Vecteurs et droites du plan

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Vecteurs et droites du plan"

Transcription

1 Vecteurs et droites du plan I Rappel sur les vecteurs dans le plan 1. Définitions Un bipoint est un ensemble de 2 points. Le "bipoint " est noté (, ). Deu bipoints (, ) et (C, D) sont équipollents si les segments [D] et [C] ont le même milieu. On appelle vecteur l'ensemble des bipoints équipollents à un bipoint donné. Caractérisation d un vecteur tout couple de points (, ) du plan, on associe le vecteur Lorsque, le vecteur a - pour direction celle de la droite () - pour sens celui de vers - pour longueur ou norme la distance. La norme de sera notée. Lorsque =, le vecteur est noté 0 (vecteur nul) On désigne souvent les vecteurs par des lettres u, v, w Egalité vectorielle = CD équivaut à dire que les vecteurs et CD ont même direction, même sens et même norme. = CD équivaut à dire que le quadrilatère DC est un parallélogramme. = CD équivaut à dire que [D] et [C] ont le même milieu. 2. ddition vectorielle a. Définition Soit u et v deu vecteurs de l espace, on appele somme des deu vecteurs u et v le vecteur u + v. Pour construire le vecteur somme on peut utiliser la relation de Chasles ou la règle du parallélogramme. b. Règles de calcul Soit u, v et w trois vecteurs du plan. - u + v = v + u - u + 0 = u - u + ( u ) = u ( uest l opposé de u ) - (u + v ) + w = u +( v + w ) 1

2 3. Multiplication d un vecteur par un réel a. Définition Soit k un réel non nul et u un vecteur du plan non nul. Le vecteur k u a - pour direction celle de u - pour sens celui de u si k > 0 le sens contraire de u si k < 0 - pour norme k u = k u b. Règles de calcul Soit u et v deu vecteurs du plan. Soit k et k deu réels. - k( u + v )= k u + k v - (k + k )u = k u + k u - k(k u ) = kk u - ku = 0 équivaut à k = 0 ou u = 0 II Vecteurs colinéaires 1. Définitions Deu vecteurs non nuls u et v sont colinéaires si et seulement si ils ont la même direction. Deu vecteurs non nuls u et v sont colinéaires si et seulement si il eiste un réel k tel que u = k v. Par convention, le vecteur nul est colinéaire à tous les vecteurs. 2. Caractérisation analytique de la colinéarité de deu vecteurs Dans un repère ( O ; i, j) du plan, soient ' u et v deu vecteurs. y y ' u et v sont colinéaires si et seulement si leurs coordonnées sont proportionnelles. u et v sont colinéaires si et seulement si y ' ' y 0 ' Soient u et v deu vecteurs colinéaires, démontrons que y ' ' y 0. y y ' u et v sont colinéaires donc il eiste un réel k tel que u = k v. 2

3 k ' et y ky '. Si v est nul alors il est colinéaire à u. On suppose donc que ' 0 et y ' 0. y y On a donc k et k soit donc y ' ' y 0. ' y ' ' y ' Réciproque : ' Soient u et v deu vecteurs tels que y ' ' y 0, démontrons que u et v sont y y ' colinéaires. Si u est nul alors il est colinéaire à v. On suppose que l'une des deu coordonnées u n'est pas ' nulle par eemple et on pose k. y ' ' y y ' ' y 0 0 ' y ' y 0 ' y ' y ky Comme ' k et y ' ky alors v = k u donc u et v sont colinéaires. III Equations de droite 1. Vecteur directeur d'une droite Soit D une droite du plan. On appelle vecteur directeur de D tout vecteur non nul u qui a la même direction que la droite D. 2. Equation réduite d'une droite Toute droite D du plan, non parallèle à l'ae des ordonnées, a pour équation réduite y m p. 1 Un vecteur directeur de D est u. m On a vu, en seconde que la représentation graphique de f définie par f ( ) m p est la droite d'équation y m p Soit (0 ; p) et (1, m + p) deu points de D. On a soit. m p p m 1 est un vecteur directeur de D donc un vecteur directeur de D est. m 3. Equation cartésienne d'une droite 3

4 Théorème Toute droite D du plan a pour équation cartésienne a by c 0 avec a, b et c trois réels. b La droite D a pour vecteur directeur. a ( ; y ) et ( ; y ) deu points d'une droite D. M ( ; y) appartient à D équivaut à M et sont colinéaires. On a M et y y y y M et sont colinéaires équivaut à ( )( y y ) ( )( y y ) 0 En développant, on obtient ( y y ) ( ) y ( y y ) y ( ) 0 En posant a y y, b ( ) et c ( y y ) y ( ) on obtient bien une équation sous la forme a by c 0. Comme a y y, b ( ) et que b u. a Réciproque y y, alors un vecteur directeur de D est L'ensemble des points M ( ; y) du plan vérifiant a by c 0 (avec ( a; b) (0;0) est une b droite de vecteur directeur. a IV Décompositions d'un vecteur dans une base 1. ase du plan On appelle base du plan tout couple de vecteurs non colinéaires. 2. Repère du plan Soient, et C trois points du plan. (, C) est une base du plan. ( ;, C) est un repère du plan. Pour tout point M du plan, il eiste deu réels et y uniques tels que M y C. et y sont les coordonnées de M dans la base (, C). 3. Décomposition de vecteurs 4

