Chapitre 1.3 La vitesse instantanée

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1.3 La vitesse instantanée"

Transcription

1 Chapire.3 La iesse insananée La iesse dans un graphique de posiion On peu obenir une iesse moyenne en foncion du emps en effecuan un calcul de pene. Puisqu une pene es une rappor enre une ariaion selon l ae des ordonnées (la posiion : ) e une ariaion selon l ae des absisses (le emps : ), la iesse moyenne peu s obenir de la façon suiane : où éfiniion de la iesse moyenne : : Viesse moyenne (m/s) : Variaion de la posiion (m) : Variaion du emps (s) à l aide d un graphique de posiion ( m) La iesse insananée à l aide de la droie angene La iesse moyenne n es pas oujours une informaion précise, car la iesse d un obje n es pas oujours consane. Lorsque la iesse arie dans le emps, il fau éaluer la iesse à chaque insan pour bien éaluer l éoluion de la posiion dans le emps., on peu calculer une iesse insananée à un emps donné à parir de la pene d une droie angene ouchan le graphique de posiion à l insan. Cee définiion es alide, car la pene d une droie dans un graphique de posiion correspond à une informaion de iesse. ans un graphique de posiion où éfiniion de la iesse insananée : droie angene : Viesse insananée (m/s) : Variaion de la posiion (m) : Variaion du emps (s) ( m) Une droie angene es une droie qui ouche qu à un seul poin d un graphique. Référence : Marc Séguin, Physique XXI Volume Page

2 Siuaion 3 : Une planche à roulees (m) sur un plan incliné. Sur une pise en 3 béon légèremen inclinée (3 o par C B rappor à l horizonale), on lance aec la main une planche à roulees ers le hau de la pise (schéma ci-dessous, à gauche). On obsere que la planche raleni en monan, puis redescend en 0 allan de plus en plus ie En plaçan une règle graduée à côé de la pise e en filman le mouemen, on obien le graphique ci-dessous, à droie. (On a commencé à filmer un peu après aoir lancé la planche e on a noé à chaque insan la posiion du poin le plus à droie de la planche). À correspondan. parir du graphique, on désire obenir le graphique 0 3,8 (m) C B En raçan la angene au poin, on peu éaluer la iesse à s. La pene de cee droie sera la iesse insananée de l obje à s, car la pene effecue le calcul / : eu poins sur la angene :, m, à 0 s (Poin ),0 m, à,8 s (Poin ) 3 (Remplacer ( 3) (,) (,8 ) ( 0) e ) (Remplacer aleurs numériques) 0,5 m/s (Éaluer ) On peu effecuer plusieurs de ces calculs pour ous les emps enre 0 e 5 secondes (faire plusieurs droies angenes) e obenir le graphique de la iesse en foncion du emps : (m/s) (Consrucion d un graphique à parir d un graphique e des droies angenes) Référence : Marc Séguin, Physique XXI Volume Page

3 La iesse insananée en an que limie Pour éaluer la iesse insananée, il n es pas oujours nécessaire de racer une droie angene. On peu approimer une droie angene à parir de deu posiions sur le graphique () e effecuer le calcul de pene suian : Si les deu posiions sur la courbe (poins noirs) son rop éloignées dans le emps, la iesse insananée (poin rouge) sera imprécise. ( m) Si les deu posiions sur la courbe (poin noir) son près dans le emps, la iesse insananée (poin rouge) sera précise. ( m) ec la définiion de la limie en mahémaique, le calcul de la iesse insananée s effecue de la façon suiane : Pour effecuer le calcul de, il s agi de : lim 0 ) Prendre la posiion au momen où l on eu éaluer la iesse ) Prendre la posiion après un emps supplémenaire de ( + ) 3) Plus le choi de es pei, plus la iesse insananée sera précise. ( m) ( + ) lim 0 ( + ) + + lim 0 ( + ) Référence : Marc Séguin, Physique XXI Volume Page 3

