Le théorème des deux fonds et la gestion indicielle

Dimension: px
Commencer à balayer dès la page:

Download "Le théorème des deux fonds et la gestion indicielle"

Transcription

1 Le théorème des deux fonds et la gestion indicielle Philippe Bernard Ingénierie Economique& Financière Université Paris-Dauphine mars 2013 Les premiers fonds indiciels futent lancés aux Etats-Unis par la banque W F, à l initiative de l un de ses principaux dirigeants, W F, un professionnel pionnier de la finance quantitative, et de deux de ses conseillers scientifiques : W F. S et F B. Dans cette innovation, ils furent inspirer par la littérature empirique et théorique sur la marche aléatoire et aussi par un curieux résultat de la théorie du portefeuille: le théorème des deux fonds. T [Tob58]puisS[Sha64]ontétendulathéorieduportefeuilledeM - de deux manières en ajoutant un actif sans risque. Cette modification apparemment anodine a comme conséquence de faire apparaître comme optimale la gestion passive. Le résultat démontrant cela est le théorème des deux fonds. On présente tout d abord ce résultat dans un cadre ne comprenant que deux actifs risqués avant de l étendre à un cadre en comportant un nombre arbtraire. F. 1 William Fouse, William Sharpe et Fischer Black 1

2 1 Le cadre 1.1 L héritage de Markowitz LecadreduthéorèmedesdeuxfondsestceluidelathéorieduportefeuilledeMarkowitz avec un ajout. Par conséquent, là aussi, les agents construisent leurs portefeuilles à une périodedonnée(t=0parexemple)etlesdébouclentplustard(parexempleàlamême période t = T > 0). Ces investisseurs continuent à faire un arbitrage entre le risque (résumé par les écart-types des rendements) et le gain (resprésenté par les rendements espérés). Les préférences sont supposées représentées par une fonction quadratique que l onsupposeraicidelaforme: V =Er p γ 2 σ2 p (1) où: Er p estlerendementespéréduportefeuille; γestlecoefficientd aversiondel agentconsidéré; σ 2 p estlavariancedesrendementsduportefeuille. Remarque 1 Economiquement, la fonction V définit un rendement corrigé du risque; en effet, le rendement espéré du portefeuille (Er p ) est diminué d un montant proportionnel à la variance des rendements. Si leγ est très faible (si l agent est peu sensible au risque), cet impact sera faible. Si l aversion a très averse au risque (si γ est très élevé) alors le rendement corrigé du risque sera très différent du rendement espéré. Exemple 1 Ainsi par exemple si le portefeuille a des performances comparables à celles du marché action des pays développés (USA, UK, France notamment) au XXe siècle, alors approximativement Er p 10%, σ p =15% et donc on aura : V =10% γ 2 (15%)2 =10% γ 1.125% Les études en finance ou en microéconomie ont permis de mieux cerner les valeurs possibles de γ. Des valeurs de 2 ou3sont souvent apparues comme des valeurs moyennes. Des valeurs de γ comprises entre 5 et 10 apparaissent en génral comme des valeurs représentatives de populations très risquophobes. Des valeurs autour de 1 sont a contrario 2

3 réprésentatives de comportements joueurs. Le tableau ci-dessous donne les valeurs du rendement corrigé du risque pour les différentes valeurs de γ : γ V 8.875% 7.5% 6.625% 5.5% 4.375% 3.25% 2.125% 1% 0.125% 1.25% coût du 1.125% 2.5% 3.375% 4.5% 5.625% 6.75% 7.875% 9% % 11.25% risque Pour γ égal à 3, le risque impose un coût équivalent au 1/3 du rendement, pour γ égal à 4 on est quasiment à la moitié, à 8 à pratiquement 100%! L impact du risque sur la performance est donc très non-linéaire et varie assez rapidement. En conséquence, pour un investisseur moyen ayant unγ de3, même si le rendement espéré est de10%; le risque sur un placement comme celui proposé le rend équivalent seulement à un placement certain ne rapportant que6.625%. Si son aversion venait à passer à8, un rendement sans risque de1% (moins que le livret A!) serait aussi intéressant que le placement action proposé! L objectif de chaque investisseur(de coefficient d aversion γ) est alors de maximiser la fonctionv enchoisissantlespoidsx j desdifférentstitrescomposantsonportefeuille.evidemment, le choix optimal dépend des valeurs anticipées des rendements, des volatilités, des covariances, bref des paramètres du marché. Comme dans la théorie de M, les agents sont supposés estimer sans erreur les distributions de ces rendements, et donc évaluer correctement les rendements espérés, les volatilités(i.e. écart-types) et la matrice des covariances. Sil on considère l ensemble desactifs risqués j =1,,A,on note Σ lamatrice des covariances de leurs rendements: σ 2 1 σ 1j σ 1 Σ= σ j1 σ 2 j σ j (2) σ 1 σ j σ 2 oùσ jk estlacovariancedesrendementsdesactifsj etk: j,k {1,,}:σ jk =σ( R j, R k ) (3) Naturellement, σ 2 j = σ jj = σ(r j,r j ) estla variance du rendement de l actif j. La première ligne de la matrice rassemble ainsi les covariances entre les rendements de l actif 1 3

4 et les rendements des titres(y compris l actif lui-même). Similairement, la j ème ligne rassemble les covariances entre les rendements de l actif j et les rendements des titres 1,2,,.Onnoteσ (j) laj èmelignedelamatricedescovariances.commelesrendementsnetsdiffèrentdesrendementsbrutsuniquementparuneconstante(r= R 1),les covariances des rendements nets sont également données par la matrice σ: j,k {1,,}:σ jk =σ( R j, R k )=σ(r j,r k ) La matrice de covariance est supposée être de plein rang et donc est supposée inversible. 1.2 L actif certain et son impact budgétaire LadifférenceentrelecadredelathéoriedeMarkowitzetceluiduthéorèmedesdeux fonds est la présence d un actif certain parmi les titres disponibles. Concrètement cet actifcertainpeutêtreassimiléàunactifmonétairedetrèscourtterme,unbondutrésor à 1 ou 3 mois par exemple. A la différence de ces actifs concrets dont la volatilité est très faible (1 ou 2% par an) mais néanmoins positive, la volatilité de l actif certain est strictement nulle. Son indice est 0 et on note donc son rendement sans ledes variables aléatoires:r 0.L hypothèsedel existenced untelactifapparaîtpeuexigeante.néanmoins elle a d importances implications. En effet, désormais la contrainte budgétaire s écrit non seulement en fonction des actifsrisquésetdeleurspoids(x j ),maisaussienfonctiondupoidsx 0 del actifcertain: x 0 + x j =1 (4) j=1 Ennotantxlevecteurcolonnedéfiniparlesdifférents x a,1levecteurcolonnedont lesacomposantessontégalesà1: x 1 1 x= x j, 1= 1 1 x alorscomme a x a=1 x,lacontraintebudgétaires écritaussisousformevectorielle: x 0 +1 x=1 (5) 4

