outils d administration, Gestion de l ordinateur. TP PERSONNALISER SON POSTE DE TRAVAIL LES COMPTES, LES GROUPES C'EST QUOI? Les comptes et les groupes permettent de gérer plus facilement l administration d une machine. Il semble assez logique que sur

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE TECHNIQUES DE LA MUSIQUE ET DE LA DANSE SESSION 2011 SCIENCES PHYSIQUES

BACCALAURÉAT TECHNOLOGIQUE TECHNIQUES DE LA MUSIQUE ET DE LA DANSE SESSION 2011 SCIENCES PHYSIQUES BACCALAURÉAT TECHNOLOGIQUE TECHNIQUES DE LA MUSIQUE ET DE LA DANSE SESSION 2011 SCIENCES PHYSIQUES L usage des instruments de calcul et de dessin est autorisé selon les termes de la circulaire 99-186 du

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Chapitre 1 : Taux d'évolution

Chapitre 1 : Taux d'évolution Chapitre : Taux d'évolution I ] Rappels de lycée pourcentages : I.. Pourcentage : Calculer t % d'une quantité A c'est faire : t 00 A Exercice : Dans une assemblée de 550 députés, 8 % sont des avocats.

Plus en détail

Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client...

Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client... Sommaire Les cartes de fidélités... 2 Natures de pièces... 5 Impression des chèques cadeaux... 6 Statistiques fidélités... 8 Fiche client... 9 Copyright WaveSoft 1/9 La gestion des cartes de fidélités

Plus en détail

La formation des images par les lentilles

La formation des images par les lentilles Plan Introduction: 1. Deux types de lentilles 2. Les propriétés des lentilles 2.1. Lentille convergente 2.2. Lentille divergente 3. L image d un objet donnée par une lentille convergente 3.1 Rappel : Une

Plus en détail

ACTIVITÉ PRATIQUE LA REPRESENTATION DU REEL. Modélisation d un Smartphone

ACTIVITÉ PRATIQUE LA REPRESENTATION DU REEL. Modélisation d un Smartphone NOM : Prénom : Classe : ACTIVITÉ PRATIQUE LA REPRESENTATION DU REEL ITEC Rotation des spécialités Modélisation d un Smartphone Objectif : découvrir les fonctions de base pour la création d une pièce sous

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

géométrique et u n = 3(2) n. Cela donne au total :

géométrique et u n = 3(2) n. Cela donne au total : Leçon N 2 : Les suites Rappels importants Il y a deux façons de décrire une suite On nous donne la fonction qui permet de fabriquer ces termes : u n = f (n), n N. Exemple : u n = n² n N, cela donne 0 ;

Plus en détail

Chapitre 2: Mouvements Rectilignes

Chapitre 2: Mouvements Rectilignes e B et C Mouements rectilignes 13 Chapitre : Mouements Rectilignes 1. Définitions * Le mouement est rectiligne la trajectoire est une droite. * Le mouement est uniforme (intensité du ecteur itesse instantanée)

Plus en détail