4 Siuaion : Une planche à roulees sur un plan incliné : calcul aec limie. À parir de l équaion de la posiion 0,5 + +, 75 associée au mouemen de la planche à roulees de la siuaion 3, on désire éaluer la iesse insananée à 5 s aec une précision de 0,00 s. fin d éaluer la iesse insananée à l aide de la limie, éaluons la posiion e ( + ) à 5 s : : ( 5) 0,5( 5) + ( 5) +,75 0,5 m ( 5 ) 0,5 m ( + ) : ( 5,00) 0,5( 5,00) + ( 5,00) +, 75 ( 5,00) 0,985 m Éaluons mainenan la iesse à lim 0 5 s : lim 0,00 ( + ) ( 0,985) ( 0,5) ( 0,00) (pproimaion aec 0, 00) ( 5) lim (Remplacer aleurs numériques) 0,00 ( 5),5 m/s (Éaluer la iesse) On réalise que ce calcul es eac si l on compare nore résula au résula du graphique de la Siuaion 3 (oir graphique ci-conre, le poin rouge). (m/s) 0 -, Eercice Eercice : Viesse insananée aec rois. La posiion (, en mère) dans le emps (, en seconde) d une paricule es donnée par l équaion suiane : 6 a) Éaluez la iesse insanané à s lorsque 0, s. b) Éaluez la iesse insanané à s lorsque 0,0 s. c) Éaluez la iesse insanané à s lorsque 0,00 s. Référence : Marc Séguin, Physique XXI Volume Page

5 Soluion Eercice : Viesse insananée aec rois. Nous aons l équaion de la posiion suiane : a) À s aec 0, s : ( ) m (,) (,) 6(,) 3366 m 6 ( 3366) ( 308) ( ) 380 m/s 0, b) À s aec 0,0 s : ( ) 6 308,0 m (,0) (,0) 6(,0) 3078,8 m ( 3078,8) ( 308,0) ( ) 3080 m/s 0,0 c) À s aec 0,00 s : ( ) 6 308,00 m (,00) (,00) 6(,00) 305,07 m ( 305,07 ) ( 308,00) ( ) 3070 m/s 0,00 ec une echnique plus aancée (oir.3), nous pouons éaluer la iesse insananée eace à l aide du calcul différeniel : m/s 3066 Référence : Marc Séguin, Physique XXI Volume Page 5

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; (S) M 1. O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; (S) M 1. O y (S) O y. Mécanique Cinématique Cinématique C2 écanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en mouemen

Plus en détail

Chapitre 1. La cinématique. 1.1 Définitions

Chapitre 1. La cinématique. 1.1 Définitions Chapire 1 La cinémaique La cinémaique es la descripion mahémaique du mouvemen, souven considérée comme la base de la physique. Le mouvemen le plus fondamenal auquel on puisse penser es la chue libre. Expérimenée

Plus en détail

Chapitre I Grandeur scalaires, grandeurs vectorielles, différentielles, différentielles vectorielles et équations différentielles

Chapitre I Grandeur scalaires, grandeurs vectorielles, différentielles, différentielles vectorielles et équations différentielles Chapire I Grandeur scalaires, grandeurs vecorielles, différenielles, différenielles vecorielles e équaions différenielles I. Inroducion Une affirmaion scienifique es une affirmaion adhéré, prouvée comme

Plus en détail

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2

CINEMATIQUE C2. 1. Vitesse. Vitesse et accélération. MM' t. d s ; T(M S/ %0 ) (S) O y (S) O y. Mécanique Cinématique Cinématique C2 Mécanique Cinémaique Cinémaique C bjecif : Définir, décrire e calculer la iesse ou l accéléraion d un poin d un solide. 1. Viesse CINEMATIQUE C Viesse e accéléraion 1.1. Noion de iesse Soi un solide en

Plus en détail

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations.

( ) = 20 + 10 e x. x x x 1 2. lim 10e = 0. 2. Étudier les variations de la fonction f et dresser son tableau de variations. Corrigé Parie A La foncion f es définie sur l inervalle [ ; + [ par f ( ) ( ) = + e On noe C la courbe représenaive de la foncion f dans un repère orhonomal ( Oi,, j) cm) (unié graphique Éudier la limie

Plus en détail

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol

CH V Mouvements. Deux personnes A et B se trouvent immobiles sur un escalier roulant. Sol CH V Mouvemens I) Mouvemens e référeniel : Pour éudier un mouvemen, il fau définir : - le mobile (obje qui es en mouvemen) - le référeniel (sysème par rappor auquel le mobile se déplace) 1) Siuaion : Deux

Plus en détail

Chapitre 1.6 Le mouvement uniformément accéléré

Chapitre 1.6 Le mouvement uniformément accéléré Chpire.6 Le mouemen uniformémen ccéléré Équion de l iesse ec une ccélérion consne Considérons un obje subissn une ccélérion consne e se déplçn à ec une iesse égle à : Équion : ( ( m/s R Aire sous l courbe

Plus en détail

Voiture radio commandée servomoteur et trame PPM. Formation Systèmes d'information et numérique

Voiture radio commandée servomoteur et trame PPM. Formation Systèmes d'information et numérique 1 ère STI2D TD V1.0 Voiure radio commandée servomoeur e rame PPM. Formaion Sysèmes d'informaion e numérique Le servomoeur es un mécanisme qui réalise le déplacemen d un axe (pouvan êre relié à la direcion

Plus en détail

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine.

