Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième

Dimension: px
Commencer à balayer dès la page:

Download "Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième"

Transcription

1 GUYOT Stéphanie Professeur stagiaire en mathématiques au collège Lo Trentanel de GIGNAC I.U.F.M. de l académie de Montpellier Site de Montpellier Eléments de Choix d Utilisation de l Informatique dans l Enseignement des Mathématiques en Classe de Cinquième Directeur de mémoire : Madame CARDIN-LEDUC Assesseur : Monsieur LEROUGE Avril

2 Avril

3 ABSTRACT This memoir aims at showing the utility of a computer and its appropriate programmes in mathematics with a second - year group of pupils of a secondary school as follows : 1) A resuming lesson about the median of a segment 2) Discovery of the circle drawn out of a triangle 3) Approach to an experimental way of calculating the surface of a parallelogram. I. RESUME Ce mémoire a pour but d étudier les apports de l outil informatique en mathématiques en classe de cinquième pour les situations suivantes : 1) Séance de remédiation sur la médiatrice d un segment 2) Découverte du cercle circonscrit à un triangle 3) Initiation à la démarche expérimentale pour établir l aire du parallélogramme. II. MOTS-CLES iinformatique iatelier de Géométrie iworks imédiatrice icercle circonscrit iparallélogramme Avril

4 INTRODUCTION De nos jours, l informatique occupe une place prépondérante dans notre société. Les enfants en sont le reflet : ils sont des utilisateurs privilégiés de l ordinateur. En outre, la majorité des établissements scolaires est aujourd hui équipée de cette récente technologie. Dans le commerce, un grand nombre de logiciels éducatifs sont à notre disposition. Ce nouvel environnement ne peut pas être sans incidence sur notre enseignement traditionnel. Aussi, la question qu il importe de se poser n est pas «Qu allons - nous faire avec ces machines?», mais plutôt «Pourquoi et comment pouvons nous utiliser ce nouvel outil dans notre enseignement?». Dans ma classe de 5 ème, trois situations ont particulièrement retenu mon attention pour tenter d apporter un début de réponse à cette question : - une séance de remédiation sur la notion de médiatrice - la découverte du cercle circonscrit à un triangle - l initiation à la démarche expérimentale pour établir la formule de l aire du parallélogramme. L attrait des élèves pour cet environnement différent est certainement un avantage pour le professeur. Mais cet outil offre d autres possibilités pour l enseignement des mathématiques. Les observations décrites dans ce mémoire proviennent d une classe de 5 ème de 26 élèves. L établissement dans lequel j exerce dispose d une salle d informatique constituée de 14 ordinateurs montés en réseau et connectés, d ici la fin de l année scolaire, à Internet. Une salle de cours dispose également d un ordinateur relié à un grand écran de télévision. J ai choisi de décrire, tout d abord, une intervention informatique lors d une séance de remédiation sur la médiatrice d un segment. Ses propriétés d équidistance apparaissent dès la classe de 6 ème, puis sont reprises l année suivante avant d aborder en parallèle les propriétés de la symétrie axiale et de la symétrie centrale. On peut les énoncer de la façon suivante : - Si M est un point de la médiatrice du segment [AB], alors M est à égale distance de A et de B. Avril

5 - Si M est un point à égale distance des point A et B, alors M est sur la médiatrice du segment [AB]. La médiatrice intervient également lors du chapitre sur le cercle circonscrit à un triangle, deuxième support mathématique pour lequel j ai choisi d intégrer l informatique. Mon dernier choix concerne l initiation à la démarche expérimentale qui utilise la notion de conjecture. Conjecturer un résultat est une étape essentielle dans la résolution de certains problèmes de géométrie. Cette démarche doit être abordée très tôt au collège et occupe une place importante au lycée. Elle sera utilisée lors de la séquence sur l aire du parallélogramme. Cette dernière notion est nouvelle pour les élèves de 5 ème. La formule de l aire est donnée de la manière suivante : Pour calculer l aire d un parallélogramme, on multiplie un côté, appelé base, par la hauteur correspondante. Lors de l apprentissage de cette notion, les difficultés, non rencontrées pour l aire du rectangle, résident dans l intervention de la "hauteur" et dans le choix de la "base". Après avoir exposé les trois situations, présenté les deux logiciels retenus Atelier de Géométrie et Works (tableur) -, à travers la description et l analyse de séances en classe, je ferai un premier bilan de l utilisation de l informatique dans mon enseignement. Avril

6 I. PROBLEMATISATION Dès mon arrivée au collège de Gignac, l équipe pédagogique de mathématiques m a fait part des diverses installations informatiques de l établissement. Cette année toutes les classes de 5 ème bénéficient de cette nouvelle technologie - en particulier ma classe, en demi groupe sous l autorité de ma conseillère pédagogique, Mme Cardin-Leduc. Etonnée par leur vif intérêt pour ce domaine, j ai d abord décidé de chercher l importance de l ordinateur dans la panoplie des outils pédagogiques. Par la suite, j ai essayé de voir pourquoi et comment intégrer l informatique dans l enseignement des mathématiques. Après avoir constaté quelques échecs concernant l acquisition de certaines notions dans un environnement classique, j ai émis des hypothèses sur le bénéfice que ma classe pourrait tirer de l utilisation d un ordinateur. Les trois situations dans lesquelles je ferai intervenir l outil informatique sont : - la remédiation - la découverte d une notion - l initiation à la démarche expérimentale et à la conjecture. 1) D une façon générale, que peut apporter l informatique aux élèves? a) La motivation? Aujourd hui, les enfants "baignent" dans un environnement audiovisuel et sont attirés par l écran. C est pourquoi, ils devraient réussir à aisément s adapter aux contraintes d utilisation d un logiciel et à en maîtriser les quelques techniques de base. Ils pourraient en ressortir valorisés, et certainement plus motivés. Ils parviendraient à plus de confiance en eux: ce serait une façon de les réconcilier avec le travail scolaire. Avril

7 b) Aide à l apprentissage? Les élèves peut-être plus réceptifs en milieu informatique, devraient avoir un comportement différent vis-à-vis du savoir. Les contraintes imposées par la machine sont plus facilement acceptées que celles d un environnement classique. De plus, pour l élève, toute réalisation de la machine est reconnue exacte. On peut alors penser que ce nouveau milieu est un terrain favorable à l apprentissage. c) Un enseignement individualisé? L ordinateur peut être aussi un outil d aide individualisée à la résolution des problèmes mathématiques en particulier. Il permet notamment au professeur, libéré de certaines tâches - comme la gestion du groupe classe -, de se focaliser sur les élèves en grandes difficultés et sur les diverses erreurs rencontrées. De plus, les avoir en demi groupe représente un avantage non négligeable. L élève plus autonome, seul devant son écran, gère son apprentissage, son temps, au travers d un cheminement qui lui est propre. d) L autonomie? Le rapport enseignant / enseigné se trouve complètement modifié dans un environnement informatique : l enseignant n est plus l interlocuteur privilégié de l élève. En partie, ce n est plus le professeur qui "juge" le travail accompli, mais la machine. Il s opère alors un transfert didactique qui permet, peut-être, aux élèves de se sentir plus autonomes que dans un environnement classique. Ce changement brusque de milieu peut néanmoins entraîner des perturbations pour l enseignant. En effet, ce dernier peut éprouver quelques difficultés lors de la reprise en main du groupe classe, si celle-ci est nécessaire. Avril