5 Dans le cadre adopté, le problème de la sélection d un portefeuille s écrit initialement: max x0, (x j ) j=1 Er p γ 2 σ2 p sous la contrainte: x 0 + j=1 x j=1 Plutôt que de résoudre directement ce problème d optimisation sous contrainte, il peut être préférable de le réécrire. En effet la contrainte budgétaire permet d exprimer la position monétairex 0 enfonctiondesautres: x 0 =1 x j (6) Comme le rendement espéré du portefeuille lui s écrit initialement: Er p =x 0 r 0 + x j Er j (7) ilpeut,ensubstittuantàx 0 sonexpression,êtreréécritsuccessivement: Er p = 1 x j r 0 + x j Er j (8) j=1 j=1 j=1 j=1 Er p =r 0 x j r 0 + x j Er j (9) j=1 j=1 Er p =r 0 + x j (Er j r 0 ) (10) j=1 Cette expression du rendement espéré intègre le respect de la contrainte budgétaire. Le rendement espéré du portefeuille y apparaît constitué de deux éléménts : une base (le rendementdel investissementsansrisque,r 0 )àlaquelleviennents ajouterlesprimesde risque(er j r 0 )desplacementsrisquéspondérésparleurspoids. Comme la vairance du portefeuille: σ 2 p= x j x k σ 2 jk (11) j=1 k=1 5

6 ne dépend pas de l actif certain (puisque seuls les titres risqués de 1 à sont pris en compte),lasubstitutionàx 0 desonexpressionn impactepasl écrituredecettevariance. Mais désormais la fonction objectif V =r 0 + x j (Er j r 0 ) γ 2 j=1 x j x k σ 2 jk j=1 k=1 est une fonction objectif donnant la valeur de V pour tous les choix respectant la contrainte budgétaire, et donc max x 0, (x j ) j=1 donne les mêmes solutions que le programme sous contrainte: max x0, (x j ) V j=1 V sous la contrainte: x 0 + j=1 x j=1 2 Le portefeuille optimal Comme la fonction objectif V est strictement concave, les conditions nécessaires et suffisantesdelamaximisationsanscontraintedev sont: j: x j V =0 (12) Comme la dérivée de la variance d un portefeuille s écrit: ladérivéedev : j: σ 2 p x =2 x k σ ij (13) j k=1 x j V =Er j r 0 γ x k σ ij (14) Parconséquentlacpo(conditiondepremierordre)àvérifierpourchaquetitreest: Er j r 0 =γ k=1 x k σ ij (15) Cette relation comprend de part et d autre de l égalité deux termes distincts: 6 k=1

7 àgauchelaprimederisque(er j r 0 )quiestlegainmonétaire moyen del investissement; à droite le terme est proportionné au risque supplémentaire(2 k=1 x kσ ij )pondéré par le coefficient d aversion; économiquement il est pour l investisseur considéré l équivalent en terme de rendement du risque supplémentaire; comme évidemment il s agit d une perte pour l agent, γ k=1 x kσ ij définitpourl investissementle coût marginal du risque (en terme de rendements). Le système d équations permettant de définir le portefeuille optimal comprend donc autantd équationsqu ilyadetitresrisquésetdoncs écrit: (cpotitre1) Er 1 r 0 =γ (cpotitrej) Er j r 0 =γ k=1 x kσ 1k k=1 x kσ jk (16) (cpotitre) Er r 0 =γ k=1 x kσ k Pour déterminer le portefeuille optimal, il est intéressant de réécrire matriciellement cette condition de premier ordre, puis ce système d équation qu il définit. Pour cela, on (ré)introduit: levecteurrdesprimesdesrisques Er 1 r 0 r= Er j r 0 (17) Er r 0 levecteurxdesparts x= x 1 x j (18) x 7

8 la matrice des covariances Σ= σ 2 1 σ 1j σ 1 σ j1 σ 2 j σ j (19) σ 1 σ j σ 2 OnprendlaconventionqueΣ [j] désignélaj-emelignedecettematrice: Σ [j] = σ j1 σ 2 j σ j etongénéralisecettenotationàxetàr.parconséquent: x [j] = x j r [j] = Er j r 0 Aussi,lacpo: seréécrit: Er j r 0 =γ x k σ jk (20) k=1 r [j] =γσ [j] x puisque: x k σ jk = k=1 σ j1 σ 2 j σ j x 1 x j = Σ [j] x x Le système d équations se réécrit ligne après ligne de la manière suivante: (cpotitre1) r [1] =γσ [1] x (cpotitre1) r [2] =γσ [2] x (cpotitre1) r [3] =γσ [3] x (cpotitrej) r [j] =γσ [j] x (cpotitre) r [] =γσ [] x (21) 8

9 Côtégauchedusigneégal,onsecontented empilerleslignesderdej=1àj=, etdoncdereconstituerr.côtédroit,γapparaîtàchaqueligneetpeutdoncêtremisen facteur. De même que x. Reste les lignes Σ [j] que l on empile aussi de la première à la dernière.parconséquent,onreconstitueàdroitelamatriceσ.onadonc: r [1] =γσ [1] x r [2] =γσ [2] x r [3] =γσ [3] x r=γσx (22) r [j] =γσ [j] x r [] =γσ [] x Si l on suppose que la matrice carré Σ admet un inverse alors en prémultipliant la dernière partiepar 1 γ Σ 1 ona: r=γσx 1 γ Σ 1 r= 1 γ γσ 1 Σx 1 γ Σ 1 r=x etdoncleportefeuilleoptimalestdonnépar: x= 1 γ Σ 1 r (23) Dans cette expression, apparaissent jouer deux types de variables: le paramètre propre à l investisseur, son aversion par rapport au risque(γ); les paramètres du marché(les rendements espérés(r) et les covariances(σ)). Ces paramètres de marché définissent un vecteur qui a autant de composantes qu il yadetitresrisqués,i.e..parconséquentcevecteurσ 1 restaussiunportefeuillede marché dont les poids sont composantes du vecteur. Pour illustrer ce résultat supposons que l on ait 2 titres risqués, que les rendements soient: r 0 =2%, Er 1 =10%, Er 2 =6% que les volatilités des deux titres soient: σ 1 =16%, σ 2 =10% et que la corrélation entre les deux titres risqués soit