CHAPITRE 5 Fonction linéaire. Proportionnalité. Fonction affine. CHAPITRE 5 Foncion linéaire. Proporionnalié. Foncion affine. (Voir : 4 ème, chapire 5 ; 3 ème, chapires 3, 13.) I) Foncion linéaire A) Définiion a désigne un nombre relaif connu e fié. Définiions : La

Plus en détail

Exercices supplémentaires Série 1

Exercices supplémentaires Série 1 PHYSIQUE Phy-5042 Exercices supplémenaires Série 1 NE PAS ÉCRIRE SUR CE DOCUMENT Version du 24 noembre 2003 Rédigé par Séphane Laoie laoie.sephane@csdgs.qc.ca Dimension 2.1 1. Quel graphique représene

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES

RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES RESOLUTION D EQUATIONS DIFFERENTIELLES APPLICATION EN SCIENCES PHYSIQUES Sommaire I- Equaions différenielles du premier ordre I-1- Résoluion des équaions du ype : a f () + f() = g() I-- Exemple de résoluion

Plus en détail

Exercices Cinématique 3

Exercices Cinématique 3 Exercices Cinémaique 3 1. Quelle différence y a--il enre la viesse insananée e la viesse moyenne? 2. Parmi les objes suivans, lesquels pourraien avoir une viesse moyenne idenique à leur viesse insananée?

Plus en détail

Les filtres passe-haut

Les filtres passe-haut Les filres passe-hau Je ais ener ici de ous expliquer le foncionnemen d un filre passe-hau. Nous allons oir dans l ordre : - le schéma ype - l éude de la ransmiance - l éude du diagramme de Bode - l uilié

Plus en détail

TD Biomécanique 4. t vol t

TD Biomécanique 4. t vol t Exercice La fiure suiane représene la force ericale appliquée par un indiidu lors d un es de déene sur plae forme de force. Lors de ce es, l indiidu par arrêé. - -4-6 -8 - - -4-6 -8 - -..4.6.8. Calculer

Plus en détail

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE

MOUVEMENT UNIFORME ET UNIFORMEMENT VARIE TERMINALE S.T.I. MOUVEMENT UNIFORME ET / hp://perso.orange.fr/herve.jardin-nicolas/ MOUVEMENT UNIFORME ET mv uniforme e uniformemen I. Domaine d applicaion de ce cours Ce chapire sera relaif d une par

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

Fonctions numériques Proportionnalité

Fonctions numériques Proportionnalité Foncions numériques Proporionnalié I Foncions numériques 1 ) Définiion e noaions Définir une foncion f qui à x associe y c es donner une formule mahémaique qui perme pour oue valeur donnée de x soi de

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

Equations différentielles

Equations différentielles Equaions différenielles Généraliés Une équaion différenielle es une relaion enre une variable réelle (par eemple ), une foncion qui dépend de cee variable (par eemple y) e un cerain nombre de ses dérivées

Plus en détail

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301

F2SMH. Biomécanique L1 UE11 TOULOUSE. Julien DUCLAY. Pôle Sport - Bureau 301 FSMH TOULOUSE Biomécanique L1 UE11 Suppor de cours Amaranini Waier Duclay Laurens Julien DUCLAY julien.duclay@univ-lse3.fr Pôle Spor - Bureau 31 z (m) Exemple 1 : équaions horaires O ez Chue libre vericale

Plus en détail

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0

Nombre dérivé et interprétation graphique. h valeurs approchées du nombre dérivé de la fonction f en t 0 DÉRIVONS EN VITESSE Objecif Ouils Comparer deux approximaions du nombre dérivé d une foncion numérique en un poin, l une issue de la définiion maémaique usuelle, l aure uilisée par les calcularices. Nombre

Plus en détail

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur

REGIME TRANSITOIRE. 1 Introduction. 2 Propriétés fondamentales du condensateur REGIME TRANSITOIRE Inroducion Lorsqu on ferme un circui pour le mere en foncion, les courans e les ensions meen un cerain emps à s éablir. C es le régime ransioire. Ce chapire fai l éude des composans

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n'es pas nécessairemen le graphe d'une foncion ; c'es pourquoi on parle de courbe paramérée e non pas

Plus en détail

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité

PROPORTIONNALITES ET POURCENTAGES I-La proportionnalité PROPORTIONNALITES ET POURCENTAGES I-La proporionnalié -Acivié préparaoire n : Suies de nombres proporionnelles -l indicaion «0,88 /L» perme de calculer les pri manquans dans le ableau ci-dessous. Indiquer

