Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1

Dimension: px
Commencer à balayer dès la page:

Download "Cryptographie RSA. Introduction Opérations Attaques. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1"

Transcription

1 Cryptographie RSA Introduction Opérations Attaques Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 1

2 Introduction Historique: Rivest Shamir Adleman ou RSA est un algorithme asymétrique de cryptographie à clé publique, très utilisé dans le commerce électronique, et plus généralement pour échanger des données confidentielles sur Internet. Cet algorithme est fondé sur l'utilisation d'une paire de clés composée d'une clé publique pour chiffrer et d'une clé privée pour déchiffrer des données confidentielles Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 2

3 Introduction Fonctionnement général Alice crée la paire de clés (public et privé), envoie sa clé public à Bob. Bob chiffre message M avec ce clé, renvoyer message chiffré C àalice. Alice déchiffre C avec sa clé privée Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 3

4 Opérations Génération des clés Choisir p et q, deux nombres premiers distincts n=pq Calculer l'indicatrice d'euler de n : ϕ ( n) = ( p 1)( q 1) Choisir un entier e, tel que 1 < e< ϕ( n) et premier avec, ϕ( n) appelé «exposant de chiffrement». Calculer d : de 1 mod ϕ( n) de 1 mod ϕ( n) de k ϕ( n) = 1 Extended Euclidean Algorithm : ax + by = gcd( ab, ) (n,e) clé public (n,d) clé privé Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 4

5 Opérations Encryptions c Décryptions mod n mod n Car mod n ed = 1 + kϕ( n). m m c c ( m ) m d d e d ed ed 1 + kϕ( n) k ϕ( n) m m m( m ) m e mod n Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 5

6 Opérations k mm ( ) ϕ ( n)? m mod n Si m premier avec n, d après le théorème d Euler ( n) a ϕ 1 mod n m ϕ mod n m 1 m mod n k ( n) ( ) 1 Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 6

7 Opérations Si m n est pas premier avec n, d après le théorème Chinese remainder, x a 1 x a 2... mod x a k n mod mod 1 n 2 n K Du coup, toutes les solutions x pour ce systeme sont congruentes modulo le produit N = n1n2 nk D après ce théorème on peut séparer à deux: mm ( ) mm ( ) k ( p 1)( q 1) k ( p 1)( q 1) m m mod p mod q Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 7

8 Opérations Supposons m n est pas premier avec p, donc m est un multiple de p mm k ( p 1)( q 1) ( ) 0 m mod p Donc m est premier avec q, d après le théorème d Euler mm ( ) k( p 1) ( q 1) m mod q Grâce au théorème Chinese remainder mm ( ) k ( p 1)( q 1) m mod p q Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 8

9 Exemple 1. Choisir deux entier premier p = 7 et q = n = pq ; n = 7*19 = ϕ ( n) = ( p 1)( q 1) ; ϕ( n) = (7-1)(19-1) = Choisir e > 1 premier avec 108; e = 5 5. Calculer d par ϕ n de 1 mod () d = 65 car 5 65 = 325 = Donc la clé public est (n=133, e=5); la clé privé est (n=133, d=65) Ensuite on prend un message m=6. Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 9

10 Exemple Chiffrer 5 c = 6 Déchiffrer mod 133 = m = 62 mod 133 = 6 On utilise la méthode modulo exponentiation m = C d % n = % 133 = 62 * % 133 = 62 * (62 2 ) 32 % 133 = 62 * % 133 = 62 * (3844 % 133) 32 % 133 = 62 * % 133 Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 10

11 Exemple = 62 * % 133 = 62 * 99 8 % 133 = 62 * 92 4 % 133 = 62 * 85 2 % 133 = 62 * 43 % 133 = 2666 % 133 = 6 Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 11

12 Attaques Mathématique Attaques: Factorisation un Grand nombre Idée: retrouver p et q en factoriser le modulo N Méthode Fermat Méthode Euler Méthode Pollard s Rho Implémentation Attaque: Obtention de physique implémentation d un système cryptographie Timing Attack Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 12

13 Mathématiques Attaques Méthode Fermat n p + = 2 q 2 p q 2 2 Choisir k, le plus petit entier tell que Augmenter k un par un jusqu à ce qu il existe un entier h Et n = (k+g+h)(k+g-h) 2 k > n ( ) 2 2 k + g n = h Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 13

14 Mathématiques Attaques Méthode Pollard s Rho Choisir r, s plus petit que N Si pgcd(r-s,n) # 1, pgcd(r-s,n) est un diviseur de N Sinon, choisir une autre couple (r,s) En effet, a la prochaine itération r = f(r), s = (f(s)) En général f(x)= x 2 + a Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 14

15 Mathématiques Attaques Résultats d implémentions en Java Dell Inspiron D6000 processor 1.6 Ghz chips Intel Pentium M Number of bit (N) Method Rho Fermat Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 15

16 Implémentation Attaque Timing Attack : But: retrouver la clé privé d Algorithme de Square and Multiply mod n. d= d = d.. od1 d t 1 z = C for j = 1 to t-1 do z (1) d j if then (2) endif endfor return z 2 z mod n ==1 z z. C mod n C d t 1 i= 0 d i.2 t 1 i Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 16