10 Remarque 2 Grosso modo les paramètres choisis font que le titre 1 est représentatif du marché action, le titre2du marché obligataire si l on se réfère à l historique du XXe siècle des pays développés (USA, UK, FR notamment). Sa matrice de covariances s écrit alors: (0.16) 2 0.5(0.16)(0.1) Σ = 0.5(0.16)(0.1) (0.1) = dont l inverse est: Σ 1 = Levecteurdesprimesderisquequantàluis écrit: 10% 2% 8% r= = 6% 2% 4% Onaalors: Σ 1 r = = Σ 1 rdéfinitdoncunportefeuilleoùl onseraitlongsurlesdeuxtitres,àhauteurde2500% surletitre1,àhauteurde2000%surletitre2.enfonctiondel aversionaurisque,on obtient différentes pondérations dont le tableau et le graphique ci-dessous retracent les évolutions: portef aversion 1 1,5 2 2,5 3 3,5 4 4,5 5 actif certain -350,0% -200,0% -125,0% -80,0% -50,0% -28,6% -12,5% 0,0% 10,0% actif 1 250,0% 166,7% 125,0% 100,0% 83,3% 71,4% 62,5% 55,6% 50,0% actif 2 200,0% 133,3% 100,0% 80,0% 66,7% 57,1% 50,0% 44,4% 40,0% 10

11 300,0% 200,0% 100,0% 0,0% -100,0% -200,0% actif certain actif 1 actif 2-300,0% -400,0% 3 Le portefeuille indiciel de référence Comme on l a vu le portefeuille risqué varie ici selon l aversion au risque. Mais ce portefeuille est mesuré par rapport à la richesse totale de l investisseur. Si x j = 10%, ceciindiquequenotreinvestisseuraplacé10%desarichessetotalesur j.maisonpeut s intéresseraupoidsz j dutitrej parrapportàl investissementtotalréalisésurlesseuls actifs risqués: x j z j = j=1 x (24) j Cepoidsz j peutaussiêtreassimiléaupoidsdejdanslesplacementsboursiers.cespoids z j définissentaussileportefeuillezcomplètementinvestiassociéàx: complètement investi car sa position monétaire(ou en cash) est nulle x j z 0 =1 z j =1 j=1 x = ( j=1 x j) j=1 j j=1 x =0 j z j = j=1 associéàxcarcedernierdéfinidirectementsespoids x z T x x j j=1 x j z= x 1 T x j=1 = x j 1 T x z j = 11 z x j 1 T x x 1 T x = 1 1 T x x 1 x x j

12 Dans notre exemple numérique, on aurait donc le tableau et le grahique ci-dessous: aversion 1 1,5 2 2,5 3 3,5 4 4,5 5 x0-350,0% -200,0% -125,0% -80,0% -50,0% -28,6% -12,5% 0,0% 10,0% z1 55,6% 55,6% 55,6% 55,6% 55,6% 55,6% 55,6% 55,6% 55,6% z2 44,4% 44,4% 44,4% 44,4% 44,4% 44,4% 44,4% 44,4% 44,4% 100,0% 50,0% 0,0% -50,0% ,0% -150,0% -200,0% x0 z1 z2-250,0% -300,0% -350,0% -400,0% Onvoitapparaîtrelemêmeportefeuilleboursierdansles3cas!!!Cecin estpasunhasard. En effet si l on reprend l expression générale du portefeuille optimal alors: etdonc: x= 1 γ Σ 1 r (25) γ Σ 1 r z= x 1 1 T x = 1 γ 1T Σ 1 r etdoncaprèséliminationdeγ audénominateuretaunumérateurona: z= Σ 1 r 1 T Σ 1 r (26) Comme on le voit z est lui totalement indépendant de γ et tout paramètre définissant l individu(sarichesse,sonâge,etc.).znedépendqueduparamètredemarché:lesprimes de risque et les covariances. Il est donc normal qu aux différents portefeuilles(en fonction de γ) de l exemple numérique ne corresponde qu un seul et même portefeuille boursier. Mais ceci signifie aussi que le processus d allocation se réalise comme si: 12

13 dans une première étape chaque agent choisissait le partage entre le cash et la bourse,i.e. x 0,cedernierdépendantdel aversionaurisquecommeonl avudans notre exemple; puisayantdéterminéceparamètre,tousinvestissent1 x 0 deleurrichessedansle même portefeuille boursier z. Ceprocessusendeuxtempsestd ailleursimplicementcontenudansl écrituredes z j puisque: x j z j = j=1 x = x j x j =(1 x 0 )z j (27) j 1 x 0 Pour l asset management, ce résultat a une conséquence dramatique: pour réaliser une allocation optimale, il suffit de proposer aux investisseurs deux produits et seulement deux produits- le produit monétaire et le portefeuille z. Ceci constitue le théorème des deux fonds. Comme ce dernier est le même pour tous, il constitue un portefeuille de référence, un indice qu un fond peut chercher à réaliser à tout moment en prenant en compte les paramètres du marché pour en déterminer les poids du portefeuille) détenir. Ceci constitue donc l une des justifications de la gestion indicielle. 4 Il est impossible de battre le marché Le ratio de Sharpe est sans conteste l une des mesure de performance les plus utilisées dans le monde professionnel. Sa définition n en est pas moins très simple: Définition 1 Le ratio de Sharpe d un portefeuille, d un produit financier, d un fond ou d un gérant est le rapport de la prime de risque à la volatilité, i.e. (Er,σ), le ratio de Sharpe de ce couple rendement volatilité est : S= Er r 0 σ LeratiodeSharpeestunemesuredeperformancecorrigéedurisque.Ellemesureen effetletauxauquelesttransforméenmoyennelerisqueenrendement.unratiodesharpe de0,5(correspondantassezbienàceluidumarchéactionàlongterme,dumoinssurles données du XXe siècles des prinpaux marchés des pays développées(usa, UK, FR, etc.)) exprimeeneffetlefaitquechaquepointde%derisqueesttransforméen1/2pointde% de rendement. Ce ratio s est imposé comme l une des principales mesures de performance car il permet notamment de neutraliser l impact des effets de levier dans l appréciation de la performance d un gérant. 13 (28)