Plus en détail

Leçon 15 Les formes des signaux électriques Page 1/7

Leçon 15 Les formes des signaux électriques Page 1/7 Leçon 15 Les formes des signaux élecriques Page 1/7 1. Les différenes formes de ension ou de couran élecriques 1.1 Signal unidirecionnel C es un signal qui circule oujours dans le même sens Couran unidirecionnel

Plus en détail

GENERALITES SUR LA CINÉTIQUE CHIMIQUE

GENERALITES SUR LA CINÉTIQUE CHIMIQUE ere année Meecine Cinéique Chimique GENERLITES SUR L CINÉTIQUE CHIMIQUE Inroucion La cinéique chimique es la science qui s occupe e la façon on les réacions chimiques procèen (mécanisme) e e leur viesse.

Plus en détail

Chapitre V : Torsion simple.

Chapitre V : Torsion simple. Torsion simple. Cours RD / A.U : 2012-2013 Chapire V : Torsion simple. Objecifs Pré-requis Elémens de conenu Déerminer la répariion des conraines dans une secion de poure solliciée à la orsion. Vérifier

Plus en détail

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur.

Chapitre 10 Etude des tensions électriques ; Nature de la tension du secteur. Chapire 1 Eude des ensions élecriques ; Naure de la ension du seceur. On a vu que la ension produie par un alernaeur dans une cenrale élecrique changeai ou le emps. On ne peu donc pas se conener de brancher

Plus en détail

Etudier le mouvement d un point matåriel dans un champ de pesanteur uniforme g g.

Etudier le mouvement d un point matåriel dans un champ de pesanteur uniforme g g. Mouemen balisique d un projecile. Influence de la råsisance de l air Eudier le mouemen d un poin maåriel dans un champ de pesaneur uniforme. u, en nåliean dans un premier emps le freinae aårodnamique (råsisance

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps.

2. Repère de temps. Le système de référence est tout simplement l addition d un solide de référence et d un repère de temps. Modélisaion des sysèmes mécaniques LA CINÉMATIQUE DU POINT Dae : Inroducion : La cinémaique es la parie de la mécanique qui éudie le mouvemen des corps, indépendammen des effors qui les produisen. Les

Plus en détail

Interpolation de positions-clefs

Interpolation de positions-clefs Inerpolaion de posiions-clefs François Faure able des maières rajecoires. Inerpolaion linéaire...............................2 Inerpolaion cubique...............................3 Courbes en dimension n............................

Plus en détail

Révision Mécanique. 2 e but. Monticule 1 er but. 3 e but. Marbre. Vitesse (m/s) 20

Révision Mécanique. 2 e but. Monticule 1 er but. 3 e but. Marbre. Vitesse (m/s) 20 Révision Mécanique 1 Parmi les siuaions suivanes, lesquelles monren que l'obje ou la personne ne son soumis à aucune force résulane? 1. Un cyclise qui raleni.. Un vieillard qui es assis sur un banc dans

Plus en détail

Équations différentielles du premier ordre

Équations différentielles du premier ordre Équaions différenielles du premier ordre Vous rouverez ici de brefs résumés e exemples sur les applicaions concrèes des équaions différenielles du premier ordre : variaion de empéraure désinégraion radioacive

Plus en détail

2 Compléter un tableau de proportionnalité

2 Compléter un tableau de proportionnalité 1 Reconnaire un ableau de proporionnalié OJECTIF 1 DÉFINITION Il y a proporionnalié dans un ableau de nombres à deux lignes lorsque les nombres de la deuxième ligne s obiennen en muliplian ceux de la première

Plus en détail

Chapitre 2. Cinématique. 2.1 Introduction. 2.2 Référentiel et repère. 2.2.1 Référentiel

Chapitre 2. Cinématique. 2.1 Introduction. 2.2 Référentiel et repère. 2.2.1 Référentiel Chapire 2 Cinémaique 2.1 Inroducion La cinémaique es l éude du mouvemen des corps. Nous ne considérerons que des corps de faibles dimensions de sore qu ils seron oujours assimilés à des poins appelés mobiles.