5 Soient u et v deu vecteurs non colinéaires du plan. Pour tout vecteur du plan w, il eiste deu réels uniques k et k' tels que ku k ' v est la décomposition de w dans la base ( u, v). w ku k ' v. 5

Chapitre 3 : Vecteurs. Géométrie analytique

Chapitre 3 : Vecteurs. Géométrie analytique I. Vecteurs Chapitre 3 : Vecteurs. Géométrie analytique Un vecteur permet de caractériser un déplacement : Il est défini par une direction, un sens sur cette direction et une longueur. E F Il n'est en

Plus en détail

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21

Vecteurs du plan. Seconde 5 2010/2011 L.F.B. Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Vecteurs du plan Seconde 5 L.F.B. 2010/2011 Seconde 5 (L.F.B.) Vecteurs du plan 2010/2011 1 / 21 Définitions Translation Définition 1 Étant donnés trois points du plan A, B et M, on dit que M est l image

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur

5 VECTEURS DU PLAN. 1 Définitions AB. 1.1 Translation. 1.2 Vecteur ours 5 VETEURS U PLN 1 éfinitions 11 Translation éfinition 1 Étant donnés trois points du plan, et M, on dit que M est l image de M par la translation qui transforme en si les segments [M ] et [ M] ont

Plus en détail

VECTEURS ET DROITES. I. Colinéarité de deux vecteurs. Définition : c est-à-dire qu il existe un nombre réel k tel que u = kv. Critère de colinéarité :

VECTEURS ET DROITES. I. Colinéarité de deux vecteurs. Définition : c est-à-dire qu il existe un nombre réel k tel que u = kv. Critère de colinéarité : 1 VECTEURS ET DROITES En 1837, le mathématicien italien Giusto BELLAVITIS, ci-contre, (1803 ; 1880) publie des travaux préfigurant la notion de vecteurs qu'il nomme "segments équipollents". Puis plus tard

Plus en détail

VECTEURS DU PLAN. I- Vecteurs et translations. 1. Définition

VECTEURS DU PLAN. I- Vecteurs et translations. 1. Définition hapitre 05 I- Vecteurs et translations VETEURS DU PLN 1. Soit et deux points du plan. Lorsque, à tout point M du plan, on associe le point M tel que [M ] et [] ont le même milieu, on dit que M est l image

Plus en détail

Seconde Suite du cours sur les vecteurs Page 1 sur 9

Seconde Suite du cours sur les vecteurs Page 1 sur 9 Seconde Suite du cours sur les vecteurs Page 1 sur 9 III) Somme de vecteurs : 3) Somme de vecteurs et configurations : a) Parallélogramme Propriété : Parallélogramme Si ABCD est un parallélogramme alors

Plus en détail

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6

Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 1 sur 6 Seconde Géométrie 2 : Les vecteurs Page 2 sur 6 II) Vecteurs : 1) Qu est ce qu un vecteur? Un vecteur ( non nul ) est la donnée de trois éléments : 1) une

Plus en détail

Fiche méthode : Vecteurs dans un repère

Fiche méthode : Vecteurs dans un repère Table des matières 1 Calcul des coordonnées 2 1.1 Cas général................................................ 2 1.2 exemple.................................................. 2 2 vecteurs égaux 2 2.1 rappels...................................................

Plus en détail

Géométrie analytique et équation de droite

Géométrie analytique et équation de droite Géométrie analtique et équation de droite ) Géométrie analtique.. Généralités. Définitions : Dire que ( ; ) sont les coordonnées du point M dans le repère (O ; i ; j ) signifie que : OM = i + j et on note

Plus en détail

Vecteurs et colinéarité

Vecteurs et colinéarité Chapitre 3 Vecteurs et colinéarité Ce que dit le programme : Géométrie plane. Vecteurs Condition de colinéarité de deux vecteurs : xy' x'y. Vecteur directeur d une droite. Équation cartésienne d une droite.