17 Implémentation Attaque Attaques Choisir 2 messages E F, tel que d Si nous devons faire mod n et mod n. j = 1 E F 2 E. E 3 2 < n < n < F 3 2 F.F Et, encore 3 F n - Si d 2 2 =0 nous devons faire mod n et F mod n j - Conclusion, si temp(e) < temp(f) le bit est 1, 0 dans le cas contraire. E Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 17

18 Implémentation Attaque The messages E et F Problème: difficile de décider le temps différent En effet, on doit baser sur les probabilités Choisir 2 séries E1..Ek, F1..Fk, calculer le temps moyen, et si temp(emoy) < temp(fmoy)+e c est le bit 1 e peut être déterminée par expériences. En réalité le nombre k de messages est de taille Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 18

19 Implémentation Attaque Résultats en Java (Dell Inspiron D6000 processor 1.6 Ghz chips Intel Pentium M ) Length of private key Number of bits error Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 19

20 Implémentation Attaque Réalité Document Pratical Timing Attack Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 20

21 Conclusion Fort algorithme peut être détruit par une attaque simple Cryptographie RSA NGUYEN Tuong Lan - LIU Yi 21

HISTORIQUE. Code de César : permutation et substitution (code monoalphabétique) Analyse des fréquences d apparition (Al Kindi 9 ème siècle)

HISTORIQUE. Code de César : permutation et substitution (code monoalphabétique) Analyse des fréquences d apparition (Al Kindi 9 ème siècle) NOMBRES PREMIERS et CRYPTOGRAPHIE Jean Cailliez HISTORIQUE Code de César : permutation et substitution (code monoalphabétique) Analyse des fréquences d apparition (Al Kindi 9 ème siècle) Code de Vigenère

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Chiffrement à clef publique ou asymétrique

Chiffrement à clef publique ou asymétrique Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 pierre-louis.cayrel@xlim.fr Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT

Plus en détail

7 Cryptographie (RSA)

7 Cryptographie (RSA) 7 Cryptographie (RSA) Exponentiation modulaire On verra que le système de cryptage RSA nécessite d effectuer une exponentiation modulaire, c est-à-dire de calculer a n mod m, lorsque m et n sont très grands.

Plus en détail

Arithmétique modulaire et applications à la cryptographie

Arithmétique modulaire et applications à la cryptographie Arithmétique modulaire et applications à la cryptographie Etant donné un entier n, l arithmétique modulo n consiste à faire des calculs sur les restes dans la division euclidienne des entiers par n. Exemples

Plus en détail

Cryptographie. Cours 3/8 - Chiffrement asymétrique

Cryptographie. Cours 3/8 - Chiffrement asymétrique Cryptographie Cours 3/8 - Chiffrement asymétrique Plan du cours Différents types de cryptographie Cryptographie à clé publique Motivation Applications, caractéristiques Exemples: ElGamal, RSA Faiblesses,

Plus en détail

Cryptographie à clé publique

Cryptographie à clé publique Les systèmes à clé publique Cryptographie à clé publique Systèmes symétriques : même clé pour le chiffrement et le déchiffrement Problèmes : transmission de la clé 1 clé par destinataire Système asymétrique

Plus en détail

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Chiffrement asymétrique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Chiffrement asymétrique E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr I. CHIFFREMENT ASYMÉTRIQUE I.1. CHIFFREMENT À CLÉ PUBLIQUE Organisation de la section

Plus en détail

Mathématiques et Cryptographie

Mathématiques et Cryptographie Paul Zimmermann INRIA Nancy - Grand Est et LORIA Colloque «Les mathématiques dans la société» Académie Lorraine des Sciences 20 novembre 2010 Chiffrement par décalage (César) A B C D E F G H I J K L M

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech pierre.rouchon@mines-paristech.fr Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions

Plus en détail

Sur l algorithme RSA

Sur l algorithme RSA Sur l algorithme RSA Le RSA a été inventé par Rivest, Shamir et Adleman en 1978. C est l exemple le plus courant de cryptographie asymétrique, toujours considéré comme sûr, avec la technologie actuelle,

Plus en détail

Quelle sécurité? Cryptographie à clé publique. Fonction à sens unique. Clés publiques. ! Notion de trappe. Repose sur la sécurité calculatoire.

Quelle sécurité? Cryptographie à clé publique. Fonction à sens unique. Clés publiques. ! Notion de trappe. Repose sur la sécurité calculatoire. Quelle sécurité? Repose sur la sécurité calculatoire. Signification : cryptanalyste déploie plus d efforts de calcul pour retrouver le clair (ou la clé) à partir du chiffré que la durée de vie du clair.

Plus en détail

Calculateur quantique: factorisation des entiers

Calculateur quantique: factorisation des entiers Calculateur quantique: factorisation des entiers Plan Introduction Difficulté de la factorisation des entiers Cryptographie et la factorisation Exemple RSA L'informatique quantique L'algorithme quantique

Plus en détail

Sécurité et systèmes embarqués

Sécurité et systèmes embarqués Sécurité et systèmes embarqués Pablo Rauzy pablo rauzy @ univ-paris8 fr pablo.rauzy.name/teaching/sese UFR MITSIC / M1 informatique Séance 2 La cryptographie asymétrique Pablo Rauzy (Paris 8 / LIASD) Sécurité

Plus en détail

Chapitre II. Introduction à la cryptographie

Chapitre II. Introduction à la cryptographie Chapitre II Introduction à la cryptographie PLAN 1. Terminologie 2. Chiffrement symétrique 3. Chiffrement asymétrique 4. Fonction de hachage 5. Signature numérique 6. Scellement 7. Echange de clés 8. Principe