Plus en détail

Elec 3 : Circuit RLC

Elec 3 : Circuit RLC Travaux Praiques de physique Elec 3 : ircui R Version du 8/3/6 Plan Rappels Théoriques ircuis R e R ircui «idéal» ircui R en ension coninue ircui R en ension sinusoïdale, résonance Applicaions Manipulaion

Plus en détail

Graphiquement, les deux grandeurs sont directement proportionnelles car le

Graphiquement, les deux grandeurs sont directement proportionnelles car le 1 1. Acivié 1 : Allongemen du ressor Exercice 1 L Variaion de ll'allongemen du en ressor foncion en foncion du poids du poids (cm) allongemen (cm) 1 9 8 7 6 5 4 3 2 1 D après les informaions fournies par

Plus en détail

Annexe A: dérivées et intégrales : un bref survol

Annexe A: dérivées et intégrales : un bref survol Annexe A: érivées e inégrales : un bref survol Bien que vous ayez éjà vu une parie e ces sujes au niveau collégial e qu'en MAT-5 ils seron revus en éails, on peu néanmoins examiner rapiemen ce que représene

Plus en détail

Sommaire de la séquence 11

Sommaire de la séquence 11 Sommaire de la séquence 11 Séance 1........................................................................................................ Je calcule des longueurs, des aires e des volumes....................................................

Plus en détail

CHAPITRE 4 LA VAR MONTE CARLO... 2

CHAPITRE 4 LA VAR MONTE CARLO... 2 CHAPITRE 4 LA VAR MONTE CARLO... I. PRINCIPE... A. Quel modèle uiliser?... B. Algorihme de simulaion... 3 II. EXEMPLE D APPLICATION... 4 A. Travail préliminaire... 4 B. Simulaion des rajecoires... 6 Algorihme...

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

Chapitre 1.13 La dérivée en cinématique

Chapitre 1.13 La dérivée en cinématique Chpire.3 L dérivée en cinémique L dérivée En mhémique, on défini l dérivée d une foncion f ( ) el que d f ( ) f ( + ) f ( ) f '( ) = d où f '( ) correspond à l foncion qui évlue l pene de l ngene en poin

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

USTHB Faculté de Physique Année ère année ST Corrigé de la série cinématique Sections 16 à 30

USTHB Faculté de Physique Année ère année ST Corrigé de la série cinématique Sections 16 à 30 USTHB Faculé de Physique Année 011-01 1ère année ST Corrigé de la série cinémaique Secions 16 à 30 Hachemane Mahmoud (ushbs10@gmail.com) Monsieur A. Dib e Mademoiselle R. Yekken son remerciés pour leurs

Plus en détail

Cours 4. Rappels de cinématique

Cours 4. Rappels de cinématique Cours Rappels de cinémaique . Inroducion Dans les réacions nucléaires on a besoin de connaîre les énergies, les iesses (ou les impulsions) des différens noyau (ou paricules) qui ineriennen. our ce faire

Plus en détail

Techniques d entraînement

Techniques d entraînement Translaion de caracère max. 0 ABUS Kransyseme Un déplacemen ciblé Techniques d enraînemen Leage France Technique des pôles commuables Un déplacemen rapide de A à B Les poniers expérimenés son familiarisés

Plus en détail

CINEMATIQUE : MOUVEMENTS PARTICULIERS

CINEMATIQUE : MOUVEMENTS PARTICULIERS Cinémaique Analyique CINEMATIQUE : MUVEMENTS PARTICULIERS 1. Mouvemen de ranslaion : Définiions 1.1. Translaion d un solide Tous les poins d'un solide en ranslaion on : - Des rajecoires ideniques - La

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Secion : S Opion : Sciences de l ingénieur Discipline : Génie Elecrique Caracérisiques des signaux élecriques Domaine d applicaion : raiemen du signal ype de documen : Cours Classe : Première Dae : I Définiion

Plus en détail

Examen d'entrée 2009-2010 Physique Durée: 2 heures 12 juillet 2009

Examen d'entrée 2009-2010 Physique Durée: 2 heures 12 juillet 2009 xamen d'enrée 009-010 Physique Durée: heures 1 juille 009 I- [ 0 ps] Déerminaion des caracérisiques (L, r d'une bobine M Dans le bu de déerminer les caracérisiques r e L d'une bobine, on réalise le circui

Plus en détail

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé

CINETIQUE CHIMIQUE 1. Vitesse de réaction en réacteur fermé CINETIQUE CHIMIQUE. Viesse de réacion en réaceur fermé. Généraliés sur la cinéique chimique L obje de la cinéique chimique es l éude de l évoluion au cours du emps d une réacion hermodynamiquemen possible.