8 e) La rigueur? Du fait de leur attirance pour cet outil, les enfants sont plus enclins à accepter la rigueur imposée par l ordinateur que celle imposée par un professeur. Celle de la machine leur apparaît moins "arbitraire" que celle de l enseignant. En conséquence, ils ont tendance à s appliquer davantage aux diverses tâches qui leur sont confiées, même si ces dernières demandent beaucoup plus d attention. f) Un premier problème soulevé par l introduction de ce nouvel outil se pose : On peut prévoir quelques freins à cet apprentissage. Par exemple, le professeur est très vite confronté au problème matériel de l ordinateur : même si les médias inondent les esprits avec des promotions sur ces machines, cela ne signifie pas pour autant que chaque famille en possède un. Aussi, l enseignant doit faire face à une hétérogénéité des connaissances de base chez les élèves. Si bien que le premier travail de celui-ci est de donner les mêmes chances à chaque enfant de la classe en révisant les principes élémentaires de l utilisation de l outil informatique. L initiation aux logiciels peut être rapide pour certains et peut en bloquer d autres. Ces derniers risquent de s éloigner du savoir mathématique visé, pour se consacrer à la manipulation du nouvel outil. Le changement peut alors être un élément perturbateur. Le message d erreur qui apparaît lors de chaque mauvaise manipulation enseigne à certains la rigueur et freine les élèves les moins actifs. Malgré ce frein, j ai persisté dans l idée d introduire l ordinateur dans mon enseignement. En effet, le niveau de ma classe est très hétérogène, avec en particulier huit élèves en grandes difficultés dont la moyenne en mathématiques n a pas dépassé 5/20 l année dernière en 6 ème. Pour eux, tout particulièrement, j espère que l informatique sera un véritable vecteur de motivation dans l apprentissage des mathématiques. D une façon générale, le professeur doit adapter son enseignement dans ce milieu particulier où les rapports élève / éducateur se trouvent complètement modifiés. Après avoir présenté les trois situations dans lesquelles je souhaite Avril

9 utiliser l informatique, je parlerai des deux logiciels qui seront employés cette année: "Atelier de géométrie" et "Works" (tableur). 2) Trois problèmes initiaux : J ai choisi d introduire l ordinateur dans trois types différents d activité : - lors d une séance de remédiation sur la médiatrice - lors de la découverte du cercle circonscrit à un triangle - pour conjecturer la formule de l aire du parallélogramme. a) Un constat d échec en environnement papier / crayon : la médiatrice d un segment En début d année, le premier chapitre de géométrie abordé avec ma classe de 5 ème, a été la symétrie centrale. A cette occasion, je me suis aperçu qu il était nécessaire de revoir la symétrie axiale, et donc la notion de médiatrice vue en 6 ème. J ai donc distribué une feuille polycopiée reprenant la définition et les propriétés d équidistance de la médiatrice d un segment. Ensuite j ai donné à faire plusieurs constructions sur le sujet - constructions à l aide du compas ou de l équerre - et nous avons vérifié les propriétés sur le papier. Cependant, les résultats d une interrogation écrite, dans laquelle il était demandé de citer la définition et les propriétés de la médiatrice, ont été alarmants : 3 élèves sur 24, seulement, ont donné la définition exacte et aucun n a su retrouver les propriétés. Au départ, j ai supposé qu ils n avaient pas appris leur leçon et qu ils se heurtaient à un problème de formulation pour décrire cet objet que la moitié est capable de tracer. Lors de la correction de ce contrôle nous avons travaillé à partir d un exemple d utilisation des propriétés ci-dessous : i (d) est la médiatrice du segment [AB]. O est un point de (d). Quelle est la nature du triangle ABO, et pourquoi? i Pourquoi le centre d un cercle est-il sur la médiatrice de toutes ses cordes? Après plusieurs explications, je me suis rendu compte qu ils rencontraient encore beaucoup de difficultés face à cette notion. Avril

10 Il m a alors semblé qu utiliser les séances d informatique qui leur sont offertes, pourrait être une solution de remédiation à ce problème. L objectif est de leur faire redécouvrir cette notion dans un environnement différent : l exactitude et la rapidité des tracés sont plus importantes que dans l univers papier / crayon. Certains logiciels peuvent avoir l avantage de mesurer la longueur des segments et de déplacer les objets géométriques. Ainsi, l ordinateur, outil favorisant un enseignement individualisé, est idéal lors d une séance de remédiation. b) La découverte d une notion : le cercle circonscrit à un triangle Lors du chapitre sur les symétries centrale et axiale, j ai rencontré quelques difficultés quant à la propriété de la conservation des milieux par ces transformations. De nombreux élèves se sont tout d abord heurtés à la construction des symétriques des segments. Par la suite, il fallait constater la conservation les milieux. Malheureusement, l imprécision des tracés n a pas permis d observer correctement cette propriété. De plus, l observation de quelques dessins, souvent incorrects, ne m a pas semblé satisfaisante. La propriété étudiée n est pas vraiment ressortie lors de cette séance. Dès le chapitre de géométrie suivant, sur les triangles, je me suis demandé quel dispositif employer pour améliorer la découverte d une notion, en particulier pour aborder le cercle circonscrit à un triangle. Après cette première expérience sur la remédiation en informatique, une seconde séance en relation avec le nouveau chapitre se met en place. Il faut dans un premier temps faire constater aux élèves que dans tout triangle, les trois médiatrices sont concourantes, ce qui permet, ensuite, de définir le point qui est le centre du cercle passant par les trois sommets du triangle. L objectif de ces deux séances est de mettre en évidence des propriétés géométriques avec la possibilité, pour les élèves, d observer rapidement, à l aide d un logiciel, un grand nombre de dessins. Avril

11 c) Initiation à la démarche scientifique : l aire du parallélogramme Mon troisième objectif est " d initier " les élèves, à la démarche expérimentale ou scientifique, à partir d un problème de mathématiques. Cette démarche s inscrit selon plusieurs étapes : - les observations - la conjecture - la mise en place un dispositif permettant de vérifier la conjecture - la réalisation d une synthèse. L informatique peut être utilisée pour ce type d activité. Cette démarche soulève un premier problème majeur : "la partie démonstration" est occultée. Les élèves risquent de penser que quelques observations suffisent à généraliser une propriété. Cependant, cette méthode est couramment employée en classe de 5 ème, où il est parfois difficile de faire des démonstrations. Les élèves ont l habitude de ce type de procédure. En effet, faire un dessin pour résoudre un problème de géométrie, s inscrit dans ce cadre, mais de manière statique. Les observations ne sont pas nombreuses, sauf si on prend en compte toutes celles apportées par l ensemble des élèves. L ordinateur a l avantage de faciliter la gestion des données, plus rapidement obtenues que dans un environnement classique. Je choisis alors d illustrer cette démarche lors de la séquence sur l aire du parallélogramme. Dans cet exercice, il s agit de faire deviner aux élèves la formule qui calcule l aire de ce quadrilatère. Pour cela, un grand nombre de mesures et de calculs sont nécessaires. L ordinateur semble alors être un outil performant pour ce type de réalisations. Cette séance peut être suivie d une autre qui visera à prouver le résultat en classe plénière. 3) Approche du problème à travers quelques logiciels. a) Plusieurs types de logiciels : On peut distinguer plusieurs types de logiciels. Quelques exemples : Avril