14 Supposonseneffetqu ungérantàlongtermesoitàmêmeeninvestissantsurlemarché d obtenir un rendement espéré de 10% pour une volatilité de 16% - le taux sans risqe étant de 2%. S il gère son fond en ne créant aucun endettement, en proportionnant son investissementàsacollecte,ilseraàmêmedeverserunrendementr f àsesclientsdonné parlacontraintebudgétairedesonfond: 100% r p =100% r f (29) où le côté gauche est le revenu net de l actif (composé à 100% du portefeuille dont le rendementestr p ),lecôtédroitreprésentelesrevenusversés(icià100%auxclients).par conséquent,icicommer f =r p,lesrevenusversésauxclientsaurontlamêmeespéranceet la même volatilité que celles du portefeuille du gérant. Par contre supposons que le gérant décidedefairejouerleseffetsdelevierencréantalorsunpassifdufondcomposéà90% d endettement (au taux r 0 ) et à 10% des fonds collectés, alors la contrainte budgétaire s écrit désormais: Alorslerendementverséauxclientsdufondsera: 100% r p =10% r f +90% r 0 (30) r f =r (r p r 0 ) (31) Enmoyennedonc,lesclientsvontrecevoirunrendementégalautauxcertainr 0 augmenté d uneprimederisqueégalà10foiscelleduportefeuillegéréparleclient.aulieudercevoir unrendementespéréde10%commeauparavant,chaqueclientvarecevoir82%!!!good news. Pourtant legérantesttoujours lemême :niplusnimoins talentueux, niplusni moins chanceux. Malheureusement, ce rendement espéré s accompagne d un risque lui aussi démultiplié puisque: r f =r (r p r 0 ) σ(r f )=10 σ(r p ) (32) Lavolatilitéadoncétémultipliépar10!Cetimpactentrompel oeildeseffetsdelevier auraitpuêtreévitésil onavaitutiliserleratiodesharpe.eneffet,sanseffetdelevier, avec 100% de capital, comme Er f = Er p et σ f = σ p, on aurait eu comme mesure de performance alors: S f (100%)= Er f r 0 σ f = Er p r 0 σ p Silapartducapitaln estquede10%alors: =S p S f (10%)= Er f r 0 σ f = 10 (Er p r 0 ) 10 σ p =S p 14

15 puisqueer f =r (Er p r 0 )etσ f =10 σ p.danslesdeuxcas,onremarqueune propriété fort intéressante: Propriété 1 Le ratio de Sharpe du rendement perçu par les clients d un fond est invariant au levier d endettement du fond et égal au ratio de Sharpe de son portefeuille d investissement. Dans le cas général en effet si l on note L la part de l endettement au passif, la contrainte budgétaire s écrit: 100% r p =(1 L) r f +L r 0 (33) etdonc: etdonceneffet: S f = Er f r 0 σ f = r p r 0 =(1 L)(r f r 0 ) 1 (Er 1 L p r 0 ) 1 1 L σ = Er p r 0 =S p (34) p σ p Une dernière conséquence des résultats précédents sur les portefeuilles optimaux porte sur les performances des gérants. En effet, comme tout portefeuille optimal à équivalent à un portefeuille comprenant le cash et le portefeuille z précédemment défini, on a que pour toutaversiond aversionaurisqueγilexisteuneproportionx 0 (γ)tellequelerendement espéré(er p )etlavolatilité(σ p )desonportefeuilleoptimalsontdonnéspar: Puisque la première équation nous donne aussi: Er p =x 0 (γ)r 0 +(1 x 0 (γ))er Z (35) σ p = 1 x 0 (γ) σ z (36) Er p r 0 =(1 x 0 (γ))(er Z r 0 ) (37) en supposant(sans grande perte de généralité)que x 0 1, si l onfaitle rapport de la primederisqueàlavolatilitéona: Er p r 0 σ p = (1 x 0(γ))(Er Z r 0 ) (1 x 0 (γ))σ z = Er Z r 0 σ z (38) Le premier et le dernier termes correspondent aux ratios de Sharpe du portefeuille optimal et du portefeuille z. 15

16 35,00% 30,00% 25,00% 20,00% 15,00% 10,00% CML actif certain indice 5,00% 0,00% 0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% F.2 Les relations(38) reviennent donc à établir que tous les portefeuilles optimaux ont le mêmeratiodesharpe:celuiduportefeuillederéférence(z).comme: Er p r 0 σ p =S Z (39) on peut exprimer pour chaque portefeuille optimal son rendement espéré en fonction de sa volatilité: Er p =r 0 +S Z σ p (40) L ensemble des portefeuilles appartiennent donc dans le plan(volatilité, rendement espéré) à la même droite; de pente S Z, passant par les points définis par l actif certain et par le portefeuille z (comme le suggère le graphique 2). Cette droite qui comprend tous les portefeuilles optimaux et dont tous les portefeuilles sont optimaux est appelée la Capital Market Line (CML). Par contradiction, on peut aussi montrer que sa valeur est la plus grande possible sur lemarché.eneffet,sicelan étaitpaslecas,ilexisteraitunportefeuillepdontleratiode Sharpe serait supérieur: S p >S Z et cela impliquerait que: Er p r 0 σ p 16 >S Z

17 16,00% 14,00% 12,00% 10,00% 8,00% 6,00% Sz Sp 4,00% 2,00% 0,00% 0% 5% 10% 15% 20% F.3 Maiscommececinousdonne: Er p >r 0 +S Z σ p (41) le portefeuille seraitau-dessus de lacml. Etdonc en lecombinantàl actif certain on obtiendrait la droite issue du point (0,r 0 ) et passant par le portefeuille p, une droite supérieure à la CML dans le plan (volatilité, rendement espéré) comme illustré sur la figure 3. Mais si cela était il serait possible pour chaque point de la CML, donc pour chaque portefeuille optimal, de trouver un autre portefeuille de même risque mais de rendement espéré supérieur. L utilité de l investisseur étant nécessairement supérieure, ceci contredirait l optimalité de chaque point de la CML. Par conséquent, il est impossible detrouveruntelportefeuillepdontleratioseraitsupérieuràs z,etdoncs z estleratio de Sharpe maximal. Lapermetdoncdedéfinirunlieuderéférenceparrapportà laquelle on pourra évaluer la performance des gérants. En théorie, aucun point ne devrait dominer cette droite. Au mieux les gérants sur cette droite. Car il est impossible de battre le marché. Mais toute règle admet des exceptions 17