Plus en détail

TPn 21 Régulation de vitesse d un train Durée: 4 heures

TPn 21 Régulation de vitesse d un train Durée: 4 heures TEE Sciences e Technologies de l'indusrie e du Développemen Durable Dae Lycée Nicolas Apper OBJECTIFS Régulaion de la viesse d un rain TP 2 Séquence 2 Décoder un schéma élecrique Décoder un schéma bloc

Plus en détail

RESOUDRE UNE EQUATION

RESOUDRE UNE EQUATION THEME 0 : EGALITES EQUATIONS() RESOUDRE UNE EQUATION. ACTIVITE : «Egaliés e opéraions : quelles son les règles?» 0 0 0 fig. fig. fig. fig. : On ne change pas l égalié lorsque l on ajoue un même obje sur

Plus en détail

DIPÔLE CONDENSATEUR-DIPÔLE RC

DIPÔLE CONDENSATEUR-DIPÔLE RC HAPITE P7 DIPÔLE ONDENSATEUDIPÔLE I) DIPÔLE ONDENSATEU I.1. Définiion e symbole I.2. harge e décharge d un condensaeur I.3. Inerpréaion I.4. apacié d un condensaeur I.5. Énergie emmagasinée par un condensaeur

Plus en détail

TP de physique n 7 charge et décharge d'un condensateur Terminale

TP de physique n 7 charge et décharge d'un condensateur Terminale TP de physique n 7 charge e décharge d'un condensaeur Terminale I. CHARG T DCHARG D'UN CONDNSATUR SOUS UN TNSION CONSTANT 1) Monage u R u C ma COM i + - 2 1 R = 5,6 k C = 1500 F = 10 V coninu V COM ATTNTION:

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

MQ22 TP n 3 : Essai de torsion

MQ22 TP n 3 : Essai de torsion TP n 3: Essai de orsion MQ TP n 3 : Essai de orsion Bu : Le bu de ce TP es de déerminer le module d élasicié ransversale de Coulomb (G). Pré-requis : On effecue une coupe de l éprouvee. On éudie ensuie

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

Réglage valeur moyenne

Réglage valeur moyenne P Cours : l insrumenaion élecrique A- Le généraeur de basses fréquences ou G.B.F - Présenaion uilisé : Réglage fréquence Réglage ampliude Réglage valeur moyenne Sweep : Possibilié de créer un signal de

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

1 Proportionnalité et représentation graphique

1 Proportionnalité et représentation graphique 1 Proporionnalié 1 Proporionnalié e représenaion graphique 1 a) proporionnalié e conséquences On di qu il y a proporionnalié dans un ableau lorsque l on peu passer d une ligne à l aure en muliplian par

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Licence Science de la Mer et de l Environnement. Physique Générale

Licence Science de la Mer et de l Environnement. Physique Générale Licence Science de la er e de l Enironnemen Physique Générale Chaire 9 :Dilaaion des gaz Raels mahémaiques : les dériées arielles Quand une foncion déend de lusieurs ariables, ar exemle f( x, x2, x3,...

Plus en détail

Chapitre 4.2SP Les transformations de l espace-temps en relativité restreinte

Chapitre 4.2SP Les transformations de l espace-temps en relativité restreinte Chapire 4.P es ransformaions de l espae-emps en relaiié resreine a ransformaion de orenz du déplaemen a ransformaion de orenz du déplaemen perme de ransformer un déplaemen effeué à un obje O mesuré par

Plus en détail

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction.

Lycée René Cassin. Chap 10 Chapitre 9 et 10 Chutes verticales et mouvements plans DM18 : Etude de mouvements plans - Correction. Chap Chapire 9 e Chues vericales e mouvemens plans DM8 : Eude de mouvemens plans - Correcion Dae : Un cascadeur doi sauer avec sa voiure sur la errasse d un immeuble. Pour cela, il uilise un remplin disan

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3.2 Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

Le Principe de PASCAL

Le Principe de PASCAL Hydraulique LES LOIS D HYDROSTATIQUE N 1/8 LA FORCE. On appelle FORCE oue acion qui end à modifier l éa d un corps. Elle s exprime en NEWTON (symbole N). La force es définie par son sens, son inensié,

Plus en détail

Réactions nucléaires spontanées : radioactivité

Réactions nucléaires spontanées : radioactivité a) - b) - c) - LP 12 Réacions nucléaires sponanées : radioacivié I / oyau aomique 1. Consiuion : rappels Un aome es représené par son symbole : Z X où : Z = numéro aomique = nombre de proons dans le noyau

Plus en détail

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N

MODULE: VIBRATIONS. Chapitre 4: Mouvement forcé à un degré de liberté. Dr. Fouad BOUKLI HACENE E S S A - T L E M C E N ECOLE SUPÉRIEURE EN SCIENCES APPLIQUÉES --T L E M C E N- FORMATION PRÉPARATOIRE NIVEAU : IEME ANNÉE MODULE: VIBRATIONS Chapire 4: Mouvemen forcé à un degré de liberé Dr. Fouad BOUKLI HACENE E S S A - T

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation

Réponse Temporelle d'un circuit RLC dégradé en régime quelconque : fonctions intégration et dérivation INGOD Charloe MEYE Anne DAEAU Mayeul 22 GESSET omain éponse Temporelle d'un circui C dégradé en régime quelconque : foncions inégraion e dérivaion Philippe GUY 23-24 INGOD Charloe MEYE Anne DAEAU Mayeul

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Chapitre 0 : Ondes. Equations d onde. Solutions.