12 - Des logiciels ludiques Certains logiciels, comme ADI, sont des banques d exercices, regroupés par niveaux et par thèmes. L élève gagne des points à chaque fois qu il donne une bonne réponse. S il a suffisamment de points, alors il a droit à un jeu. Le logiciel lui permet aussi de revenir sur les exercices où il a commis des erreurs. ADI peut ainsi être utilisé pour la remédiation ou pour familiariser les élèves à une notion. Cependant, c est un logiciel fermé - le professeur, contrairement à ses habitudes, ne peut pas construire lui-même les exercices - avec lequel ils peuvent travailler en totale autonomie. C est pourquoi je n ai pas retenu ce type de logiciel. - Des logiciels de calcul formel On peut citer l exemple de Maple. C est un logiciel de calcul scientifique qui fait du calcul formel. Il n est pas vraiment adapté à la classe de 5 ème parce que les élèves sont en phase d apprentissage des notions de base. - Des logiciels de traitement de texte Word en est un exemple. Il permet essentiellement de mettre en forme des documents écrits. On peut s en servir en classe pour familiariser les élèves avec l ordinateur. Cependant, il ne semble pas intéressant pour les trois problèmes posés. Je ne l ai donc pas retenu. - Des logiciels de programmation Ils sont difficilement utilisables en classe de 5 ème. - Des tableurs On peut citer l exemple d Excel. Il permet, entre autres, de décharger l utilisateur des calculs lourds ou répétitifs. C est un gestionnaire de données. - Des logiciels intégrés Works est un logiciel intégré. Il regroupe plusieurs modules : tableur, traitement de texte, base de données (création de carnets d adresses, Avril

13 de listes). En mathématiques, on utilise plutôt le tableur. - Des logiciels de géométrie dynamique Certains logiciels, comme Atelier de géométrie ou Cabri géomètre permettent, notamment, de construire rapidement un grand nombre de figures géométriques, que l élève peut faire évoluer. Ce sont deux logiciels ouverts, qui peuvent être utilisés à tous les niveaux. Parmi tous ces types de logiciels, ceux qui s adaptent au niveau de la classe de 5 ème et qui correspondent aux expérimentations que je veux faire, sont les quatre derniers. Le collège possède uniquement Atelier de géométrie et Works. J ai donc travaillé avec ces deux derniers. Quelles sont les principales fonctions de ces deux logiciels? b) Atelier de géométrie Le dessin est souvent considéré comme un élément de "second ordre" par les mathématiciens, malgré son omniprésence en géométrie. Il n a, en effet, aucune place dans une démonstration. C est cette position qui est le plus souvent adoptée par les enseignants. Cependant, les différentes formes de représentation visuelles d un concept sont fondamentales, et le dessin est l outil naturel qui favorise l envie de chercher. i) Descriptif Atelier de géométrie est un logiciel qui permet de réaliser des constructions géométriques planes, à partir d objets de base. Il contient deux types de primitives : - les primitives de dessin pur, comme les points, les droites et les cercles. - les primitives géométriques : elles permettent de construire des objets qui dépendent, par des relations géométriques, d autres objets. On peut ainsi tracer une perpendiculaire ou une parallèle à une droite donnée, ou bien encore la bissectrice d un angle. Avril

14 Il ressemble à Cabri-Géomètre. Tout comme ce dernier, il permet de déplacer les objets de base en conservant les propriétés décrites dans la construction de la figure. On peut alors observer "toutes" les possibilités pour un même ensemble de propriétés. Ce thème sera abordé ultérieurement dans la partie dynamique du logiciel. Quels sont les principaux avantages d Atelier de Géométrie qui peuvent être utilisés en classe de 5 ème? «il est simple d utilisation : par exemple, des messages d aide apparaissent pour chaque type de tracé. «on peut construire les images de figures par des transformations élémentaires du plan (symétries axiale et centrale). «on peut construire directement le milieu ou la médiatrice d un segment en désignant ce dernier avec la souris : aide non négligeable pour nos élèves particulièrement maladroits dans un environnement papier / crayon. Ils s en serviront pour découvrir le cercle circonscrit à un triangle. «il contient également des outils numériques, permettant la mesure des segments et des angles ainsi que le calcul de l aire des quadrilatères. Ces mesures et ces calculs s actualisent lorsque les objets sont déplacés. C est un outil très puissant - très utile pour revoir les propriétés d équidistance de la médiatrice. Par rapport à un travail effectué dans un environnement classique, il constitue aussi un avantage pour établir la formule de l aire du parallélogramme. En effet, lors d un problème ouvert, la donnée de l aire de ce quadrilatère par le logiciel devrait sans doute être mieux perçue par les élèves. L ordinateur est un instrument de mesure, tout comme l ampèremètre en sciences physiques, qui permet de conjecturer. Néanmoins, contrairement à Cabri-Géomètre, l enseignant n a pas la possibilité de supprimer certains icônes, perdant ainsi le contrôle de la situation didactique qu il désire mettre en œuvre. C est un inconvénient pour la séance de remédiation sur la médiatrice. Certains élèves seront tentés d utiliser directement l outil "construction de médiatrice". Il faut alors mettre en place un dispositif Avril

15 particulier afin de retravailler sur la définition de cet objet. On peut prévoir le même type de problème lors du tracé de figures usuelles comme les triangles et les quadrilatères particuliers. Les icônes permettant de construire ces objets doivent être utilisés avec beaucoup de précautions, notamment parce que certains points crées ne peuvent pas être déplacés. On ne peut pas non plus ajouter des outils, possibilité offerte par Cabri- Géomètre grâce à la création de macro-constructions. Il faut préciser, enfin, qu Atelier de géométrie n offre pas la possibilité de faire des reports de longueurs. Malgré cela, il n existe aucune comparaison entre la précision du tracé avec le logiciel et celle faite par les élèves avec leurs instruments de géométrie, ou celle faite sur le tableau par le professeur. La précision, la rapidité du tracé informatique ne peuvent que faciliter et encourager l esprit de recherche. Pour bénéficier de "bons dessins", l enseignant n a pas d autre recours que de les préparer. Dans ce cas, Atelier de Géométrie offre un avantage supplémentaire : la figure réalisée peut être modifiée de façon dynamique, tout en gardant ses propriétés. ii) La dynamique du logiciel Le déplacement d objets est un des outils fondamentaux du logiciel. Aujourd hui, on différencie la géométrie classique de la géométrie assistée par ordinateur, communément appelée : "géométrie dynamique". Pourtant, l idée de démontrer à l aide du mouvement n est pas nouvelle : déjà au XVII e siècle, on découvre les propriétés de certaines figures en "tirant" sur des points et des droites. Citons une partie de la préface d un ouvrage de géométrie d Emile Borel (1905), reprise dans [B2] : «La géométrie est l étude du groupe des mouvements. Substituer de plus en plus l étude dynamique des phénomènes à leur étude statique, est d ailleurs une tendance essentielle de l esprit moderne ; c est l idée d évolution qui domine davantage la pensée contemporaine» C est ce point de vue que les concepteurs de logiciel de géométrie dynamique ont certainement essayé d adopter. Atelier de Géométrie permet la déformation Avril