Plus en détail

Cryptographie asymétrique L'exemple de RSA. Trance

Cryptographie asymétrique L'exemple de RSA. Trance Cryptographie asymétrique L'exemple de RSA Trance trancefusion@hotmail.fr www.ghostsinthestack.org Sommaire Introduction à la cryptographie Cryptographie symétrique Principe, exemples, avantage / inconvénient

Plus en détail

Cryptologie. Algorithmes à clé publique. Jean-Marc Robert. Génie logiciel et des TI

Cryptologie. Algorithmes à clé publique. Jean-Marc Robert. Génie logiciel et des TI Cryptologie Algorithmes à clé publique Jean-Marc Robert Génie logiciel et des TI Plan de la présentation Introduction Cryptographie à clé publique Les principes essentiels La signature électronique Infrastructures

Plus en détail

CRYPTANALYSE DE RSA. Abderrahmane Nitaj. Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France. http://www.math.unicaen.

CRYPTANALYSE DE RSA. Abderrahmane Nitaj. Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France. http://www.math.unicaen. CRYPTANALYSE DE RSA Abderrahmane Nitaj Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France http://wwwmathunicaenfr/~nitaj nitaj@mathunicaenfr c Version du 28 juin 2009 Table des matières

Plus en détail

Cryptographie. Cryptographie. Système de chiffrement RSA. Yoann Morel. http://xymaths.free.fr/index.php?subdir=signal

Cryptographie. Cryptographie. Système de chiffrement RSA. Yoann Morel. http://xymaths.free.fr/index.php?subdir=signal Cryptographie Système de chiffrement RSA Yoann Morel http://xymaths.free.fr/index.php?subdir=signal La mathématique est la reine des Sciences, mais la théorie des nombres est la reine des sciences mathématiques.

Plus en détail

Codage - Cryptographie

Codage - Cryptographie Codage - Cryptographie Emmanuel Jeandel (emmanuel.jeandel@lif.univ-mrs.fr) http://www.lif.univ-mrs.fr/ ejeandel/enseignement.html 28 mars 2011 1 Partages de Secret Q 1) Trouver un protocole pour que Alice

Plus en détail

Chiffrement à clef publique, authentification et distribution des clefs. Plan

Chiffrement à clef publique, authentification et distribution des clefs. Plan Chiffrement à clef publique, authentification et distribution des clefs Sécurité des réseaux informatiques 1 Plan Les principes de l'authentification de message Les fonctions de hachage sécurisées SHA-1

Plus en détail

Projet de Mathématiques pour l Informatique N 1

Projet de Mathématiques pour l Informatique N 1 DESTREE Lucile MARCHAL Mickaël P2 Groupe B Mini-RSA Programme d initiation au chiffrement RSA Projet de Mathématiques pour l Informatique N 1 Sommaire Introduction... 3 Présentation du cryptage RSA...

Plus en détail

Arithmétique modulaire pour la cryptographie

Arithmétique modulaire pour la cryptographie Académie de Montpellier U n i v e r s i t é M o n t p e l l i e r I I Sciences et Techniques du Languedoc Thèse présentée au Laboratoire d Informatique de Robotique et de Microélectronique de Montpellier

Plus en détail

RSA, le Revenu de Solidarité Active.

RSA, le Revenu de Solidarité Active. RSA, le Revenu de Solidarité Active. Revenu de solida-quoi? Quelques notions économiques: Le revenu de solidarité active (RSA) assure aux personnes sans ressources ou disposant de faibles ressources un

Plus en détail

CH.5 SYSTÈMES À CLÉ PUBLIQUE

CH.5 SYSTÈMES À CLÉ PUBLIQUE CH.5 SYSTÈMES À CLÉ PUBLIQUE 5.1 Les clés publiques : RSA 5.2 Les clés publiques : le sac à dos 5.3 Les clés publiques : le logarithme discret 5.4 L'authentification et la signature électronique 5.5 Les

Plus en détail

Cryptographie. Lycée Jean de Pange Sarreguemines 10 février 2012. Paul Zimmermann INRIA Nancy - Grand Est

Cryptographie. Lycée Jean de Pange Sarreguemines 10 février 2012. Paul Zimmermann INRIA Nancy - Grand Est Paul Zimmermann INRIA Nancy - Grand Est Lycée Jean de Pange Sarreguemines 10 février 2012 cryptographie : construction de codes secrets cryptanalyse : «cassage» de codes secrets cryptologie = cryptographie

Plus en détail

Différents problèmes Procédés de chiffrement symétriques Le chiffrement asymétrique Un peu d arithmétique. Cryptographie

Différents problèmes Procédés de chiffrement symétriques Le chiffrement asymétrique Un peu d arithmétique. Cryptographie Cryptographie François Ducrot http://math.univ-angers.fr Décembre 2012 Terminologie Cryptographie Étude des méthodes permettant de transmettre des données de façon confidentielle. Cryptanalyse Étude des

Plus en détail

CRYPTOGRAPHIE. Signature électronique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie

CRYPTOGRAPHIE. Signature électronique. E. Bresson. Emmanuel.Bresson@sgdn.gouv.fr. SGDN/DCSSI Laboratoire de cryptographie CRYPTOGRAPHIE Signature électronique E. Bresson SGDN/DCSSI Laboratoire de cryptographie Emmanuel.Bresson@sgdn.gouv.fr I. SIGNATURE ÉLECTRONIQUE I.1. GÉNÉRALITÉS Organisation de la section «GÉNÉRALITÉS»

Plus en détail

Les risques liés à la signature numérique. Pascal Seeger Expert en cybercriminalité

Les risques liés à la signature numérique. Pascal Seeger Expert en cybercriminalité Les risques liés à la signature numérique Pascal Seeger Expert en cybercriminalité Présentation Pascal Seeger, expert en cybercriminalité Practeo SA, Lausanne Partenariat avec Swisscom SA, Zurich Kyos

Plus en détail

Factorisation d entiers (première partie)

Factorisation d entiers (première partie) Factorisation d entiers ÉCOLE DE THEORIE DES NOMBRES 0 Factorisation d entiers (première partie) Francesco Pappalardi Théorie des nombres et algorithmique 22 novembre, Bamako (Mali) Factorisation d entiers

Plus en détail

Algorithmie ISI301 TP 3 : Cryptographie

Algorithmie ISI301 TP 3 : Cryptographie Algorithmie ISI301 TP 3 : Cryptographie 1 Code de César Cette façon de coder des messages très ancienne, César l aurait utilisée, repose sur une substitution monoalphabétique particulière, c est à dire

Plus en détail

Architectures et Protocoles des Réseaux

Architectures et Protocoles des Réseaux Chapitre 7 - Cryptographie et sécurité dans les réseaux informatiques Claude Duvallet Université du Havre UFR Sciences et Techniques 25 rue Philippe Lebon - BP 540 76058 LE HAVRE CEDEX Claude.Duvallet@gmail.com

Plus en détail

Cryptosystème asymétrique - RSA Rivest Shamir Adleman

Cryptosystème asymétrique - RSA Rivest Shamir Adleman Cryptosystème asymétrique - RSA Rivest Shamir Adleman Université de Rennes 1 Algèbre & Arithmétique 1 6 décembre 2011 Plan 1- Utilité du RSA Exemple d utilisation de RSA avec la messagerie 2- Fondement

Plus en détail

Quelques tests de primalité

Quelques tests de primalité Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest Jean-Marc.Couveignes@u-bordeaux.fr École de printemps C2 Mars

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

INF4420: Sécurité Informatique

INF4420: Sécurité Informatique : Cryptographie III José M. Fernandez M-3109 340-4711 poste 5433 Aperçu Crypto III Cryptographie à clé publique (suite) RSA (suite) Problème du log discret Chiffre de El-Gamal Chiffrement à courbe elliptique

Plus en détail

Mathématiques Pour l Informatique I : Arithmétique et Cryptographie. Serge Iovleff

Mathématiques Pour l Informatique I : Arithmétique et Cryptographie. Serge Iovleff Mathématiques Pour l Informatique I : Arithmétique et Cryptographie Serge Iovleff 15 novembre 2004 Table des matières 1 Arithmétique 2 1.1 Arithmétique dans Z....................... 2 1.2 Arithmétique

Plus en détail

Congruences et théorème chinois des restes

Congruences et théorème chinois des restes Congruences et théorème chinois des restes Michel Van Caneghem Février 2003 Turing : des codes secrets aux machines universelles #2 c 2003 MVC Les congruences Développé au début du 19ème siècle par Carl

Plus en détail

Introduction à la cryptologie.

Introduction à la cryptologie. Université Joseph Fourier, Grenoble I UFR IM 2 AG, Master 1 maths/info Année 2011/2012, 1er semestre Introduction à la cryptologie. TP du 9 décembre 2011, de 13h30 à 16h45, durée 3h. Cours de Alexei Pantchichkine

Plus en détail

Petite introduction aux protocoles cryptographiques. Master d informatique M2

Petite introduction aux protocoles cryptographiques. Master d informatique M2 Petite introduction aux protocoles cryptographiques Master d informatique M2 Les protocoles cryptographiques p.1/48-1 Internet - confidentialité - anonymat - authentification (s agit-il bien de ma banque?)

Plus en détail

Technologies de l Internet. Partie 6 : Introduction à la sécurité dans le web Iulian Ober iulian.ober@irit.fr

Technologies de l Internet. Partie 6 : Introduction à la sécurité dans le web Iulian Ober iulian.ober@irit.fr Technologies de l Internet Partie 6 : Introduction à la sécurité dans le web Iulian Ober iulian.ober@irit.fr Cryptage avec clé secrète même clé I think it is good that books still exist, but they do make

Plus en détail

La signature électronique et les réseaux de confiance

La signature électronique et les réseaux de confiance La signature électronique et les réseaux de confiance Marc.Schaefer@he-arc.ch HE-Arc Ingénierie Institut des systèmes d'information et de communication (ISIC) Laboratoire de téléinformatique (TINF) Plan

Plus en détail

Cours 14. Crypto. 2004, Marc-André Léger

Cours 14. Crypto. 2004, Marc-André Léger Cours 14 Crypto Cryptographie Définition Science du chiffrement Meilleur moyen de protéger une information = la rendre illisible ou incompréhensible Bases Une clé = chaîne de nombres binaires (0 et 1)