18 Références [Sha64] W. Sharpe,(1964). Capital asset prices: a theory of market equilibrium under condition of risk. ournal of Finance, septembre [Tob58]. Tobin,(1958). Liquidity preferences as behavior toward risk. Review of Economic Studies, 25:65 86,

Exercice : la frontière des portefeuilles optimaux sans actif certain

Exercice : la frontière des portefeuilles optimaux sans actif certain Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué

Plus en détail

THEORIE FINANCIERE Préparation à l'examen

THEORIE FINANCIERE Préparation à l'examen THEORIE FINANCIERE Préparation à l'examen N.B. : Il faut toujours justifier sa réponse. 1. Qu'est-ce que l'axiomatique de Von Neumann et Morgenstern? La représentation des préférences des investisseurs

Plus en détail

Exercice : covariance et gestion du risque. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine

Exercice : covariance et gestion du risque. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Exercice : covariance et gestion du risque Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Mars 2006 On considère deux actifs dont les rendements et les volatilités sont :

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005 ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE Professeur Matière Session A. Ziegler Principes de Finance Automne 2005 Date: Lundi 12 septembre 2005 Nom et prénom:... Note:... Q1 :...

Plus en détail

Chapitre 4 : construction de portefeuille (II)

Chapitre 4 : construction de portefeuille (II) Chapitre 4 : construction de portefeuille (II) 08.11.2013 Plan du cours Espérance de rentabilité d un portefeuille Volatilité d un portefeuille Choix du portefeuille efficient Prise en compte de l actif

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz

Master Modélisation Statistique M2 Finance - chapitre 1. Gestion optimale de portefeuille, l approche de Markowitz Master Modélisation Statistique M2 Finance - chapitre 1 Gestion optimale de portefeuille, l approche de Markowitz Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté.

Plus en détail

Combiner anticipations et optimisation : le modèle Black-Litterman

Combiner anticipations et optimisation : le modèle Black-Litterman Combiner anticipations et optimisation : le modèle Black-Litterman Université Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) PLAN Les raisons du modèle 1 Les raisons du modèle 2 1.

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2011-2012 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Examen Gestion de portefeuille

Examen Gestion de portefeuille ESC Toulouse 2005 D. Herlemont Mastère BIF Examen Gestion de portefeuille Durée : 2 heures Les documents ne sont pas autorisés. Pour les questions à choix multiples, une ou plusieurs réponses peuvent être

Plus en détail

Le MEDAF Modèle d'évaluation des actifs financiers

Le MEDAF Modèle d'évaluation des actifs financiers Le MEDAF Modèle d'évaluation des actifs financiers Comment le risque affecte-t-il la rentabilité espérée d'un investissement? Le MEDAF (CAPM = Capital Asset Pricing Model) donne une réponse cohérente.

Plus en détail

Allocation de Portefeuille Stratégies Quantitatives

Allocation de Portefeuille Stratégies Quantitatives Allocation de Portefeuille Stratégies Quantitatives DIALLO Mamadou Bhoye, MOUAFO FOKOU Collince 12 Mars 2014 DIALLO Mamadou Bhoye, MOUAFO FOKOU Collince 1 / 25 Sommaire Introduction 1 Introduction 2 3

Plus en détail

CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER

CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER OBJECTIF Décision d'investissement? Comment un individu décide-t-il d'allouer sa richesse entre différents actifs (maison, actions, obligations,

Plus en détail

Janvier 2008 vos stratégies de placement et d élaboration de portefeuille. L'Illustrateur Hypothétique Morningstar

Janvier 2008 vos stratégies de placement et d élaboration de portefeuille. L'Illustrateur Hypothétique Morningstar Janvier 2008 Livret des rapports Communiquez efficacement vos stratégies de placement et d élaboration de portefeuille L'Illustrateur Hypothétique Morningstar Rapport Illustration hypothétique 4 Sommaire

Plus en détail

Chapitre 4 : construction de portefeuille (I)

Chapitre 4 : construction de portefeuille (I) Chapitre 4 : construction de portefeuille (I) 25.10.2013 Plan du cours Risque et rentabilité : un premier aperçu Mesures traditionnelles du risque et rentabilité Rentabilité historique des actifs financiers

Plus en détail

Les stratégies de gestion de portefeuille d actions: Style de gestion et indexation de portefeuille

Les stratégies de gestion de portefeuille d actions: Style de gestion et indexation de portefeuille Les stratégies de gestion de portefeuille d actions: Style de gestion et indexation de portefeuille I. Concept d'efficience des marchés et stratégies de gestion - Efficience opérationnelle des marchés

Plus en détail

PREMIÈRE PARTIE LES ACTIONS... 13. CHAPITRE 1 Logique d investissement et mesure de la rentabilité... 15

PREMIÈRE PARTIE LES ACTIONS... 13. CHAPITRE 1 Logique d investissement et mesure de la rentabilité... 15 DBU11075.book Page 543 Mercredi, 8. avril 2015 4:44 16 TABLE DES MATIÈRES Présentation des auteurs... 5 Préface par Éric CHARPENTIER... 7 Préface par Vincent VAN DESSEL... 9 Introduction... 11 PREMIÈRE

Plus en détail

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation

Choix en situations de risque et d incertitude. Choix inter-temporels de consommation THEME 7 Choix en situations de risque et d incertitude. Choix inter-temporels de consommation Concepts et définitions essentiels Risque et incertitude Théorie de l utilité espérée Aversion au risque Loterie

Plus en détail

Examen Gestion d Actifs

Examen Gestion d Actifs ESILV 2012 D. Herlemont Gestion d actifs Examen Gestion d Actifs 2 pt 1. On considère un portefeuille investi dans n actifs risqués, normalement distribués d espérance en excès du taux sans risque µ =

Plus en détail

ESSEC. Cours FIN 260 Gestion de portefeuille. Séance 8 Mesures de performance

ESSEC. Cours FIN 260 Gestion de portefeuille. Séance 8 Mesures de performance ESSEC Cours FIN 260 Gestion de portefeuille Séance 8 Mesures de performance François Longin Plan Introduction Mesures de performance des fonds: développements académiques Premier niveau: la rentabilité

Plus en détail

La différence entre risque et volatilité : intérêt et limites du CAPM

La différence entre risque et volatilité : intérêt et limites du CAPM La différence entre risque et volatilité : intérêt et limites du CAPM Le CAPM (Capital Asset Pricing Model) établit la relation clef qui doit unir sur un marché efficient la prime de risque des différents

Plus en détail

Table des matières. l a r c i e r

Table des matières. l a r c i e r Chapitre 1 Introduction... 1 1.1. Objectifs et structure du livre.... 1 1.2. Qu est-ce que la gestion de portefeuille?.... 2 1.3. Qu est-ce que «investir»?.... 3 1.4. Canalisation des flux d épargne et

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

2- La relation risque rentabilité attendue

2- La relation risque rentabilité attendue 2- La relation risque rentabilité attendue L'incertitude est au cœur de la logique financière. Par la composition de leur portefeuille, les investisseurs choisissent un profil de risque. Si on suppose

Plus en détail

La distribution normale a une variabilité plus faible que l exponentielle.