16 immédiate et visuelle : l utilisateur a la possibilité de déplacer les éléments de base d une figure. En classe de 5 ème, ceci devrait permettre : - de faire apparaître les propriétés communes que peut posséder un ensemble de figures comme : les médiatrices d un triangle sont concourantes. - de visualiser un grand nombre de dessins très utile pour les trois situations. Ceci est particulièrement appréciable pour la découverte du cercle circonscrit à un triangle : les élèves peuvent observer un grand nombre de triangles rapidement. iii) Un nouveau contrat didactique Cette possibilité de déplacer les objets permet d établir un nouveau contrat didactique avec les élèves qui doit être expliqué lors des séances de familiarisation avec le logiciel : la procédure de construction de l objet est correcte si elle reste correcte par déplacement. Dans un environnement informatique, l élève est alors obligé de fournir implicitement une procédure pour le tracé d un dessin, ce qui est difficile d imposer dans un environnement papier / crayon dans une classe de 5 ème. Je reviendrai sur ce point lorsque sera abordé le changement de statut de la figure. Les primitives géométriques s actualisent lorsque les objets initiaux dont elles dépendent sont déplacés. Ainsi, les médiatrices d un triangle se déplacent en même temps que le triangle. Les élèves devraient alors plus facilement admettre qu elles sont concourantes dans tous les triangles. De même, la hauteur relative à un côté d un parallélogramme et sa mesure, s actualisent lorsqu on déplace un des sommets de ce dernier, ce qui permet de prendre un nombre conséquent de mesures. En revanche, la trace laissée sur l écran par les primitives de dessin pur, reste identique lorsqu on déplace un autre objet de base. Ceci permet à l enseignant de montrer aux élèves que certaines constructions faites "à vue d œil" sont souvent fausses. Avril

17 Comme illustration, je reprends un exemple traité dans [A2] : la construction du symétrique d un point P par rapport à une droite d. Le professeur peut montrer rapidement à un élève qui a placé au hasard le point P (figure a), que sa construction n est pas correcte, en déplaçant la droite d (figure b). En effet, le point P ne suivant pas le mouvement, n est plus de façon évidente pour l élève le symétrique du point P. Figure a Figure b Ce principe permet également de vérifier rapidement que la médiatrice d un segment est correctement construite sans avoir assisté au tracé. Ceci est difficilement réalisable dans l environnement papier / crayon. L informatique peut modifier la conception de la figure géométrique acquise par les élèves dans un environnement classique. iv) Modification du statut de la figure Force est de constater que l enseignement de la géométrie passe par la distinction entre figure et dessin. Les élèves ont une conception du dessin, différente de celle des mathématiciens, dans l environnement papier / crayon : ils confondent souvent la figure, objet théorique, avec sa représentation matérielle sur du papier, le dessin. Le problème vient en partie du fait qu ils prennent en considération des aspects non essentiels d un dessin tel que : la position de celuici par rapport aux bords de la feuille. Lorsque le professeur confie une construction à ses élèves, il s attend à ce que celle-ci soit effectuée, non pas en Avril

18 positionnant uniquement des instruments sur du papier - règle, compas, équerre, -, mais selon un procédé qui respecte les propriétés géométriques de la figure. Il est donc difficile, pour les élèves, de voir la place que peut occuper le dessin en géométrie. Atelier de géométrie peut constituer une aide pour les élèves à résoudre cette problématique. Il oblige les élèves à décomposer et à analyser une construction en termes d objets géométriques : on ne pose plus l équerre sur la feuille, mais on trace une perpendiculaire. Ce logiciel impose, pour tracer un objet, de bien désigner tous les autres objets dont il dépend. Ainsi, pour construire la perpendiculaire à une droite passant par un point donné, il est nécessaire de bien l indiquer à l ordinateur. Dans le cas contraire, l élève s aperçoit qu il ne peut pas faire de dessin, ou alors qu il existe une infinité de constructions possibles. Si on considère le nouveau contrat didactique établi précédemment, la création sur l écran d un dessin doit alors passer par la description de la figure. Comme l objectif est d obtenir un dessin qui doit être conservé après déplacement des objets de base, les élèves sont contraints d établir un plan de construction qui tient compte des propriétés géométriques de la figure. Par exemple, le tracé de la médiatrice d un segment doit se faire après avoir analysé chaque mot de la définition. On peut supposer que la construction de cet objet sur l écran demandera un effort particulier aux élèves pour qui le tracé sur le papier est devenu un automatisme : "on mesure avec la règle le milieu du segment, puis on pose l équerre", alors que sur l écran "on construit le milieu du segment, puis on trace la perpendiculaire au segment passant par ce milieu" - ces deux objets doivent être obligatoirement désignés. Ce travail ne peut être que bénéfique pour comprendre mieux cette notion. En outre, le logiciel offre un grand choix d icônes, représentants des objets de base. Cela oblige les élèves à bien différencier les objets géométriques tels que les demi-droites, les segments et les droites. Cette différenciation s accentue lorsque l élève découvre que, dans cet environnement informatique, les implicites ne sont pas les mêmes que sur une Avril

19 feuille. Par exemple, l existence d un segment n implique pas celle de la droite qui le supporte. Le logiciel trace "d un bloc" les éléments de base, alors que le crayon donne un rôle plus important au point. Mais il apporte, grâce à cette différence, une autre vision tout aussi intéressante. L existence d un point sur un objet ou à l intersection de deux objets n est plus systématique sur l ordinateur. Si l élève veut le créer, il doit désigner ces objets. Pour le cercle circonscrit, sur Cabri-Géomètre, l utilisateur doit penser à créer le point d intersection des médiatrices alors que celles-ci sont tracées, sinon l ordinateur ne perçoit pas le point. Atelier de Géométrie le crée automatiquement. Cependant, pour tracer le cercle, l élève doit attendre que deux des médiatrices changent de couleur pour indiquer le centre du cercle. Par conséquent, l existence d un objet mathématique, tel que l intersection de plusieurs figures, ne va pas de soi pour la machine. v) Aide à la formulation Le logiciel devrait contribuer à donner un statut différent au dessin, parce qu il impose aux élèves de communiquer à l ordinateur une procédure de construction qui tient compte des lois géométriques. Grâce à cette nécessité, il devrait également les aider dans la formulation en géométrie, dans un environnement classique. J espère, après avoir travaillé avec le logiciel, que, lors du récit d une construction géométrique, les élèves utiliseront de préférence des expressions du type "j ai tracé la parallèle à telle droite passant par ce point" plutôt que "j ai mis l équerre ici ". Je souhaite, en particulier, qu il les aide à formuler correctement la définition de la médiatrice d un segment. En conclusion, Atelier de géométrie apparaît comme un outil précieux dans l enseignement de la géométrie. Cependant, en complément à cette formation informatique, apprendre à utiliser un tableur me semble essentiel. Le tableur utilisé au collège est celui intégré dans Works. Avril

20 c) Works (tableur) i) Descriptif rapide Les principales fonctions du logiciel Works, utilisables en classe de 5 ème peuvent se résumer à : - la création de tableaux - la réalisation de calculs à partir des données des tableaux - la réalisation de graphiques - la visualisation simultanée de l évolution d un tableau et d un graphique associé. ii) Apports du logiciel - Works aide les élèves à gérer, plus rapidement que dans un environnement classique, des données d un problème. Il permet de bien les familiariser avec la notion de tableau. - Il offre la possibilité de créer tous les types de graphiques rencontrés en classe de 5ème. Ces derniers sont construits rapidement, ce qui permet aux élèves de se consacrer à leur analyse et à leur interprétation. - En prenant en charge les calculs, domaine dans lequel les élèves sont assez maladroits, le logiciel leur permet d avoir plus de temps pour réfléchir à la résolution d un problème en envisageant plusieurs solutions. Ainsi, selon [A1] : il permet «de traiter, d analyser et de représenter très rapidement un grand nombre de données numériques». Les élèves fournissent dès lors un travail de qualité dans le domaine de la gestion de données ; ce qui est difficilement réalisable dans un environnement classique. Les documents ainsi créés sont certainement plus nombreux et plus facilement exploitables par le groupe classe. Fournir ce type de travail ne peut que motiver les élèves connaissant des difficultés, et ainsi les intéresser à un domaine particulier des mathématiques. Avril

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation :

Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3. Déroulement de l animation : Utilisation de l outil numérique via «géogébra» pour la pratique de la géométrie au cycle 3 Déroulement de l animation : - 0] Préambule (30 min) a) Introduction b) Programme du cycle 3 - I] Première prise

Plus en détail

ONCE UPON A TIME IN THE HEART OF SCOTLAND

ONCE UPON A TIME IN THE HEART OF SCOTLAND ONCE UPON A TIME IN THE HEART OF SCOTLAND Table des matières Fiche professeur... 2 Fiche élève... 5 Narration de séance et productions d élèves... 6 1 Fiche professeur ONCE UPON A TIME IN THE HEART OF

Plus en détail

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique?

Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir. d une même problématique? Une histoire de boîte (F Estevens) Ou comment faire évoluer la notion de fonction du collège au lycée à partir Enoncé : d une même problématique? Une histoire de boîtes (cinquième) On dispose d une feuille

Plus en détail

Utilisation de Cabri-Géomètre à l école élémentaire en cycle II et III. Massola Jean-Pierre. massola@paris.iufm.fr. IUFM de Paris - France

Utilisation de Cabri-Géomètre à l école élémentaire en cycle II et III. Massola Jean-Pierre. massola@paris.iufm.fr. IUFM de Paris - France 1 Utilisation de Cabri-Géomètre à l école élémentaire en cycle II et III Massola Jean-Pierre massola@paris.iufm.fr IUFM de Paris - France 2 1-Historique Les écoles élémentaires de Paris, plutôt sous-équipées

Plus en détail

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice

La démarche d investigation en mathématiques. 26 novembre 2008 La démarche d investigation en mathématiques P. KOBER- IUFM Nice La démarche d investigation en mathématiques 1) Qu est ce que la démarche d investigation en sciences? 2) Qu est-ce que faire des mathématiques? - Pour un chercheur Plan de cette intervention - Dans l

Plus en détail

Le trésor du pirate (4 e )

Le trésor du pirate (4 e ) Le trésor du pirate (4 e ) Cyril MICHAU Collège R. Descartes, 93 Le-Blanc-Mesnil. Niveau Concerné Quatrième. Modalité Il est possible de réaliser ce travail en salle informatique par binôme, ou bien en

Plus en détail

Bilan des usages pédagogiques du dispositif mobile interactif ebeam

Bilan des usages pédagogiques du dispositif mobile interactif ebeam Bilan des usages pédagogiques du dispositif mobile interactif ebeam Ce bilan a été réalisé { partir de 11 fiches d évaluation concernant le prêt d un DMI ebeam en collège. Les professeurs ayant pu utiliser

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Evaluer des élèves de Seconde par compétences en Sciences Physiques

Evaluer des élèves de Seconde par compétences en Sciences Physiques Evaluer des élèves de Seconde par compétences en Sciences Physiques Introduction Depuis quelques années, le terme de «compétences» s installe peu à peu dans notre quotidien ; aussi bien dans la vie de

Plus en détail

UTILISATION DU LOGICIEL : SOUTIEN ET APPRENTISSAGE MATHÉMATIQUES ASSISTÉS PAR ORDINATEUR S.A.M.A.O. EN CLASSE DE SECONDE

UTILISATION DU LOGICIEL : SOUTIEN ET APPRENTISSAGE MATHÉMATIQUES ASSISTÉS PAR ORDINATEUR S.A.M.A.O. EN CLASSE DE SECONDE 197 UTILISATION DU LOGICIEL : SOUTIEN ET APPRENTISSAGE MATHÉMATIQUES ASSISTÉS PAR ORDINATEUR S.A.M.A.O. EN CLASSE DE SECONDE J ai testé le logiciel SAMAO avec une classe de seconde technologique de 26

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

DEPARTEMENT D ETUDES EUROPEENNES ECONOMIQUES

DEPARTEMENT D ETUDES EUROPEENNES ECONOMIQUES DEPARTEMENT D ETUDES EUROPEENNES ECONOMIQUES GUIDE DES ETUDIANTS Ce guide est destiné à vous introduire au fonctionnement du Collège et du Département d études économiques européennes, en présentant les

Plus en détail

Observatoire des ressources numériques adaptées

Observatoire des ressources numériques adaptées Observatoire des ressources numériques adaptées INS HEA 58-60 avenue des Landes 92150 Suresnes orna@inshea.fr IDENTIFIANT DE LA FICHE Geonext : un logiciel de géométrie dynamique DATE DE PUBLICATION DE

Plus en détail

PASI. L ELEVE de 5 ème et L AIDE AUX DEVOIRS DOCUMENT 5

PASI. L ELEVE de 5 ème et L AIDE AUX DEVOIRS DOCUMENT 5 PASI Collège Claude Le Lorrain NANCY L ELEVE de 5 ème et L AIDE AUX DEVOIRS DOCUMENT 5 1. Présentation de l aide aux devoirs pour les 5èmes page 2 2. Enquête menée auprès des élèves de 5 ème page 3 a.

Plus en détail

L ENCLOS. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2011. Fiche professeur... 2. Fiche élève...

L ENCLOS. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2011. Fiche professeur... 2. Fiche élève... Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 6 e : utilisation des notions de périmètre,

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

E-LECLERC LEVALUATION DU SITE WEB. A. Evaluation «subjective» du site web. 1. Choix du site web. 2. Présentation le site A P I 0 8 1 1 / 0 3 / 2 0 1 4

E-LECLERC LEVALUATION DU SITE WEB. A. Evaluation «subjective» du site web. 1. Choix du site web. 2. Présentation le site A P I 0 8 1 1 / 0 3 / 2 0 1 4 LEVALUATION DU SITE WEB E-LECLERC A P I 0 8 1 1 / 0 3 / 2 0 1 4 A. Evaluation «subjective» du site web 1. Choix du site web J ai choisi de réaliser l évaluation «subjective» sur le site web : www.e-leclerc.com,

Plus en détail

Niveau de la classe : troisième ou seconde

Niveau de la classe : troisième ou seconde Olivier PILORGET et Luc PONSONNET - Académie de Nice - TraAM 2013-2014 " PERIMETRE DE SECURITE AUTOUR D UNE PISCINE" Niveau de la classe : troisième ou seconde Testée avec une classe de seconde sur une

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

Dossier. Master «Enfance Enseignement Education» 2 nd année. Site de Montigny-Lès-Metz

Dossier. Master «Enfance Enseignement Education» 2 nd année. Site de Montigny-Lès-Metz Dossier Master «Enfance Enseignement Education» 2 nd année Site de Montigny-Lès-Metz UE 1019-9 : Unité et spécificités de la didactique des sciences, technologies et mathématiques : Réalisation et analyse

Plus en détail

Réseau Départemental de Ressources Informatiques 2010

Réseau Départemental de Ressources Informatiques 2010 IA du Rhône Séquences : 3 séances Géométrie plane Géométrie Niveau : Cm1 / Cm2 Résumé Les élèves mettent en évidence les régularités de dessins géométriques qui permettront de pointer certaines notions

Plus en détail

Expérimentation Pédagogique

Expérimentation Pédagogique Expérimentation Pédagogique L'UTILISATION DE TABLETTES EN RÉSOLUTION DE PROBLÈMES POUR DÉVELOPPER LE PLAISIR DE CHERCHER Circonscription de Lunéville Ecole primaire d'hériménil Expérimentation tablette

Plus en détail

Réussir un exercice de Maths sans stresser en 6 étapes!