Plus en détail

Le problème. Éric Wegrzynowski. 29 avril Introduction. Principe RSA. Comment Alice et Bob peuvent-ils faire pour partager une clé

Le problème. Éric Wegrzynowski. 29 avril Introduction. Principe RSA. Comment Alice et Bob peuvent-ils faire pour partager une clé Éric Wegrzynowski 29 avril 2010 Le problème Comment Alice et Bob peuvent-ils faire pour partager une clé secrète? Réponses : Impraticable se rencontrer physiquement pour échanger une clé secrète ; Praticable

Plus en détail

Audit et Sécurité Informatique

Audit et Sécurité Informatique 1 / 66 Audit et Sécurité Informatique Chap 4: Algorithmes à clé publique, Hachage, MAC, Signature Numérique Rhouma Rhouma https://sites.google.com/site/rhoouma Ecole superieure d Economie Numerique 3ème

Plus en détail

Bribes de cryptographie

Bribes de cryptographie Bribes de cryptographie L1 cursus prépa. 3 décembre 2014 I Protocole de Diffie-Hellman II Difficulté de la factorisation III Méthode de cryptage RSA Le pays des facteurs malhonnêtes Alice et Bob vivent

Plus en détail

HAÏUN MEIR IFERGAN HAÏM CRYPTOLOGIE SOUS SCILAB

HAÏUN MEIR IFERGAN HAÏM CRYPTOLOGIE SOUS SCILAB HAÏUN MEIR IFERGAN HAÏM CRYPTOLOGIE SOUS SCILAB 1 SOMMAIRE INTRODUCTION.3 I) LE CODE DE VIGENERE... 4 1) Biographie de Vigenère....4 2) Comment crypter un message avec le code de Vigenère 4 3) Implémentation

Plus en détail

Cryptographie et fonctions à sens unique

Cryptographie et fonctions à sens unique Cryptographie et fonctions à sens unique P. Rouchon Ecole des Mines de Paris Centre Automatique et Systèmes Novembre 2007 Plan 1 Fonction à Sens unique Notion intuitive Stockage des mots de passe 2 Exponentielle

Plus en détail

Chaînes d addition Euclidiennes Appliquées à la Multiplication de Points sur les Courbes Elliptiques

Chaînes d addition Euclidiennes Appliquées à la Multiplication de Points sur les Courbes Elliptiques Chaînes d addition Euclidiennes Appliquées à la Multiplication de Points sur les Courbes Elliptiques Nicolas Méloni ARITH-LIRMM, Université Montpellier2, France I3M, Université Montpellier2, France 23

Plus en détail

2. Optimisation de l'exponentiation modulaire

2. Optimisation de l'exponentiation modulaire Timing attack et hyperthreading Les processeurs modernes sont de plus en plus compliqués et difficiles à mettre en œuvre. Qu en est il de la sécurité des implémentations? Peut on exploiter les avancées

Plus en détail

Certificats X509 & Infrastructure de Gestion de Clés. Claude Gross CNRS/UREC

Certificats X509 & Infrastructure de Gestion de Clés. Claude Gross CNRS/UREC Certificats X509 & Infrastructure de Gestion de Clés Claude Gross CNRS/UREC 1 Confiance et Internet Comment établir une relation de confiance indispensable à la réalisation de transaction à distance entre

Plus en détail

Arithmétique. Partie 3 : Introduction à la cryptologie. Laurent Debize. Lexique Les deux types de cryptographie Théorèmes Application à la cryptologie

Arithmétique. Partie 3 : Introduction à la cryptologie. Laurent Debize. Lexique Les deux types de cryptographie Théorèmes Application à la cryptologie 1/36 Lexique Les deux types de cryptographie Théorèmes Application à la cryptologie Arithmétique Partie 3 : Introduction à la cryptologie Laurent Debize Ingésup 2/36 Lexique Les deux types de cryptographie

Plus en détail

Projet de Veille Technologique : la sécurité informatique - Chaînes de Confiance sur Internet -

Projet de Veille Technologique : la sécurité informatique - Chaînes de Confiance sur Internet - Projet de Veille Technologique : la sécurité informatique - Chaînes de Confiance sur Internet - Marc Tremsal Alexandre Languillat Table des matières INTRODUCTION... 3 DEFI-REPONSE... 4 CRYPTOGRAPHIE SYMETRIQUE...

Plus en détail

Les dessous de la cryptographie à clé publique

Les dessous de la cryptographie à clé publique Les dessous de la cryptographie à clé publique Christiane Rousseau Université de Montréal De tout temps l homme a cherché des moyens de transmettre des messages secrets et a inventé des codes secrets de

Plus en détail

Panorama de la cryptographie des courbes elliptiques

Panorama de la cryptographie des courbes elliptiques Panorama de la cryptographie des courbes elliptiques Damien Robert 09/02/2012 (Conseil régional de Lorraine) La cryptographie, qu est-ce que c est? Définition La cryptographie est la science des messages

Plus en détail

Feuille d exercices 1

Feuille d exercices 1 Complexité Exercice 1 Démontrer que a) n 2 /2 O(n) b) 5n+3 = O(n) c) 30n+5 = O(n 2 ) d) 4n 3 +5n 2 +10 = O(n 3 ). Exercice 2 Donnez la complexité (en fonction de n) de l algorithme suivant. Vous donnerez