La distribution normale a une variabilité plus faible que l exponentielle. La distribution normale a une variabilité plus faible que l exponentielle. Tx d intérêt : Intérêt composé : cet intérêt est réinvesti à la période suivante afin de rapporter davantage d intérêt Tx nominal

Plus en détail

Cours de gestion financière (M1)

Cours de gestion financière (M1) Cours de gestion financière (M1) Séance du 2 octobre 2015 Beta et risque de marché, MEDAF S&P500 vs high beta stocks 1 Séance du 2 octobre 2015 Beta et risque de marché, MEDAF 2 Partie 2 : Médaf, relation

Plus en détail

Comptabilité des titres et reporting d investissement

Comptabilité des titres et reporting d investissement Comptabilité des titres et reporting d investissement Cantaluppi & Hug AG Comptabilité des titres Reporting d'investissement Introduction La comptabilité des titres représente le centre névralgique du

Plus en détail

Les méthodes de contrôle des risques de portefeuilles

Les méthodes de contrôle des risques de portefeuilles Les méthodes de contrôle des risques de portefeuilles LE CERCLE INVESCO 006 Eric Tazé-Bernard Directeur de la Gestion INVESCO Asset Management Section 01 Section 0 Section 03 Les principaux indicateurs

Plus en détail

Plusieurs exercices de la douzième séance de TD

Plusieurs exercices de la douzième séance de TD Plusieurs exercices de la douzième séance de TD Décembre 2006 1 Offre du travail 1.1 énoncé On considère un ménage dont les préférences portent sur la consommation et le temps consacré aux activités non

Plus en détail

Note finale:... Q1 :... Q2 :... Q3 :... Q4 :... Bonus :... Total :...

Note finale:... Q1 :... Q2 :... Q3 :... Q4 :... Bonus :... Total :... FACULTE DES HAUTES ETUDES COMMERCIALES DE L'UNIVERSITE DE LAUSANNE Professeurs : D. Andrei C. Bobtcheff Matière : Principes généraux de finance Session : Automne 2012 Informations générales: o Documentation

Plus en détail

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts

CORRIGES DES CAS TRANSVERSAUX. Corrigés des cas : Emprunts CORRIGES DES CAS TRANSVERSAUX Corrigés des cas : Emprunts Remboursement par versements périodiques constants - Cas E1 Objectifs : Construire un échéancier et en changer la périodicité, Renégocier un emprunt.

Plus en détail

Arbitrage et théorie factorielle Une introduction. Philippe Bernard Ingénierie Economique et Financière Université Paris-Dauphine

Arbitrage et théorie factorielle Une introduction. Philippe Bernard Ingénierie Economique et Financière Université Paris-Dauphine Arbitrage et théorie factorielle Une introduction Philippe Bernard Ingénierie Economique et Financière Université Paris-Dauphine Septembre 2013 Table des matières 1 Du CAPM à la théorie factorielle 2 2

Plus en détail

Chapitre 4. Fondements économiques de la demande d'assurance

Chapitre 4. Fondements économiques de la demande d'assurance Chapitre 4. Fondements économiques de la demande d'assurance Laurent Denant Boemont octobre 2008 Chapitre 4. Fondements économiques de la demande d'assurance 2 J. Hamburg (2005) Along came Polly 1 Introduction

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

CHAPITRE 1 LA MÉTHODE DISCOUNTED CASH FLOWS

CHAPITRE 1 LA MÉTHODE DISCOUNTED CASH FLOWS CHAPITRE 1 LA MÉTHODE DISCOUNTED CASH FLOWS Ce chapitre est consacré à la valorisation par les cash flows actualisés ou DCF. Cette méthode est basée sur la capacité d une entreprise à générer des flux

Plus en détail

Value at Risk - étude de cas

Value at Risk - étude de cas Value at Risk - étude de cas Daniel Herlemont 17 juin 2011 Table des matières 1 Introduction 1 2 La Value at Risk 1 2.1 La VaR historique................................. 2 2.2 La VaR normale..................................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

INTRODUCTION : EDP ET FINANCE.

INTRODUCTION : EDP ET FINANCE. INTRODUCTION : EDP ET FINANCE. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP et finance. 1 / 16 PLAN DU COURS 1 MODÈLE ET ÉQUATION DE BLACK SCHOLES 2 QUELQUES EXTENSIONS A. Popier

Plus en détail

Notes sur les rendements de actifs nanciers. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine

Notes sur les rendements de actifs nanciers. Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Notes sur les rendements de actifs nanciers Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 2006 Table des matières 1 Correction des splits 2 2 Correction des dividendes

Plus en détail

1 Préférences du consommateur

1 Préférences du consommateur Université François Rabelais - L AES Cours d Economie Générale Corrigé succint du TD n 5 Automne 04 Il y a deux manière complémentaires de caractériser les préférences d un consommateur. Soit on connait

Plus en détail

et idées sur le marché du pétrole Diversification de styles dans les placements en revenu fixe : défis et solutions Septembre 2015

et idées sur le marché du pétrole Diversification de styles dans les placements en revenu fixe : défis et solutions Septembre 2015 Point de Analyse vue sur le marché du pétrole Septembre 2015 Diversification de styles dans les placements en revenu fixe : défis et solutions Les investisseurs en obligations ne seront pas étonnés de

Plus en détail

I La théorie de l arbitrage fiscal de la dette (8 points)