Réussir un exercice de Maths sans stresser en 6 étapes! Réussir un exercice de Maths sans stresser en 6 étapes! Dans ce document cadeau, je te montre comment résoudre un exercice de mathématique en suivant une méthode donnée. Grâce à cette méthode, tu ne te

Plus en détail

Les démarches en science et en technologie

Les démarches en science et en technologie Les démarches en science et en technologie (Sources LAMAP) La démarche scientifique est une démarche qui conduit à construire une procédure de résolution d'un problème en utilisant, de manière explicite,

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Envoyez de vraies cartes postales personnalisées

Envoyez de vraies cartes postales personnalisées La Poste, http://www.laposte.fr/, aime les nouvelles technologies et offre de plus en plus de nouveaux services en ligne afin de faciliter les démarches de ses clients. C est ainsi que la lettre recommandée

Plus en détail

Classe(s) : Seconde, première

Classe(s) : Seconde, première Le fantôme Classe(s) : Seconde, première Utilisation d un logiciel de tracé de courbes. Fonctions définies sur un intervalle. Fonctions associées. 1) Objectifs Mathématiques : - Fonctions polynômes du

Plus en détail

Comment organiser une séance d EPS

Comment organiser une séance d EPS Comment organiser une séance d EPS Ce qui est important pour l élève c est de : - comprendre quand il réussit quelle procédure reproductible a été utilisée et isolée pour cette procédure - apprendre pour

Plus en détail

Ecrire un récit fantastique avec les TICE

Ecrire un récit fantastique avec les TICE Ecrire un récit fantastique avec les TICE Aymeric Simon, professeur au collège Gérard Philipe, Villeparisis Niveau : 4e Durée : 7-8 heures Objectifs : Etre capable d écrire un récit complet d au moins

Plus en détail

Utilisation du logiciel OpMat Ce logiciel effectue des opérations élémentaires sur les lignes d une matrice avec des entrées rationnelles

Utilisation du logiciel OpMat Ce logiciel effectue des opérations élémentaires sur les lignes d une matrice avec des entrées rationnelles Utilisation du logiciel OpMat Ce logiciel effectue des opérations élémentaires sur les lignes d une matrice avec des entrées rationnelles Michel Bouchard, enseignant retraité, Département de mathématiques,

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

MultiploDingo. Manuel pédagogique. Introduction

MultiploDingo. Manuel pédagogique. Introduction MultiploDingo Manuel pédagogique Introduction Merci d avoir acheté le jeu MultiploDingo. Le but de ce jeu est de faciliter l apprentissage à l école primaire (CE1 au CM2) des notions suivantes: - Multiplications

Plus en détail

B2I Niveau 1. 1. Maîtriser les premières bases de la technologie informatique.

B2I Niveau 1. 1. Maîtriser les premières bases de la technologie informatique. Fiche pédagogique Activité 1 Cycle 1 (Maternelle) B2I Niveau 1 1. Maîtriser les premières bases de la technologie informatique. Compétence visée : 1.1 Je désigne avec précision les différents éléments

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

MINISTERE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE MINISTERE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE ADMINISTRATION GENERALE DE L'ENSEIGNEMENT ET DE LA RECHERCHE SCIENTIFIQUE Service général des Affaires pédagogiques, de la Recherche

Plus en détail

Entraînement, consolidation, structuration... Que mettre derrière ces expressions?

Entraînement, consolidation, structuration... Que mettre derrière ces expressions? Entraînement, consolidation, structuration... Que mettre derrière ces expressions? Il est clair que la finalité principale d une démarche d investigation est de faire acquérir des connaissances aux élèves.

Plus en détail

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE

GRAVURE - TISSAGE VANNERIE - ENTRELACS FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE FICHE PROFESSEUR DE MATHEMATIQUES NIVEAUX Classe de CM2-6 ème DÉROULEMENT DE LA SÉQUENCE ET DESCRIPTION DE LA DÉMARCHE Cette séquence peut s organiser autour de trois séances en mathématiques 1 ère séance

Plus en détail

Démonstration des propriétés géométriques du plan niveau collège

Démonstration des propriétés géométriques du plan niveau collège Démonstration des propriétés géométriques du plan niveau collège Propriété : Si un point est sur un segment et à égale distance de ses extrémités alors ce point est le milieu du segment. Si un point est

Plus en détail

CRÉER UN COURS EN LIGNE

CRÉER UN COURS EN LIGNE Anne DELABY CRÉER UN COURS EN LIGNE Deuxième édition, 2006, 2008 ISBN : 978-2-212-54153-3 2 Que recouvre le concept d interactivité? Dans une perspective de cours en ligne, une activité interactive est

Plus en détail

é d u c a t i on n a t i o n a l e ÉVALUATIONS NATIONALES CM2 Des résultats aux perspectives pédagogiques

é d u c a t i on n a t i o n a l e ÉVALUATIONS NATIONALES CM2 Des résultats aux perspectives pédagogiques é d u c a t i on n a t i o n a l e ÉVALUATIONS NATIONALES CM2 Des résultats aux perspectives pédagogiques Evaluation des des élèves en CM2 Constats et perspectives pédagogiques pour les écoles de l Hérault

Plus en détail

INTRODUCTION À L'ÉTUDE DE L'AFRIQUE

INTRODUCTION À L'ÉTUDE DE L'AFRIQUE 159 INTRODUCTION À L ÉTUDE DE L AFRIQUE (classe de 5 ème / à partir du site de la FAO) Objectifs 1. Exploiter une banque de données en ligne, puis construire une carte de synthèse du continent africain.

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Des logiciels pour innover en mathématique au primaire

Des logiciels pour innover en mathématique au primaire Les dossiers Carrefour éducation Logiciels éducatifs Des logiciels pour innover en mathématique au primaire par Manon Murray Enseignante au 3e cycle du primaire à la commission scolaire Des Sommets et

Plus en détail

SÉMINAIRE 2 : point de vue des IA-IPR

SÉMINAIRE 2 : point de vue des IA-IPR SÉMINAIRE 2 : point de vue des IA-IPR Les séminaires et la continuité à assurer Il est essentiel qu au terme de chaque séminaire, le bilan établi et mis en ligne soit examiné dans chaque lycée par l ensemble

Plus en détail

Mathématiques Programmes 2008 La soustraction au CE1

Mathématiques Programmes 2008 La soustraction au CE1 Mathématiques Programmes 2008 La soustraction au CE1 Animation pédagogique Présentation Les programmes 2008 placent désormais la mise en place de la technique opératoire de la soustraction au CE1. Ce changement

Plus en détail

CALCUL MENTAL AU CYCLE 3

CALCUL MENTAL AU CYCLE 3 CALCUL MENTAL AU CYCLE 3 Constat de départ : Les élèves du cycle 3 de l école ont des difficultés pour utiliser des procédures de calcul mental lors de calculs réfléchis : ils se trompent ou utilisent

Plus en détail

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par

Plus en détail

Coaching, Une méthode scientifique

Coaching, Une méthode scientifique Coaching, Une méthode scientifique ROSELYNE KATTAR Tout le monde parle de coaching sans savoir exactement de quoi il s agit. Afin de clarifier cette approche selon moi, je vous propose de répondre à 3

Plus en détail

Cours de Mathématiques Les objectifs en mathématiques au lycée et à l école de commerce

Cours de Mathématiques Les objectifs en mathématiques au lycée et à l école de commerce Les objectifs en mathématiques au lycée et à l école de commerce Objectifs L enseignement des mathématiques contribue à former un être humain méthodique, inventif et critique, doué de la faculté de raisonner

Plus en détail

Sommaire de la séquence 3

Sommaire de la séquence 3 Sommaire de la séquence 3 Séance 1..................................................................................................... 57 Je découvre la symétrie centrale par l expérience...................................................