Plus en détail

Introduction à l informatique

Introduction à l informatique Introduction à l informatique Julien Tesson Université Paris-Est Créteil UFR Droit 2012 J. Tesson, Informatique - UFR Droit. 2012 1 / 25 Présentation Julien Tesson Maitre de conférence (Informatique) Mail

Plus en détail

Algorithmes de chiffrement symétrique par bloc (DES et AES) Pierre-Alain Fouque Equipe de Cryptographie Ecole normale supérieure

Algorithmes de chiffrement symétrique par bloc (DES et AES) Pierre-Alain Fouque Equipe de Cryptographie Ecole normale supérieure Algorithmes de chiffrement symétrique par bloc (DES et AES) Pierre-Alain Fouque Equipe de Cryptographie Ecole normale supérieure 1 Chiffrement symétrique Définition : Un algorithme de chiffrement symétrique

Plus en détail

Algorithmique Cours 5 : Cryptographie et cryptosystème RSA ROB3 année

Algorithmique Cours 5 : Cryptographie et cryptosystème RSA ROB3 année Algorithmique Cours 5 : Cryptographie et cryptosystème RSA ROB3 année 2014-2015 Cryptographie et web Avant l'apparition du web, la cryptographie servait essentiellement à assurer la confidentialité des

Plus en détail

INF 4420: Sécurité Informatique Cryptographie II

INF 4420: Sécurité Informatique Cryptographie II : Cryptographie II José M. Fernandez M-3106 340-4711 poste 5433 Aperçu Crypto II Types de chiffrement Par bloc vs. par flux Symétrique vs. asymétrique Algorithmes symétriques modernes DES AES Masque jetable

Plus en détail

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Nombres premiers. Comment reconnaître un nombre premier? Mais... Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement

Plus en détail

Tutorial sur la Cryptographie et le système de cryptage à clef publique RSA

Tutorial sur la Cryptographie et le système de cryptage à clef publique RSA Tutorial sur la Cryptographie et le système de cryptage à clef publique RSA I. Introduction II. L algorithme RSA III. Un peu de mathématiques IV. RSA tool² V. Application sur un Crackme VI. Factorisation

Plus en détail

Cryptologie à clé publique

Cryptologie à clé publique Cryptologie à clé publique La cryptologie est partout Chacun utilise de la crypto tous les jours sans forcément sans rendre compte en : - téléphonant avec un portable - payant avec sa carte bancaire -

Plus en détail

Les Algorithmes Cryptographiques Asymétriques

Les Algorithmes Cryptographiques Asymétriques Les Algorithmes Cryptographiques Asymétriques Omar Cheikhrouhou Omar.cheikhrouhou@isetsf.rnu.tn ISET SFAX, 2009-2010 1 Plan Introduction Principe Description Performances Modes d'utilisation Algorithmes

Plus en détail

Arithmétique et Cryptographie, Partie II Applications cryptographiques des pairings

Arithmétique et Cryptographie, Partie II Applications cryptographiques des pairings Arithmétique et Cryptographie, Partie II Applications cryptographiques des pairings A. Bonnecaze Institut de Mathématiques de Luminy (IML) Oujda, Mai 2009 A. Bonnecaze (IML) Arithmétique et Cryptographie,

Plus en détail

L ALGORITHME RSA : SYNTHÈSE ET IMPLANTATION

L ALGORITHME RSA : SYNTHÈSE ET IMPLANTATION L ALGORITHME RSA : SYNTHÈSE ET IMPLANTATION par Sébastien Bolduc Stéphane Drouin présenté à M. Marc Parizeau Mathématiques discrètes du génie informatique IFT-19496 Université Laval Le 10 décembre 1997

Plus en détail

fva3qe!408$q 2C yg*6xp w6840%f 74g68&m

fva3qe!408$q 2C yg*6xp w6840%f 74g68&m fva3qe!408$q 2C yg*6xp w6840%f 74g68&m q0ci8.&.a3 yyc3* a-2 1/26 Mathématiques du secret Lancelot PECQUET Université Paris XII 2/26 Plan 1. Définitions de base ; 2. Cryptologie antique et moderne, notion

Plus en détail

CRYPTOGRAPHIE. Un système de cryptographie est une technique permettant de protéger une communication au moyen d'un code secret.

CRYPTOGRAPHIE. Un système de cryptographie est une technique permettant de protéger une communication au moyen d'un code secret. CRYPTOGRAPHIE Un système e cryptographie est une technique permettant e protéger une communication au moyen 'un coe secret. Il existe eux grans types e cryptographie : - La cryptographie symétrique à clé

Plus en détail

1 La cryptographie affine

1 La cryptographie affine 1 La cryptographie affine a/ Présentation On associe à chaque lettre de l alphabet numérotée par le nombre x de l intervalle [ 0 ; 25 ], le nombre y défini par y = ax + b où a et b sont deux nombres connus

Plus en détail

1 - Chiffrement ou Cryptage, Déchiffrement ou Décryptage?

1 - Chiffrement ou Cryptage, Déchiffrement ou Décryptage? Avertissements : Le contenu de ce document est sous licence GPL. Le document est librement diffusable dans le contexte de cette licence. Toute modification est encouragée et doit être signalée à othebaud@e-watching.net

Plus en détail

Correction TD de cryptographie n o 1

Correction TD de cryptographie n o 1 Sécurité / Cryptologie Correction TD de cryptographie n o 1 Ce TD survole les différents concepts vus en cours 1 Se familiariser avec les ordres de grandeur Exercice 1. La force brute Le facteur de travail

Plus en détail

TP Sage. Yannick Renard.