I La théorie de l arbitrage fiscal de la dette (8 points) E : «Théories de la finance d entreprise» Master M1 Université Paris-Dauphine Thierry Granger Année Universitaire 2013/2014 Session 1 Aucun document, calculette autorisée Durée 1h30 Respecter la numérotation

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

1 Une simple histoire de production, et déjà des calculs

1 Une simple histoire de production, et déjà des calculs Université François Rabelais - L AES Cours d Economie Générale Enoncé du TD n 7 Automne 202 Une simple histoire de production, et déjà des calculs Vous considérez dans cet exercice une firme qui a la possibilité

Plus en détail

Exercice 1 : Balance des Paiements (4 points)

Exercice 1 : Balance des Paiements (4 points) Université Paris Ouest-Nanterre La Défense Master Economie U.F.R. SEGMI Premier Semestre 2009-2010 Macroéconomie Ouverte Chargé de T.D. : Romain Restout Cours de Olivier Musy Contrôle Continu (14/12/2009)

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

Chapitre 13 - Le MEDAF

Chapitre 13 - Le MEDAF Chapitre 13 - Le MEDAF Plan Présentation et utilité du Medaf Deux propositions Tous les individus investissent dans le portefeuille de marché Les individus n'investissent pas dans les mêmes proportions

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Stratégies Quantitatives de Gestion

Stratégies Quantitatives de Gestion Stratégies Quantitatives de Gestion Thierry Roncalli 6 février 2012 Merci de rédiger entièrement vos réponses et de fournir les fichiers Excel. 1 Construction d un backtest 1. Quelle est la différence

Plus en détail

Le modèle de marché de Sharpe

Le modèle de marché de Sharpe Le modèle de marché de Sharpe Modèle statistique sans fondement théorique, supposant que les rendements sont normalement distribuées et que la Régression linéaire de Ri sur RM, donne la relation : αi et

Plus en détail

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading

PROJET DE GESTION PORTEFEUILLE. Evaluation d une Stratégie de Trading PROJET DE GESTION PORTEFEUILLE Evaluation d une Stratégie de Trading Encadré par M. Philippe Bernard Master 1 Economie Appliquée-Ingénierie Economique et Financière Taylan Kunal 2011-2012 Sommaire 1) Introduction

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 6 le Rôle de l Information - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 Plan du cours 1. Probabilités subjectives 2. Arrivée symétrique de l information 3. Information asymétrique

Plus en détail

Le financement adossé de l immobilier en gestion de patrimoine : une modélisation simple

Le financement adossé de l immobilier en gestion de patrimoine : une modélisation simple Le financement adossé de l immobilier en gestion de patrimoine : une modélisation simple Laurent Batsch ahier de recherche n 2005-01 Le financement adossé est une des modalités de financement de l investissement

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Terminale ES Correction du bac blanc de Mathématiques (version spécialité).

Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Terminale ES Correction du bac blanc de Mathématiques (version spécialité). Lycée Jacques Monod février 05 Exercice : Voici les graphiques des questions. et.. A 4 A Graphique Question. Graphique Question..

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

master Principes de Finance d Entreprise Corporate Finance Création de valeur Philippe Thomas Collection BANQUE FINANCE ASSURANCE

master Principes de Finance d Entreprise Corporate Finance Création de valeur Philippe Thomas Collection BANQUE FINANCE ASSURANCE Collection master BANQUE FINANCE ASSURANCE Principes de Finance d Entreprise Corporate Finance Création de valeur Philippe Thomas Table des matières Introduction... 9 Chapitre 1 L entreprise : l investissement

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal III CHOIX OPTIMAL DU CONSOMMATEUR A - Propriétés et détermination du choix optimal La demande du consommateur sur la droite de budget Résolution graphique Règle (d or) pour déterminer la demande quand

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires

La revalorisation des droits à la retraite avant leur liquidation différences entre les régimes de base et les régimes complémentaires CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 11 février 2015 à 9 h 30 «La revalorisation des pensions et des droits à la retraite : problématique et résultats de projection» Document N 5 Document

Plus en détail

Cycle de vie, Portefeuille et Simulations. Ph. Bernard & N. El Mekkaoui de Freitas

Cycle de vie, Portefeuille et Simulations. Ph. Bernard & N. El Mekkaoui de Freitas Cycle de vie, Portefeuille et Simulations Ph. Bernard & N. El Mekkaoui de Freitas http://www.master272.com/vba/vba_cycledevie.html Les procédures ont été réalisées pour le cours cycle de vie et gestion

Plus en détail

Chapitre 5 : Théorie et Gestion de Portefeuille

Chapitre 5 : Théorie et Gestion de Portefeuille Chapitre 5 : Théorie et Gestion de Portefeuille I. Notions de rentabilité et de risque II. Diversification de portefeuille III. Optimisation de Markowitz III.1. Portefeuilles composés d actifs risqués

Plus en détail

ECONOMIE DE LA DECISION EXERCICES CORRIGES

ECONOMIE DE LA DECISION EXERCICES CORRIGES ECONOMIE DE L DECISION EXERCICES CORRIGES Laurence BDIE - LICTIONS SSURNCE Exercice Soit un individu dont la onction d'utilité est la suivante: U (W) (W) a où W est la richesse de l'individu. Cet agent

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Théorie Financière 7. Relation risque rentabilité attendue (2/2)

Théorie Financière 7. Relation risque rentabilité attendue (2/2) Théorie Financière 7. Relation risque rentabilité attendue (/) Objectifs pour cette session. Revoir l effet de la combinaison de deux actifs risqués. Etendre à la combinaison de plusieurs actifs risqués

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Exercice 1.1: Calculer la prime initiale que la PME devra payer à partir des données de marché:

Exercice 1.1: Calculer la prime initiale que la PME devra payer à partir des données de marché: Exercice 1.1: Calculer la prime initiale que la PME devra payer à partir des données de marché: En général, le calcul de la prime d'un produit tel qu'une action se calcule par la formule du modèle Black-Sholes.