Plus en détail

Chapitre 6 Géométrie vectorielle

Chapitre 6 Géométrie vectorielle 6. Translation et vecteurs 6.. Définition DÉFINITIN n considère et deux points distincts du plan. hapitre 6 Géométrie vectorielle. n appelle translation qui transforme en la transformation qui à tout point

Plus en détail

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1 hapitre 2 olinéarité et équation de droite TLE DES MTIÈRES page -1 hapitre 2 olinéarité et équation de droite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1

Chapitre 2 Colinéarité et équation de droite. Table des matières. Chapitre 2 Colinéarité et équation de droite TABLE DES MATIÈRES page -1 hapitre 2 olinéarité et équation de droite TLE DES MTIÈRES page -1 hapitre 2 olinéarité et équation de droite Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12

Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Seconde Chapitre 5 : Les vecteurs Page 1 sur 12 Activités 1, 2 et 3 sur les translations I ) Vecteurs 1) Qu est ce qu un vecteur? Idée à retenir : «Un vecteur sert à décrire un déplacement» Un vecteur

Plus en détail

Vecteurs et translations

Vecteurs et translations 2015 Les vecteurs Seconde 9 I Vecteurs et translations I.1 Translation Soit et B deux points du plan. À tout point C du plan, on associe le point D tel que [D] et [BC] ont le même milieu. B B CD D C L

Plus en détail

Fiche méthode : équations de droites

Fiche méthode : équations de droites Table des matières 1 Coefficient directeur 2 11 Cas général 2 12 Calcul du coefficient directeur connaissant deux points de la droite 2 13 Lecture graphique du coefficient directeur 2 2 Equation réduite

Plus en détail

Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés

Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés Equation cartésienne d un plan Géométrie dans l espace Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : vecteur normal à un plan Exercice 2

Plus en détail

Chapitre 4 : Vecteurs et repères

Chapitre 4 : Vecteurs et repères Chapitre 4 : Vecteurs et repères Dans tout ce chapitre on fixe un plan P qu on appelle le plan. 1 Définitions et généralités. 1.1 Couples et bipoints On rappelle qu un couple est la donnée de deux éléments

Plus en détail

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I.

Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5. Le réel x, associé au point M, est appelé abscisse du point M dans le repère O, I. Seconde Chapitre 2 : Géométrie analytique Page 1 sur 5 I) Rappels sur les configurations du plan COURS pages 248 et 249 du manuel Exercice 2 page 268 (utiliser la rotation de centre C et d angle 60 ) Exercices

Plus en détail

Le barycentre dans le plan et dans l espace

Le barycentre dans le plan et dans l espace Le barycentre dans le plan et dans l espace Livre pages 160 à 171 Introduction : QCM + exercices sur les vecteurs niveau seconde; recherche de point d équilibre. 1 Vecteurs dans l espace 1.1 Propriétés

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs I. Notion de vecteurs a) Vecteurs et translations Définition : A et B désignent deux points du plan. La translation qui transforme A en B associe à tout point C du plan l'unique point D tel que les segments

Plus en détail

Cours : Vecteurs repérage dans le plan

Cours : Vecteurs repérage dans le plan Cors : Vecters repérage dans le plan I. Repères et coordonnées a) repérage sr ne droite Choisir n repère sr ne droite, c est se donner dex points distincts O et I de, pris dans cet ordre. O est l origine

Plus en détail

Seconde Les vecteurs Année scolaire 2013/2014

Seconde Les vecteurs Année scolaire 2013/2014 Seconde Les vecteurs Année scolaire 2013/2014 I) Notion de vecteur : 1) Lien translation/vecteur : On fait glisser la figure marron le long de la droite (AB), dans le sens de A vers B, de la longueur AB.

Plus en détail

est le vecteur qui a la même direction, la même longueur que AB un sens opposé. C est donc le vecteur BA. On note : -AB ABCD est un parallélogramme.

est le vecteur qui a la même direction, la même longueur que AB un sens opposé. C est donc le vecteur BA. On note : -AB ABCD est un parallélogramme. Chapitre VII : Les ecters Repérage dans le plan I Vecters a) égalité de ecters Définition : On dit qe dex ecters sont égax lorsq ils ont même direction, même sens et même longer On note = = CD = EF Vecters

Plus en détail

DROITES. ( )( y B ( ) = 0. D vérifie une équation de la forme x = c avec c = x A. I. Equation de droites. 1. Caractérisation analytique d une droite

DROITES. ( )( y B ( ) = 0. D vérifie une équation de la forme x = c avec c = x A. I. Equation de droites. 1. Caractérisation analytique d une droite 1 sur 10 ROITES I. Equation de droites 1. Caractérisation analytique d une droite Propriété : Soit (O, i, ) un repère du plan. Soit une droite du plan. y - Si est parallèle à l axe des ordonnées : alors

Plus en détail

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu.