TP Sage. Yannick Renard. TP Sage. Yannick Renard. 1. Introduction. Le logiciel Software for Algebra and Geometry Experimentation (Sage) est un logiciel de mathématiques qui rassemble de nombreux programmes et bibliothèques libres

Plus en détail

(introduction à la) Cryptographie à clef publique

(introduction à la) Cryptographie à clef publique (introduction à la) Cryptographie à clef publique Charles Bouillaguet 22 janvier 2015 1 Chiffrement à clef publique On a vu la semaine dernière qu il existe depuis longtemps des mécanismes de chiffrement

Plus en détail

Introduction à la cryptographie à clef publique

Introduction à la cryptographie à clef publique {Franck.Leprevost,Sebastien.Varrette,Nicolas.Bernard}@uni.lu Université du Luxembourg, CESI-LACS, Luxembourg Laboratoire ID-IMAG, Grenoble, France Master CSCI - 2005-2006 Outlines 1 Génération de nombres

Plus en détail

Sécurité avancée des réseaux Cryptographie

Sécurité avancée des réseaux Cryptographie Sécurité avancée des réseaux Cryptographie IUT d Auxerre Département RT 2ème année 2013-2014 ZHANG Tuo tuo.zhang@u-bourgogne.fr http://www-l2ti.univ-paris13.fr/~zhang/ 1 Outline Services de sécurité Chiffrement(Encryption)

Plus en détail

Découverte de la cryptographie

Découverte de la cryptographie Maxime Arthaud et Korantin Auguste net7 Jeudi 14 novembre 2013 Syllabus Introduction 1 Introduction 2 La cryptographie, Qu est-ce que c est? Chiffrement ou signature de messages par des clés La cryptographie,

Plus en détail

Introduction à la cryptologie

Introduction à la cryptologie 1 / 76 Introduction à la cryptologie Guillaume RENIER 2013-2014 2 / 76 Plan du cours Formation journalistes. Mise à jour : December 2, 2013 3 / 76 Formation journalistes. 4 / 76 Intervention collège Sainte

Plus en détail

Chapitre 3 INTÉGRITÉ ET AUTHENTIFICATION

Chapitre 3 INTÉGRITÉ ET AUTHENTIFICATION Chapitre 3 INTÉGRITÉ ET AUTHENTIFICATION 32 Services souhaités par la cryptographie Confidentialité : Rendre le message secret entre deux tiers Authentification : Le message émane t-il de l expéditeur

Plus en détail

Gestion des certificats digitaux et méthodes alternatives de chiffrement

Gestion des certificats digitaux et méthodes alternatives de chiffrement Gestion des certificats digitaux et méthodes alternatives de chiffrement Mai 2011 Julien Cathalo Section Recherches Cryptographie à clé publique Invention du concept : 1976 (Diffie, Hellman) Premier système

Plus en détail

Chapitre 7. Sécurité des réseaux. Services, attaques et mécanismes cryptographiques. Hdhili M.H. Cours Administration et sécurité des réseaux

Chapitre 7. Sécurité des réseaux. Services, attaques et mécanismes cryptographiques. Hdhili M.H. Cours Administration et sécurité des réseaux Chapitre 7 Sécurité des réseaux Services, attaques et mécanismes cryptographiques Hdhili M.H Cours Administration et sécurité des réseaux 1 Partie 1: Introduction à la sécurité des réseaux Hdhili M.H Cours

Plus en détail

Sécurisation des données : Cryptographie et stéganographie

Sécurisation des données : Cryptographie et stéganographie Licence 2ème Année V. Pagé (google vpage) Sécurisation des données : Cryptographie et stéganographie Objectifs du cours Introduction à la Cryptographie : Notions de Stéganographie : Image Cachée Premiere

Plus en détail

Chapitre 5: La cryptographie à clé publique: RSA

Chapitre 5: La cryptographie à clé publique: RSA LA CRYPTOGRAPHIE A CLE PUBLIQUE: RSA 53 Chapitre 5: La cryptographie à clé publique: RSA 5.1 Quelques nouveaux outils mathématiques (appliqués dans MuPAD) Rappels : Deux nombres d et e sont dits inverses

Plus en détail

Les Courbes. Elliptiques pour la Sécurité des Appareils. Mobiles. ACI Sécurité Informatique IRISA Rennes 11 12 Décembre 2003

Les Courbes. Elliptiques pour la Sécurité des Appareils. Mobiles. ACI Sécurité Informatique IRISA Rennes 11 12 Décembre 2003 Les Courbes Elliptiques pour la Sécurité des Appareils Mobiles LIENS CNRS Ecole normale supérieure TANC INRIA Ecole polytechnique ACI Sécurité Informatique IRISA Rennes 11 12 Décembre 2003 La cryptographie

Plus en détail

Fonction de hachage et signatures électroniques

Fonction de hachage et signatures électroniques Université de Limoges, XLIM-DMI, 123, Av. Albert Thomas 87060 Limoges Cedex France 05.55.45.73.10 pierre-louis.cayrel@xlim.fr Licence professionnelle Administrateur de Réseaux et de Bases de Données IUT

Plus en détail

Algorithmique. Rappels mathématiques.