Chapitre 0 : Ondes. Equations d onde. Solutions. Spéciale PSI - Cours "Physique des ondes" Complémens Chapire : Ondes. Equaions d onde. Soluions. Conens Qu es-ce qu une onde?. Le concep d onde.... Ondes planes....3 Ondes planes progressives... 3. Ondes

Plus en détail

CHAPITRE 1 : GENERALITES SUR LES ANTENNES

CHAPITRE 1 : GENERALITES SUR LES ANTENNES CAPITR 1 : GNRALITS SUR LS ANTNNS I DFINITION Une anenne es un disposiif qui assure la ransiion enre un guide d onde e l espace libre dans lequel ces ondes on se propager, ou inersemen II DIAGRAMM D RAYONNMNT

Plus en détail

Exemples : réaction entre I 2 et S 2 O 3

Exemples : réaction entre I 2 et S 2 O 3 Résumé proposé par I. Réacions rapides - Réacions lenes 1. Réacions rapides Une réacion es rapide si elle semble achevée dès que les réacifs son en conac. Une réacion rapide se fai quasi insananémen, dés

Plus en détail

( V 1 -E )/ R. v 2 V 1 E

( V 1 -E )/ R. v 2 V 1 E Chapire B.3. Conversion coninu-coninu : hacheur série C'es un converisseur coninu-coninu, qui perme d'alimener une charge sous ension réglable à parir d'une ension coninue consane. Son rendemen es généralemen

Plus en détail

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté

CHAPITRE II Oscillations libres amorties : Systèmes à un degré de liberté CHAPITRE II Oscillaions libres amories Sysème à un degré de liberé 011-01 CHAPITRE II Oscillaions libres amories : Sysèmes à un degré de liberé Inroducion : Le pendule élasique comme le pendule pesan,

Plus en détail

LES APPREILS DE MESURE EN COURANT ALTERNATIF

LES APPREILS DE MESURE EN COURANT ALTERNATIF Chapire 4 LES APPEILS DE MESUE EN COUAN ALENAIF I- PAAMEES CAACEISIQUES D UN SIGNAL ALENAIF : Un signal alernaif es caracérisé par sa forme ( sinus, carré, den de scie, ), sa période ( fréquence ou pulsaion

Plus en détail

BIBLIOGRAPHIE. J.L. Caubarrere, H. Djellouah, J. Fourny, F.Z. Khelladi : Introduction à la mécanique.

BIBLIOGRAPHIE. J.L. Caubarrere, H. Djellouah, J. Fourny, F.Z. Khelladi : Introduction à la mécanique. INTRODUCTION Conforme au programmes du LMD, ce fascicule s adresse au éudians de première année de l universié dans le domaine des Sciences de la Maière. Il es conçu de façon à aplanir au mieu les difficulés

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/??

2 t +t+ et. et on applique le principe de superposition , où (C 1,C 2 ) R 2. tet, où (C 1,C 2 ) R i = i 16 e2it =Re 1/?? PCSI-PCSI DNSn 4 Corrigé 4-5 Eercice ENTRAINEMENT PERSONNEL R R Déerminer les soluions y: de chacune des équaions différenielles suivanes : y(). y +y +y=++e Soluion. (E c ): r +r+=, soluions complees,

Plus en détail

S5 Info-MIAGE 2011-2012 Mathématiques Financières Compléments sur les intérêts composés

S5 Info-MIAGE 2011-2012 Mathématiques Financières Compléments sur les intérêts composés Universié de Picardie Jules Verne Année 2011-2012 UFR des Sciences Licence menion Informaique parcours MIAGE - Semesre 5 Mahémaiques Financières COMPLEMENTS SUR LES INTERETS COMPOSES Les inérês considérés

Plus en détail

FONCTIONNEMENT AUTOMATE

FONCTIONNEMENT AUTOMATE FONCTIONNEMENT AUTOMATE IUT MULHOUSE Bernard Reeb foncionnemen auomae - 1/1 I. CONSTITUTION D'UN AUTOMATE Les auomaes son le plus souven de ype modulaire : une unié cenrale compléée d'un bac pou recevoir