Un quadrilatère ABCD est un parallélogramme si, et seulement si ses diagonales ont le même milieu. Lycée JNSN E SILLY 10 novembre 015 VETEURS U PLN nde 5 I NTIN E VETEUR 1 PRLLÉLGRE ÉFINITIN Un quadrilatère est un parallélogramme si, et seulement si ses diagonales ont le même milieu. parallélogramme

Plus en détail

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs

Seconde Géométrie vectorielle Notion de vecteurs coordonnées de vecteurs Notion de ecters coordonnées de ecters I. Notion de ecters a) Vecters et translations Définition : A et B désignent dex points d plan. La translation qi transforme A en B associe à tot point C d plan l'niqe

Plus en détail

Si on essayait de penser vectoriellement? Vecteur : véhicule, sens, direction, flèche du temps, index de mouvement ou de transformation. OM = x.

Si on essayait de penser vectoriellement? Vecteur : véhicule, sens, direction, flèche du temps, index de mouvement ou de transformation. OM = x. I REPÈRE DU PLAN 1 DÉFINITION On appelle repère du plan, tout triplet (O; i, ) tel que O désigne un point du plan et i, deux vecteurs non colinéaires Le point O est appelé origine du repère ; les vecteurs

Plus en détail

VECTEURS DE L'ESPACE

VECTEURS DE L'ESPACE 1 VECTEURS DE L'ESPACE I. Caractérisation vectorielle d'un plan 1) Notion de vecteur dans l'espace Définition : Un vecteur de l'espace est défini par une direction de l'espace, un sens et une norme (longueur).

Plus en détail

Vecteurs, cours pour la classe de seconde

Vecteurs, cours pour la classe de seconde F.Gaudon 2 septembre 2009 Table des matières 1 Notions de translation et de vecteurs 2 2 Somme de vecteurs 3 3 Coordonnées de vecteurs 5 1 1 Notions de translation et de vecteurs Soient A et B deux points

Plus en détail

Vecteurs. I.Translations et Vecteurs du plan...1. II.Somme et différence de deux vecteurs...2

Vecteurs. I.Translations et Vecteurs du plan...1. II.Somme et différence de deux vecteurs...2 Vecteurs 2 nde Table des matières I.Translations et Vecteurs du plan...1 A.Translation et vecteur associé...1 B.Égalité de deux vecteurs...1 C.Vecteur nul...2 D.Opposé d un vecteur...2 II.Somme et différence

Plus en détail

Produit d un vecteur par un nombre, cours pour la classe de seconde

Produit d un vecteur par un nombre, cours pour la classe de seconde Produit d un vecteur par un nombre, cours pour la classe de seconde F.Gaudon 13 mai 2010 Table des matières 1 Produit d un vecteur par un nombre 2 2 Traduction vectorielle de propriétés géométriques 3

Plus en détail

cours de mathématiques en seconde

cours de mathématiques en seconde cours de mathématiques en seconde Vecteurs, translations et coordonnées dans le plan 0 Point de vue historique : Le mot «vecteur» vient du latin «vehere» (conduire, transporter) La notion de vecteur est

Plus en détail

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008

Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 2007 2008 Seconde 1 Chapitre 8 : fonctions affines et équations de droites. Page n 1 La ligne droite fait partie de notre environnement naturel, mais comme tout objet mathématique, elle nécessite une définition.

Plus en détail

L outil vectoriel et géométrie analytique

L outil vectoriel et géométrie analytique L outil vectoriel et géométrie analytique 1 Table des matières 1 Définition et théorème 1.1 Définition................................. 1. Egalité entre deux vecteurs....................... Addition de

Plus en détail

Ces quelques formules sont censées être sues à la fin de la classe de quatrième!

Ces quelques formules sont censées être sues à la fin de la classe de quatrième! Ces quelques formules sont censées être sues à la fin de la classe de quatrième! I. Multiplication et division de nombres relatifs Le produit (ou le quotient) de deux nombres de même signe est positif.

Plus en détail

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3

, on considère les points A( 2; 3) et B(1; 2). y= 5 3 x 1 3., on considère les points A( 3; 1) et B( 3; 4). ( x+3. x= 3 I INTRODUCTION Dans le plan muni d un repère O; i, j, on cherche à établir une relation entre les coordonnées (x;) des points du plan appartenant à une droite D. EXEMPLE 1 Dans le plan muni d un repère

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Voir des propriétés sur la calculette et de les démontrer par des calculs : ensemble de définition solutions d'équations et d'inéquations croissance et décroissance symétries

Plus en détail

Soit ABC un triangle quelconque. A le milieu de [BC], G le centre de gravité du triangle, D et E les points

Soit ABC un triangle quelconque. A le milieu de [BC], G le centre de gravité du triangle, D et E les points lasse de Seconde Géométrie vectorielle et analytique 1 Question de cours (c) Vecteurs (c) olinéarité (c) 4 Lecture graphique (c) 5 Droites/carré (c) 6 onstruction (c) 7 Equations de droites 1 (c) 8 Equations

Plus en détail

analytique plane 2. 2013

analytique plane 2. 2013 analytique plane 2. 2013 Maths-A TABLE DES MATIÈRES Rappels sur les vecteurs... 30 Pente d une droite... 31 Equation d une droite, première forme... 32 Equation d une droite, deuxième forme... 33 Equation

Plus en détail

Les droites. On considère le plan muni d un repère orthonormé (O ; I, J).