Algorithmique. Rappels mathématiques. Algorithmique.. Anca Nitulescu anca.nitulescu@ens.fr Ecole Normale Supérieure, Paris Cours 2 1/49 Anca Nitulescu anca.nitulescu@ens.fr Introduction à la cryptographie Définition Complexité des algorithmes

Plus en détail

Activité professionnelle N

Activité professionnelle N BTS SIO Services Informatiques aux Organisations Option SISR Session 2015 Loïc BONNIN Activité professionnelle N NATURE DE L'ACTIVITE Contexte Objectifs Lieu de réalisation Projet personnel réalisé en

Plus en détail

Morphologie industrielle. Economies des réseaux. Economie des services

Morphologie industrielle. Economies des réseaux. Economie des services Morphologie industrielle Bases du numérique Relations verticales Relations horizontales Dynamiques de standards Economies des réseaux Structures de coûts: rendements croissants Infrastructures essentielles

Plus en détail

Des nombres remarquables

Des nombres remarquables Des nombres remarquables SOMMAIRE : Nombres de Fermat Nombres de Mersenne Nombres parfaits Nombres pseudo-premiers nombres de Poulet nombres de Carmichaël nombres de Chernik et bien sûr : Nombres premiers

Plus en détail

1 Exercices à savoir faire

1 Exercices à savoir faire Licence 1 Mathématiques 2013 2014 Algèbre et Arithmétique 1 Feuille n 5 : Congruences, indicatrice d Euler, RSA 1 Exercices à savoir faire Exercice 1 1 Trouver tous les couples (x, y) Z 2 tels que 3x +

Plus en détail

Introduction à la Cryptographie

Introduction à la Cryptographie Introduction à la Cryptographie 5. Cryptographie asymétrique (1) E. Thomé (cours et TD) Équipe Caramba, INRIA Nancy Telecom Nancy, 2A TRS 2016 http://www.loria.fr/~thome/teaching/2016-esial-crypto/ 2 /

Plus en détail

Étude, analyse et prototype d implémentation d un système de vote électronique à distance.

Étude, analyse et prototype d implémentation d un système de vote électronique à distance. UNIVERSITÉ LIBRE DE BRUXELLES Faculté des Sciences Département d Informatique Étude, analyse et prototype d implémentation d un système de vote électronique à distance. Mathieu Stennier Promoteurs : Prof.

Plus en détail

Le chiffrement par clé publique

Le chiffrement par clé publique Le chiffrement par clé publique 1 Concept Dans le cas des systèmes symétriques, on utilise une même clé pour le chiffrement et le déchiffrement. Le problème repose dans la transmission de la clé : il faut

Plus en détail

Sécurité informatique

Sécurité informatique Sécurité informatique Université Kasdi Merbah Ouargla Master RCS Octobre 2014 Département Informatique 1 Master RCS 1 Sécurité informatique Organisation du cours Ce cours a pour but de présenter les fondements

Plus en détail

Sécurité de l'information

Sécurité de l'information Sécurité de l'information Sylvain Duquesne Université Rennes 1, laboratoire de Mathématiques 24 novembre 2010 Les Rendez-Vous Mathématiques de l'irem S. Duquesne (Université Rennes 1) Sécurité de l'information

Plus en détail

Chiffrement complètement homomorphe Fully Homomorphic Encryption (FHE)

Chiffrement complètement homomorphe Fully Homomorphic Encryption (FHE) Réunion de rentrée du CLUSIR ISFA Chiffrement complètement homomorphe Fully Homomorphic Encryption (FHE) Fabien Laguillaumie 1 & Damien Stehlé 2 1 Professeur Univ Lyon 1/ISFA LIP 2 Professeur ENS de Lyon

Plus en détail

Les protocoles cryptographiques: comment sécuriser nos communications?

Les protocoles cryptographiques: comment sécuriser nos communications? Les protocoles cryptographiques: comment sécuriser nos communications? Stéphanie Delaune Chargée de recherche CNRS au LSV, INRIA projet SecSI & ENS Cachan 21 Mars 2014 S. Delaune (LSV Projet SecSI) Les

Plus en détail

La cryptographie du futur

La cryptographie du futur La cryptographie du futur Abderrahmane Nitaj Laboratoire de Mathématiques Nicolas Oresme Université de Caen, France nitaj@math.unicaen.fr http://www.math.unicaen.fr/~nitaj Résumé Sans nous rendre compte,

Plus en détail

Gestion des Clés. Pr Belkhir Abdelkader. 10/04/2013 Pr BELKHIR Abdelkader

Gestion des Clés. Pr Belkhir Abdelkader. 10/04/2013 Pr BELKHIR Abdelkader Gestion des Clés Pr Belkhir Abdelkader Gestion des clés cryptographiques 1. La génération des clés: attention aux clés faibles,... et veiller à utiliser des générateurs fiables 2. Le transfert de la clé:

Plus en détail

RSA - bases mathématiques

RSA - bases mathématiques RSA - bases mathématiques Jang Schiltz Centre Universitaire de Luxembourg Séminaire de Mathématiques 162A, avenue de la Faïencerie L-1511 Luxembourg Luxembourg E-mail:schiltzj@cu.lu 1 Divisibilité Définition

Plus en détail