Plus en détail

Classe(s) : 3 ème / 2 nde

Classe(s) : 3 ème / 2 nde Le toit de René Classe(s) : 3 ème / 2 nde Approche de la notion de fonction à l aide d une situation concrète 1) Objectifs Mathématiques : - Notion de variable et notion de fonction. - Réinvestissement

Plus en détail

LES REPRESENTATIONS DES NOMBRES

LES REPRESENTATIONS DES NOMBRES LES CARTES A POINTS POUR VOIR LES NOMBRES INTRODUCTION On ne concevrait pas en maternelle une manipulation des nombres sans représentation spatiale. L enfant manipule des collections qu il va comparer,

Plus en détail

taboo Ciel avec Réussir sa compta Nathalie Crouzet Groupe Eyrolles, 2008, ISBN : 978-2-212-12263-3

taboo Ciel avec Réussir sa compta Nathalie Crouzet Groupe Eyrolles, 2008, ISBN : 978-2-212-12263-3 Nathalie Crouzet sans taboo Réussir sa compta avec Ciel Groupe Eyrolles, 2008, ISBN : 978-2-212-12263-3 Avant-propos La comptabilité est pour certains une véritable bête noire, qu il est soit disant difficile,

Plus en détail

Activité 1 : Ecrire en chiffres en utilisant les mots «cent» «vingt» «quatre» et «mille» - Ré apprentissage

Activité 1 : Ecrire en chiffres en utilisant les mots «cent» «vingt» «quatre» et «mille» - Ré apprentissage Thème : NUMERATION Intentions pédagogiques : ré apprentissage de la numération par des activités ludiques, retour sur des notions connues autrement qu en situation de révision afin de permettre un nouveau

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Ce projet nécessite environ 6 leçons préparatoires avant la journée de rencontre. Étape 1 - Définition du projet commun avec les élèves

Ce projet nécessite environ 6 leçons préparatoires avant la journée de rencontre. Étape 1 - Définition du projet commun avec les élèves Projet Musique Le thème est la musique avec une rencontre basée sur plusieurs ateliers à ce sujet. Les élèves des classes partenaires se retrouveront la matinée pour participer à des ateliers autour de

Plus en détail

TESSA : MATRICE DE SECTION VERSION WEB

TESSA : MATRICE DE SECTION VERSION WEB TESSA : MATRICE DE SECTION VERSION WEB NOM DU FICHIER TESSA : Togo_Ma_M1_S2_G_110213 PAYS TESSA : Togo DOMAINE DU MODULE : MATHEMATIQUES Module numéro : 1 Titre du module : Étude du nombre et de la structure

Plus en détail

CALQUES GÉOMÉTRIQUES UN LOGICIEL POUR AIDER A LA COMPREHENSION DES FIGURES GEOMETRIQUES

CALQUES GÉOMÉTRIQUES UN LOGICIEL POUR AIDER A LA COMPREHENSION DES FIGURES GEOMETRIQUES 155 UN LOGICIEL POUR AIDER A LA COMPREHENSION DES FIGURES GEOMETRIQUES La géométrie, par la richesse de ses situations, est une matière privilégiée pour l'apprentissage du raisonnement et de la démonstration.

Plus en détail

Les dimensions de la tablette

Les dimensions de la tablette Les dimensions de la tablette Niveau d enseignement Type d activité Durée Outils Compétences mathématiques Prérequis TICE Place dans la progression, moment de l étude Forme de calcul favorisée Commentaires

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

Créer un Profil de l apprenant

Créer un Profil de l apprenant Créer un Profil de l apprenant Notes à l enseignant... 5 Outil n o 1 : Profil de l apprenant... 7 Outil n o 2 : Exemple de table des matières du Profil de l apprenant... 8 Outil n o 3 : Cher enseignant

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Rôle de l ENT dans l apprentissage des langues vivantes dans l enseignement secondaire.

Rôle de l ENT dans l apprentissage des langues vivantes dans l enseignement secondaire. Rôle de l ENT dans l apprentissage des langues vivantes dans l enseignement secondaire. Le fait que tous les enseignants de l Académie de Clermont-Ferrand disposent d un environnement numérique de travail

Plus en détail

Organiser des groupes de travail en autonomie

Organiser des groupes de travail en autonomie Organiser des groupes de travail en autonomie Frédérique MIRGALET Conseillère pédagogique L enseignant travaille avec un groupe de niveau de classe et le reste des élèves travaille en autonomie. Il s agira

Plus en détail

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens.

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens. Questionnaire de Motivation à la réussite en Formation Yann FORNER RÉSULTATS Nom: Sexe: 15/04/2010 Féminin Âge: 17 Étalonnage: Lycéens Introduction Le Questionnaire de Motivation en situation de Formation

Plus en détail

Classe(s) : 3 ème 2 nde

Classe(s) : 3 ème 2 nde Le toit de René Classe(s) : 3 ème 2 nde Approche de la notion de fonction à l aide d une situation concrète 1) Objectifs Mathématiques : - Notion de variable et notion de fonction. - Réinvestissement de

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Tests de l évaluation par compétences en Seconde

Tests de l évaluation par compétences en Seconde Tests de l évaluation par compétences en Seconde 1 Présentation 1.1 La grille de compétences / aptitudes La grille de compétences a été distribuée et explicitée aux élèves le jour de la rentrée à la suite

Plus en détail

ACTIVITES NUMERIQUES ( 18 points )

ACTIVITES NUMERIQUES ( 18 points ) Copie numéro :.. 4 points sont attribués pour l orthographe, le soin, les notations et la rédaction. L utilisation de la calculatrice est autorisée. NE PAS OUBLIER DE RENDRE L ANNEXE AVEC LA COPIE! ACTIVITES

Plus en détail

INF-130 Travail Pratique #2

INF-130 Travail Pratique #2 École de technologie supérieure INF-30 Travail Pratique #2 Travail individuel Tracé d un métro Francis Bourdeau, Frédérick Henri et Patrick Salois Remise à la 0 e semaine. Objectifs - Amener l étudiant

Plus en détail

POURQUOI CONNECTER UNE ÉCOLE À L INTERNET?

POURQUOI CONNECTER UNE ÉCOLE À L INTERNET? 61 POURQUOI CONNECTER UNE ÉCOLE À L INTERNET? L école de Pinay est connectée depuis deux ans et demi à l Internet. Cela laisse suffisamment de recul pour une réflexion sur cette pratique. Il convient pour

Plus en détail

USAIN BOLT. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2012. Fiche professeur... 2. Fiche élève 1...