Plus en détail

Rentabilité des actifs et allocation stratégique

Rentabilité des actifs et allocation stratégique Rentabilité des actifs et allocation stratégique LE CERCLE INVESCO : SESSION 2007 Eric Tazé-Bernard Directeur de la Gestion INVESCO Asset Management 2 Section 01 Section 02 Section 03 Un modèle de description

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

1998.02 Composition d un portefeuille optimal. Dinh Cung Dang

1998.02 Composition d un portefeuille optimal. Dinh Cung Dang 199802 Composition d un portefeuille optimal Dinh Cung Dang Docteur en gestion de l IAE de Paris Ingénieur Conseil Résumé : Dans ce travail, le risque est défini comme étant la probabilité de réaliser

Plus en détail

Chapitre IV : Couples de variables aléatoires discrètes

Chapitre IV : Couples de variables aléatoires discrètes UNIVERSITÉ DE CERG Année 0-03 UFR Économie & Gestion Licence d Économie et Gestion MATH0 : Probabilités Chapitre IV : Couples de variables aléatoires discrètes Généralités Définition Soit (Ω, P(Ω), P)

Plus en détail

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls.

est diagonale si tous ses coefficients en dehors de la diagonale sont nuls. Diagonalisation des matrices http://www.math-info.univ-paris5.fr/~ycart/mc2/node2.html Sous-sections Matrices diagonales Valeurs propres et vecteurs propres Polynôme caractéristique Exemples Illustration

Plus en détail

Choix de Portefeuille

Choix de Portefeuille Année 2007-2008 Choix de orteeuille Christophe Boucher Chapitre. héorie de la décision en avenir incertain Critère d espérance d utilité L attitude vis-à-vis du risque Chapitre 2. Rendements et critères

Plus en détail

Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme

Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme Modélisation et étude d un système de trading directionnel diversifié sur 28 marchés à terme Trading system : Trend following Breakout Janvier 1996 - Janvier 2009 Etude de la performance du système Le

Plus en détail

Fondements de Finance

Fondements de Finance Programme Grande Ecole Fondements de Finance Chapitre 7. : Risque, rentabilité et diversification Cours proposé par Fahmi Ben Abdelkader Version Etudiants Mars 2012 Préambule Fig. 10.1 (p.294) : Evolution

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Mathématiques appliquées à la finance J. Printems Année 2008 09

Mathématiques appliquées à la finance J. Printems Année 2008 09 IAE Gustave Eiffel Master 2 Gestion de Portefeuille Université Paris xii Val de Marne Mathématiques appliquées à la finance J. Printems Année 2008 09 Épreuve du 15 juillet 2009 Durée : 1 heure 30 Calculatrices

Plus en détail

Déclassement d'actifs et stock brut de capital

Déclassement d'actifs et stock brut de capital Extrait de : La mesure du capital - Manuel de l'ocde 2009 Deuxième édition Accéder à cette publication : http://dx.doi.org/10.1787/9789264067752-fr Déclassement d'actifs et stock brut de capital Merci

Plus en détail

Politique de placements

Politique de placements Politique de placements Le 7 octobre 2010 Politique de placements Table des matières 1. La mission de la Fondation pour le développement des coopératives en Outaouais 2. Les principes de la gouvernance

Plus en détail

CAC, DAX ou DJ : lequel choisir?

CAC, DAX ou DJ : lequel choisir? CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010

Le Modèle de Black-Scholes. DeriveXperts. 27 octobre 2010 27 octobre 2010 Outline 1 Définitions Le modèle de diffusion de Black-Scholes Portefeuille auto-finançant Objectif de BS 2 Portefeuille auto-finançant et formule de Black-Scholes Formulation mathématique

Plus en détail

ENSAE, 1A Maths. Roland Rathelot roland.rathelot@ensae.fr. Septembre 2010

ENSAE, 1A Maths. Roland Rathelot roland.rathelot@ensae.fr. Septembre 2010 Initiation à l économie ENSAE, 1A Maths Roland Rathelot roland.rathelot@ensae.fr Septembre 2010 Les ménages (2/2) La consommation agrégée des ménages : analyse macroéconomique Les ménages (2/2) La consommation

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Chapitre 4 : cas Transversaux. Cas d Emprunts

Chapitre 4 : cas Transversaux. Cas d Emprunts Chapitre 4 : cas Transversaux Cas d Emprunts Échéanciers, capital restant dû, renégociation d un emprunt - Cas E1 Afin de financer l achat de son appartement, un particulier souscrit un prêt auprès de

Plus en détail

Examen Gestion de portefeuille

Examen Gestion de portefeuille ESC Toulouse 2011 D. Herlemont Mastère BIF+IMF Examen Gestion de portefeuille ˆ Durée: 2 heures ˆ Les calculatrices (simples) sont autorisés. ˆ Les documents ne sont pas autorisés. ˆ Sujet commun pour

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Allocation straté giqué d actifs : Uné introduction au Factor Invésting

Allocation straté giqué d actifs : Uné introduction au Factor Invésting Allocation straté giqué d actifs : Uné introduction au Factor Invésting Ben Kilani R. Nexialog Consulting, Pôle R&D, Novembre 2015 rbenkilani@nexialog.com Dans le monde de la gestion d actifs, nous constatons

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Méthodologies et Glossaire

Méthodologies et Glossaire Caractéristiques Précisions Calculs de performance 1.Performance 2.Performance relative 1.Volatilité 2.Tracking error 3.Ratio d'information 4.Bêta 5.Alpha 6.Ratio de Sharpe 7.Sensibilité Indicateurs de

Plus en détail

Examen Mesures de Risque de Marché

Examen Mesures de Risque de Marché ESILV 2012 D. Herlemont Mesures de Risque de Marché I Examen Mesures de Risque de Marché Durée: 2 heures. Documents non autorisés et calculatrices simples autorisées. 2 pt 1. On se propose d effectuer

Plus en détail

Baccalauréat STMG Polynésie 17 juin 2014

Baccalauréat STMG Polynésie 17 juin 2014 Baccalauréat STMG Polynésie 17 juin 2014 Durée : 3 heures EXERCICE 1 Cet exercice est un Q.C.M. 4 points Pour chaque question posée, quatre réponses sont proposées parmi lesquelles une seule est correcte.

Plus en détail

Cornèr Banque (Luxembourg) S.A. Risques associés aux profils de gestion

Cornèr Banque (Luxembourg) S.A. Risques associés aux profils de gestion Cornèr Banque (Luxembourg) S.A. Risques associés aux profils de gestion 1 Introduction Gestion patrimoniale mobilière Gestion patrimoniale fonds d investissement Gestion en placements alternatifs Gestion

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Rappel mathématique Germain Belzile

Rappel mathématique Germain Belzile Rappel mathématique Germain Belzile Note : à chaque fois qu il est question de taux dans ce texte, il sera exprimé en décimales et non pas en pourcentage. Par exemple, 2 % sera exprimé comme 0,02. 1) Les

Plus en détail