Les droites. On considère le plan muni d un repère orthonormé (O ; I, J). Chapitre 2 1ère STMG Les droites 1. Coefficient directeur ; ordonnée à l origine On considère le plan muni d un repère orthonormé (O ; I, J). 1.1) Droites non parallèles à l'axe des ordonnées Définition

Plus en détail

7 Vecteurs du plan. Hyperbole 2010 p.196.

7 Vecteurs du plan. Hyperbole 2010 p.196. 7 Vecteurs du plan Hyperbole 2010 p.196. Objectifs : Définir une translation et le vecteur associé Savoir caractériser et reconnaître deux vecteurs égaux, deux vecteurs opposés Savoir construire géométriquement

Plus en détail

Géométrie analytique

Géométrie analytique Géométrie analytique Cédric Milliet Version préliminaire Cours de première année de licence Université Galatasaray Année 2011-2012 Ces notes doivent beaucoup aux notes de cours de Marie-Christine Pérouème.

Plus en détail

Géométrie analytique dans le plan. Notes de cours

Géométrie analytique dans le plan. Notes de cours Géométrie analytique dans le plan Notes de cours Le plan affine est muni d'un repère point. ; x désigne l'abscisse d'un point, et y l'ordonnée de ce Droite Une droite affine (c'est-à-dire une droite au

Plus en détail

Produit scalaire dans l espace-equations de plans et de droites

Produit scalaire dans l espace-equations de plans et de droites Mme Morel-TS 1 Produit scalaire dans l espace-equations de plans et de droites 1 Produit scalaire dans l espace 1.1 Définition Définition 1.1.1. Dasn l espace, une unité de longueur étant choisie, le produit

Plus en détail

I. Se repérer sur le cercle trigonométrique (2 nde )

I. Se repérer sur le cercle trigonométrique (2 nde ) ère S FCHE n Trigonométrie. Se repérer sur le cercle trigonométrique ( nde ) L idée + d n enroule la droite d autour d un cercle de centre et de rayon comme ci-dessus. A chaque point d abscisse sur la

Plus en détail

1 Translation. 2 Vecteurs

1 Translation. 2 Vecteurs Lycée assini ours : Vecteurs du plan seconde 6 1 Translation Définition Soient et deux points du plan. On appelle translation qui transforme en la transformation qui à tout point du plan associe l unique

Plus en détail

Cours BTS Calcul vectoriel

Cours BTS Calcul vectoriel Cours BTS Calcul vectoriel S. B. Lycée des EK Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique

Plus en détail

2. Repère du plan Coordonnées d un. point Configurations planes

2. Repère du plan Coordonnées d un. point Configurations planes . Repère du plan oordonnées d un point onfigurations planes ctivité introductive : Démonter avec les milieu D est le trapèze ci-contre telle que ( D )//() D et sont les milieu respectifs des segments []

Plus en détail

COURS TERMINALE S LES NOMBRES COMPLEXES

COURS TERMINALE S LES NOMBRES COMPLEXES COURS TERMINALE S LES NOMBRES COMPLEXES A. Introduction des nombres complexes Au XVIème siècle, des algébristes italiens cherchent à résoudre des équations de degré telles que, par exemple, l'équation

Plus en détail

LES VECTEURS : Un exemple de cours.

LES VECTEURS : Un exemple de cours. LES VECTEURS : Un exemple de cours. I) De la translation Du latin transfere transporter aux vecteurs Du latin vector véhicule, de vehere transporter Introduction : Activités de groupe. Objectif : utiliser

Plus en détail

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c.

b) Equation du second degré Lorsque l équation ax² + bx + c = 0 admet des solutions, celles-ci sont appelées racines du trinôme ax² + bx + c. Chapitre I : Révisions I. Le second degré a) fonction trinôme La représentation graphique d une fonction f définie sur par f() = a² + b + c (a non nul) est une parabole. La fonction f est appelée fonction

Plus en détail

( ) Si b divise a, alors pgcd a;b. ( ) est le plus grand commun diviseur de a et b.