Plus en détail

Méthodes informatiques pour physiciens introduction à C++ et résolution de problèmes de physique par ordinateur

Méthodes informatiques pour physiciens introduction à C++ et résolution de problèmes de physique par ordinateur Méhodes inforaiques pour physiciens inroducion à C++ e résoluion de problèes de physique par ordinaeur Leçon # 8 : Equaions Différenielles Ordinaires Trajecoires Alessandro Braar Alessandro.Braar@unige.ch

Plus en détail

Le transistor bipolaire

Le transistor bipolaire (pascal.masson@unice.fr) Ediion 212-213 École Polyechnique Universiaire de Nice Sophia-Anipolis Cycle Iniial Polyechnique 1645 roue des Lucioles, 641 BIOT Sommaire I. Hisorique II. III. IV. Caracérisiques

Plus en détail

Introduction de la loi normale centrée réduite

Introduction de la loi normale centrée réduite Ce documen de formaion es desiné au enseignans. Il se conforme au insrucions du programme de mahémaiques des classes de Terminales (2). Sa lecure nécessie la connaissance des variables aléaoires discrèes,

Plus en détail

1 ère L Les pourcentages

1 ère L Les pourcentages 1 ère L Les pourcenages Ce chapire se place dans le cadre de l informaion chiffrée. III. Calculer une valeur après un pourcenage d augmenaion e de diminuion (opéraeur associé à un pourcenage d évoluion)

Plus en détail

Problème de contrôle optimal en temps minimal pour un avion contraint en phase de montée

Problème de contrôle optimal en temps minimal pour un avion contraint en phase de montée Problème de conrôle opimal en emps minimal pour un avion conrain en phase de monée D.Goubina, en collaboraion avec O.Cos, J.Gergaud Journées SMAI-MODE 2016 23-25 mars, Toulouse Sommaire Conexe Éude géomérique

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Intégrales Généralisées

Intégrales Généralisées Inégrales Généralisées Eercice. Monrer la convergence e calculer la valeur des inégrales : I = 3 e d ; I = + d ln() ; I 3 = ( + ) d Allez à : Correcion eercice Eercice. Les inégrales généralisées suivanes

Plus en détail

Résolution analytique d équations hyperboliques non linéaires en 1D

Résolution analytique d équations hyperboliques non linéaires en 1D Calcl Scienifiqe Résolion analyiqe d éqaions hyperboliqes non linéaires en D Corrigé de la séance 4 Février 006 Eercice. Solion classiqe La condiion iniiale 0 () = es croissane e C sr R. La méhode des

Plus en détail

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque?

d) e) f) Exercice 2. [6 points] Soit la fonction f (x)=2 x 3. a) Cette fonction est-elle linéaire, affine ou quelconque? Nom : Prénom : Conrôle de mahémaiques, Le mercredi 30 mai 2012 Exercice 1. [3 poins] 1) Parmi les cinq premières figures numéroées de a) à e) recopie sur a copie le numéro de celles qui son des polygones

Plus en détail

M2 SIA. TD Capteurs CCD. Exercice 1. Le nombre d électrons Ne qui s échappent du puits de potentiel en fonction du temps t est donné par :

M2 SIA. TD Capteurs CCD. Exercice 1. Le nombre d électrons Ne qui s échappent du puits de potentiel en fonction du temps t est donné par : M2 SIA TD Capeurs CCD Exercice 1 Le nombre d élecrons Ne qui s échappen du puis de poeniel en foncion du emps es donné par : avec L, la longueur de la grille de polarisaion (cm) V TB, la haueur de barrière

Plus en détail

Exercice n HA Corrigé

Exercice n HA Corrigé ENAC/ISTE/HYDRAM HYDROTHEQUE : base de données d exercices en Hydrologie Cours : Hydrologie Appliquée / Thémaique : Processus & Réponse Hydrologiques Exercice n HA 0101 - Corrigé Logo opimisé par J.-D.Bonour,

Plus en détail

2. Tensions et courants alternatifs

2. Tensions et courants alternatifs 2.1 Définiions 2.1.1 Tension coninue Une ension coninue es une ension qui ne change pas avec le emps. diagramme d'une ension coninue: u() 2.1.2 Tension alernaive Une ension alernaive es une ension qui

Plus en détail

Exercices sur les courbes paramétrées dans le plan

Exercices sur les courbes paramétrées dans le plan Exercices sur les courbes paramérées dans le plan Dans le plan P muni d un repère orhonormé O, i, j, on considère la courbe C définie par les équaions x paramériques y ) Eudier les variaions de x e y Donner

Plus en détail