USAIN BOLT. Table des matières. Tâche complexe produite par l académie de Clermont-Ferrand. Juin 2012. Fiche professeur... 2. Fiche élève 1... USAIN BOLT Table des matières Fiche professeur... 2 Fiche élève 1... 5 Fiche élève 2... 6 Narration de séances et productions d élèves... 7 1 Fiche professeur USAIN BOLT Niveaux et objectifs pédagogiques

Plus en détail

Fiche de lecture de PFE Guillaume HEMMERTER

Fiche de lecture de PFE Guillaume HEMMERTER 1. INTRODUCTION Les maîtres d ouvrage ou propriétaires de patrimoine immobilier qui s engagent dans la construction ou la rénovation d installations climatiques veulent avoir la certitude d obtenir le

Plus en détail

Retour d expérience : atelier «reportage numérique» (Doc AMP n 8 - Dossier Nouvelles technologies au service de l AMP - page 10)

Retour d expérience : atelier «reportage numérique» (Doc AMP n 8 - Dossier Nouvelles technologies au service de l AMP - page 10) Retour d expérience : atelier «reportage numérique» (Doc AMP n 8 - Dossier Nouvelles technologies au service de l AMP - page 10) Interview complète d Aurore Deschamps Aurore DESCHAMPS, ancienne stagiaire

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

FICHE TECHNIQUE N 1 CADRE 47/2

FICHE TECHNIQUE N 1 CADRE 47/2 FICHE TECHNIQUE N 1 CADRE 47/2 Cadre 47/2 : enchaînements dans le carré central La direction technique de la fédération vous propose une série de fiches dédiées au cadre 47/2. Les situations de jeu proposées

Plus en détail

Guide méthodologique 4

Guide méthodologique 4 N/Réf : X2 217 012 Collection Guides méthodologiques Comment réaliser un travail de recherche Guide méthodologique 4 Louis Gaudreau Conseiller en documentation Centre des médias Septembre 2007 TABLE DES

Plus en détail

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo. PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.fr I.A.M. de Grenoble et I.R.E.M. de Toulouse 1. UN ACCÈS RAPIDE

Plus en détail

L ENT et le livre numérique de mathématiques en seconde

L ENT et le livre numérique de mathématiques en seconde L ENT et le livre numérique de mathématiques en seconde Introduction Le livre choisi par le lycée JR est le Bordas Pixel. Nous l avons sélectionné pour notre établissement car il y a avec le spécimen le

Plus en détail

Le blog pédagogique. Domaine 1 S'approprier un environnement informatique de travail

Le blog pédagogique. Domaine 1 S'approprier un environnement informatique de travail Le blog pédagogique Un professeur de français, seul ou dans une logique interdisciplinaire, peut se lancer, même s'il est peu expérimenté en matière de TICE dans la création d'un blog avec sa classe. Sont

Plus en détail

L efficacité de PowerPoint dans les cours de grammaire

L efficacité de PowerPoint dans les cours de grammaire Rencontres Pédagogiques du Kansaï 2007 Thème 2 L efficacité de PowerPoint dans les cours de grammaire Seïtaro YAMAKAWA Université d Economie d Osaka bpr5000?saturn.dti.ne.jp De nos jours, dans beaucoup

Plus en détail

La Clé informatique. Formation Access XP Aide-mémoire

La Clé informatique. Formation Access XP Aide-mémoire La Clé informatique Formation Access XP Aide-mémoire Septembre 2003 Définitions de termes Base de données : Se compare à un énorme classeur ayant plusieurs tiroirs où chacun d eux contient des informations

Plus en détail

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Evolution d un scénario dans l expérience e-colab EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Cadre général Groupe e-colab au sein de l INRP Collaboration

Plus en détail

Questionnaire pour connaître ton profil de perception sensorielle Visuelle / Auditive / Kinesthésique

Questionnaire pour connaître ton profil de perception sensorielle Visuelle / Auditive / Kinesthésique Questionnaire pour connaître ton profil de perception sensorielle Visuelle / Auditive / Kinesthésique BUT : Découvrir ton profil préférentiel «Visuel / Auditif / Kinesthésique» et tu trouveras des trucs

Plus en détail

Note sur le projet CEFRIO de formation de base en entreprise à l aide des TIC

Note sur le projet CEFRIO de formation de base en entreprise à l aide des TIC Note sur le projet CEFRIO de formation de base en entreprise à l aide des TIC Quelques constats et remarques formulés à partir de l examen de trois rapports d activités (juin 2008, avril et juin 2009)

Plus en détail

Conditions de travail des assistants diplômés en Lettres Compte rendu de l enquête

Conditions de travail des assistants diplômés en Lettres Compte rendu de l enquête Conditions de travail des assistants diplômés en Lettres Compte rendu de l enquête 1. Les faits L enquête sous forme de questionnaire a été menée durant le mois d octobre 2011 auprès des assistants diplômés

Plus en détail

COMPARAISON GRAHPIQUE DE DEUX VALEURS AVEC INCERTITUDE

COMPARAISON GRAHPIQUE DE DEUX VALEURS AVEC INCERTITUDE COMPARAISON GRAHPIQUE DE DEUX VALEURS AVEC INCERTITUDE Le but d une expérience de laboratoire est souvent de vérifier un résultat théorique à l aide d un montage. Puisqu il est impossible (sinon très rare)

Plus en détail

Fiche No 1. Figures élémentaires

Fiche No 1. Figures élémentaires Fiche No 1 Figures élémentaires 1) Mise en route Pour travailler avec le programme GeoGebra en ligne tapez : www.geogebra.org, puis Téléchargement et enfin Webstart : Dans la feuille GeoGebra qui s ouvre

Plus en détail

Devoir à la maison en algorithmique (2 nde )

Devoir à la maison en algorithmique (2 nde ) Devoir à la maison en algorithmique (2 nde ) Introduction Quel constat : Les devoirs à la maison permettent de soutenir les apprentissages des élèves et prennent en compte la diversité des aptitudes des

Plus en détail

Atelier d échecs : le mat de l escalier. Identification du scénario

Atelier d échecs : le mat de l escalier. Identification du scénario Atelier d échecs : le mat de l escalier Titre : Atelier d échecs : le mat de l escalier Académie : Créteil Département : 94 Auteur : Catherine Broch Identification du scénario Résumé : L enfant apprend

Plus en détail

Analyse réflexive : un outil de questionnement sur la gestion des contenus d apprentissage Outil 3

Analyse réflexive : un outil de questionnement sur la gestion des contenus d apprentissage Outil 3 Analyse réflexive : un outil de questionnement sur la gestion des contenus d apprentissage Outil 3 Yves Lenoir, D. sociologie Professeur titulaire Titulaire de la Chaire de recherche du Canada sur l intervention

Plus en détail

Rendre votre instruction plus accessible à ceux qui vous écoutent

Rendre votre instruction plus accessible à ceux qui vous écoutent Rendre votre instruction plus accessible à ceux qui vous écoutent Les élèves passent plus de la moitié de leur journée d école à écouter des informations et des instructions. Ils peuvent éprouver des difficultés

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Apprendre à rédiger un compte-rendu d expérience

Apprendre à rédiger un compte-rendu d expérience Apprendre à rédiger un compte-rendu d expérience Séquence réalisée en cycle 3 Sylvie FRÉMINEUR P.E., École du Chaumet, Évires, 74 Jean-Michel ROLANDO Formateur, IUFM Bonneville, 74 Les relations entre

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Cabri et le programme de géométrie au secondaire au Québec

Cabri et le programme de géométrie au secondaire au Québec Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec cote.benoit@uqam.ca 1. Introduction - Exercice de didactique fiction Que signifie intégrer

Plus en détail

Organisation et gestion de données cycle 3

Organisation et gestion de données cycle 3 Organisation et gestion de données cycle 3 Clarifier les enjeux de cet enseignement Formation d enseignants de cycle 3 Circonscription de Grenoble 2 Positionnement de la pratique. En classe, comment travaillez-

Plus en détail

Baccalauréat professionnel Gestion-Administration. Passeport professionnel. Documentation téléchargeable depuis :

Baccalauréat professionnel Gestion-Administration. Passeport professionnel. Documentation téléchargeable depuis : Groupe de travail Académie de Rouen. Production complétée par Mme Janvier ert professeur Rouen de comptabilité/ga au lycée des Métiers Elsa Triolet (Académie Orléans-Tours) Baccalauréat professionnel Gestion-Administration

Plus en détail