( ) Si b divise a, alors pgcd a;b. ( ) est le plus grand commun diviseur de a et b. Chapitre 2 : PGCD - Bézout - Gauss I. PGCD de deux entiers Activité 1 Soit a et b des entiers non nuls. On note D( a;b) l ensemble des diviseurs communs positifs de a et de b. Ainsi D( a;b) = D( a) D(

Plus en détail

2. GENERALITES SUR LES FONCTIONS

2. GENERALITES SUR LES FONCTIONS . GENERALITES SUR LES FONCTIONS. Fonction d'une variable réelle à valeurs réelles.. Fonction et ensemble de déinition On appelle onction d'une variable réelle à valeurs réelles une application qui à tout

Plus en détail

Géométrie analytique ( En seconde )

Géométrie analytique ( En seconde ) Géométrie analytique ( En seconde ) Dernière mise à jour : Dimanche 31 Octobre 2010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2010-2011) Lycée Stendhal, Grenoble ( Document de : Vincent

Plus en détail

Coordonnées Équation de droites

Coordonnées Équation de droites Coordonnées Équation de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Coordonnées dans le plan 2 1.1 Repères coordonnées d un point.................................... 2 1.2

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 9 septembre 2015

Corrigé du baccalauréat S Métropole La Réunion 9 septembre 2015 Corrigé du baccalauréat S Métropole La Réunion 9 septembre 215 A. P. M. E. P. Eercice 1 Commun à tous les candidats 5 points Question 1 On considère l arbre de probabilités ci-contre :,6 A A,2,3 B B B

Plus en détail

Somme et différence de deux vecteurs 1. Relation de Chasles. Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs

Somme et différence de deux vecteurs 1. Relation de Chasles. Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs Seconde Lycée Desfontaines - Melle Cours 04 Vecteurs I. Définitions 1- Notions de direction et de sens : On dit que deux droites ont le même direction si et seulement si elles sont parallèles. Une direction

Plus en détail

Angles orientés de vecteurs Trigonométrie

Angles orientés de vecteurs Trigonométrie Angles orientés de vecteurs Trigonométrie Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Mesures d angles orientés de vecteurs 1.1 Cercle trigonométrique mesures d arcs orientés...........................

Plus en détail

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé.

Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 BF. AD? BC. 1) Placer les points A(4 ;-2) B(-1 ;3,5) I (3 ;2) dans un repère orthonormé. Seconde 2 DST2 vecteurs 2013-2014 Sujet 1 Exercice 1 : (4 points) ABCDEF est un hexagone régulier de centre O. Répondre aux questions suivantes en utilisant uniquement les points de la figure. 1) Trouver

Plus en détail

Calcul vectoriel dans l espace, géométrie dans le plan et dans l espace

Calcul vectoriel dans l espace, géométrie dans le plan et dans l espace Chapitre 7 Calcul vectoriel dans l espace, géométrie dans le plan et dans l espace 7.1 Calcul vectoriel dans l espace On se place dans un repère orthonormal (O, i, j, k) de l espace E (à 3 dimensions).

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Généralités sur les fonctions numériques. Rappels sur les fonctions.. Généralités Définition : On appelle fonction f un procédé qui à tout nombre réel tente d'associer un unique nombre réel f(), appelé

Plus en détail

( ) = b. Chapitre 5 : Fonction logarithme népérien. I. Fonction logarithme népérien. 1. Définition et propriétés

( ) = b. Chapitre 5 : Fonction logarithme népérien. I. Fonction logarithme népérien. 1. Définition et propriétés Chapitre 5 : Fonction logarithme népérien I. Fonction logarithme népérien 1. Définition et propriétés La fonction exponentielle est strictement croissante sur! à valeurs dans 0;+, donc d'après le théorème

Plus en détail

Forme trigonométrique d un nombre complexe Applications

Forme trigonométrique d un nombre complexe Applications Forme trigonométrique d un nombre complexe Applications Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Représentation géométrique d un nombre complexe 2 1.1 Rappels : affixe d un point........................................

Plus en détail

1 ère S Équations de droites et systèmes

1 ère S Équations de droites et systèmes ère S Équations de droites et systèmes Objectifs : - consolider les connaissances de seconde ; - approfondir la notion d équation de droite ; - étudier de nouvelles méthodes. Plan du chapitre : I. Exemples

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de seconde session 2012 Enoncés On demandait de résoudre trois questions

Plus en détail

COURS SUR LES TRANSLATIONS ET HOMOTHETIES

COURS SUR LES TRANSLATIONS ET HOMOTHETIES COURS SUR LES TRANSLATIONS ET HOMOTHETIES Translations Soit un vecteur du plan La translation du vecteur, notée, est l application qui à tout point M du plan ou de l espace associe le point M tel que Remarques

Plus en détail

Coordonnées du milieu d un segment dans un repère Exercices corrigés

Coordonnées du milieu d un segment dans un repère Exercices corrigés Coordonnées du milieu d un segment dans un repère Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : lire graphiquement les coordonnées du

Plus en détail

LOGARITHME NÉPÉRIEN. I Définition - Propriétés - Relation fonctionnelle. Définition. Propriétés (voir démonstration 01) Rappel.

LOGARITHME NÉPÉRIEN. I Définition - Propriétés - Relation fonctionnelle. Définition. Propriétés (voir démonstration 01) Rappel. LOGARITHME NÉPÉRIEN I Définition - Propriétés - Relation fonctionnelle e Rappel La fonction eponentielle est une fonction continue et strictement croissante sur IR. On a lim e = 0 et - lim e = +. D'après

Plus en détail

MATHEMATIQUES. Premier Cycle TROISIEME

MATHEMATIQUES. Premier Cycle TROISIEME MATHEMATIQUES Premier Cycle TROISIEME 79 INTRODUCTION Le programme de la classe de troisième, dernier niveau de l enseignement moyen, vise à doter l élève de savoirs faire pratiques par une intégration

Plus en détail

Annales de géométrie dans l espace - Corrigé

Annales de géométrie dans l espace - Corrigé Annales de géométrie dans l espace - Corrigé Pondichéry Avril 2013 (4 points) Pour chacune des questions, quatre propositions de réponse sont données dont une seule est exacte. Pour chacune des questions

Plus en détail

Point Méthodologique Première S

Point Méthodologique Première S L objectif est de vous aider à répondre de manière autonome à tous les types de questions que vous rencontrez dans les exercices. En effet il n est pas toujours immédiat de résoudre certains exercices,

Plus en détail

Chapitre 1 : Géométrie repérée dans le plan

Chapitre 1 : Géométrie repérée dans le plan Chapitre 1 : Géométrie repérée dans le plan I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ ]. On appelle médiatrice du segment [ ] la droite perpendiculaire en I à ( ). Propriétés

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Chapitre 7 Généralités sur les fonctions numériques Étude d une fonction réelle d une variable réelle On munit le plan d un repère orthonormé O; i, j.. Fonction réelle d une variable réelle Définition

Plus en détail

Vecteurs et repères du plan

Vecteurs et repères du plan Vecteurs et repères du plan Lycée Jean Perrin 2 nde 13 Guillaume Connan Lycée Jean Perrin (2 nde 13) Décembre 2006 1 / 87 Sommaire 1 Qu est-ce qu un vecteur du plan? 2 Somme de vecteurs 3 Vecteur nul -

Plus en détail

Table des matières. Les méthodes Droite passant par deux points Les droites parallèles Les droites perpendiculaires

Table des matières. Les méthodes Droite passant par deux points Les droites parallèles Les droites perpendiculaires Table des matières Repérage dans le plan 1 Repérage dans le plan 2 3 Les méthodes 4 Distance de deux points Distance d'un point à une droite Repérage dans le plan Dénition Un repère othonormé du plan est

Plus en détail

Partie 3 : géométrie analytique dans un plan orthonormé

Partie 3 : géométrie analytique dans un plan orthonormé Partie 3 : géométrie analytique dans un plan orthonormé 1 Modes de repérage dans le plan 1.1 Bases du plan et composantes des vecteurs Définition On dit que le couple de vecteurs ( i, j) est : une base

Plus en détail

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés

Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Nombres complexes Partie réelle et partie imaginaire Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : donner la partie réelle et la partie

Plus en détail

TD d exercices sur les vecteurs et la géométrie analytique.

TD d exercices sur les vecteurs et la géométrie analytique. TD d exercices sur les vecteurs et la géométrie analytique. Exercice 1 : (Brevet 2006) 1) Placer les points A (-3 ; 1), B (-l,5 ; 2,5) et C (3 ; -2) dans un repère orthonormé (O, I, J). 2) Montrer que

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

Unité G Géométrie cartésienne

Unité G Géométrie cartésienne Unité G Géométrie cartésienne MATHÉMATIQUES APPLIQUÉES 0S Eercices Eercice. Représente les points ci-après sur le plan cartésien : A(, ) B(, ) C(, ) D(, ) E(, ) - - - 0 - - -. Quelles sont les coordonnées

Plus en détail

EQUATIONS, INEQUATIONS ET SYSTEMES D EQUATIONS

EQUATIONS, INEQUATIONS ET SYSTEMES D EQUATIONS EQUATIONS, INEQUATIONS ET SYSTEMES D EQUATIONS I. Résoudre un problème par une mise en équation La mise en équation d'un problème comporte, en général, 4 étapes : 1. Choisir les inconnues La lecture de

Plus en détail

Chapitre 4. Calcul Vectoriel

Chapitre 4. Calcul Vectoriel Chapitre 4 Calcul Vectoriel Pour représenter la réalité physique, les scientifiques ont élaboré des objets mathématiques de différents types : les longueurs, masses, températures, charges électriques sont

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

Correction du dm13. Produit scalaire dans l espace. a 2 +b 2 +c 2

Correction du dm13. Produit scalaire dans l espace. a 2 +b 2 +c 2 Correction du dm1. Produit scalaire dans l espace Exercice 1 (n o 157 page 90 : Distance d un point à un plan) Partie A Soient P un plan et I un point de l espace. On appelle distance de I au plan P la

Plus en détail

avril 2011 Géométrie analytique et vectorielle dans le plan Géométrie 2 ème - 1 GEOMETRIE ANALYTIQUE ET VECTORIELLE DANS LE PLAN

avril 2011 Géométrie analytique et vectorielle dans le plan Géométrie 2 ème - 1 GEOMETRIE ANALYTIQUE ET VECTORIELLE DANS LE PLAN avril 0 Géométrie analtique et vectorielle dans le plan Géométrie ème - GEMETRIE ANALYTIQUE ET VECTRIELLE DANS LE PLAN. Introduction L'étude de la géométrie fit un grand pas en avant lorsqu'on constata

Plus en détail

b A A Ag et parallèles aux plans Oxy, Oxz ou Oyz... 6

b A A Ag et parallèles aux plans Oxy, Oxz ou Oyz... 6 ière partie : GÉOMÉTRIE NLYTIQUE DNS L ESPCE ière partie : Géométrie analytique dans l espace... I. Coordonnées d un point et composantes d un ecteur dans l espace rappels)... II. Équations de droites

Plus en détail

Thème N 1 : NOMBRES RELATIFS ET DECIMAUX

Thème N 1 : NOMBRES RELATIFS ET DECIMAUX Thème N : NOMBRES RELATIFS ET DECIMAUX SENS ET CALCULS () ACITIVITES GRAPHIQUES () A la fin du thème, tu dois savoir : Introduire la notion de nombre relatif. Ranger des nombres relatifs courants en écriture

Plus en détail

I) A quoi sert une fonction affine?

I) A quoi sert une fonction affine? FICHE METHODE sur les FONCTIONS AFFINES I) A quoi sert une fonction affine? a). Il a actuellement 3 euros d économies et en ajoute 5 par semaine! Comment varient ses économies en fonction du nombre x de

Plus en détail

ROC (Restitution organisée des connaissances)

ROC (Restitution organisée des connaissances) TS 2015/2016 Les Suites ROC (Restitution organisée des connaissances) ROC N 1:Théorèmes de comparaison Théorèmes de comparaison Soit trois suites, et. L désigne un nombre réel. Si à partir d un certain

Plus en détail

Terminale S - Exercices corrigés de géométrie

Terminale S - Exercices corrigés de géométrie Terminale S - xercices corrigés de géométrie noncés 1 On considère la pyramide S, où est un parallélogramme de centre I ompléter le plus précisément possible 1 L intersection des plans (S) et (S) est L

Plus en détail

5. Il y a 8 filles et 2 garçons et il arrive un couple ( garçon, fille) par minute!

5. Il y a 8 filles et 2 garçons et il arrive un couple ( garçon, fille) par minute! FICHE METHODE sur les FONCTION INVERSE I) A quoi sert la fonction INVERSE? a) Eemples :. On partage équitablement million d euros entre personnes! Combien chacun aura t-il en fonction de? f() =. 2. Il

Plus en détail

1 Géométrie analytique

1 Géométrie analytique MATH-F-108 - MATHEMATIQUES (E. Lami Dozo et S. Fiorini) Tutorat Année académique 010 011 1 Géométrie analytique 1. Trouver l équation cartésienne du plan qui contient le point p et a le vecteur n comme

Plus en détail

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport

Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. Lorsque le rapport Lcée JANSON DE SAILLY 0 novembre 04 DÉRIVATION re STID I NOMBRE DÉRIVÉ DÉFINITION Soit f une fonction définie sur un intervalle I deret a un réel appartenant à I. f() f(a) Lorsque le rapport admet une

Plus en détail

Transformations du plan (exercices)

Transformations du plan (exercices) Exercice 1 : Transformations du plan (exercices) 1. Construire les symétriques de cette figure par rapport aux trois axes tracés (horizontal, vertical puis oblique ) 2. Construire les symétriques de la

Plus en détail

Repérage dans le plan

Repérage dans le plan Repérage dans le plan GÉOMÉTRIE 1 ACTIVITÉ 1 Coordonnées dans un repère CHERCHER : Changer de registre On considère le repère (P, I, J) où P désigne Paris. On a de plus PI = PJ et (PI) perpendiculaire

Plus en détail

Géométrie euclidienne

Géométrie euclidienne Université de Provence 2009-2010 Licence MI 1ère année-s1 Mathématiques générales I Géométrie euclidienne Table des matières 1 Produit scalaire dans R 2 et R 3 1 1.1 Opérations sur les vecteurs.....................................

Plus en détail

Dans cette partie, on admet que l aire du quadrilatère AUVE est 5 43 18

Dans cette partie, on admet que l aire du quadrilatère AUVE est 5 43 18 EXERIE (5 points) Dans l espace, on considère une pyramide SABE à ase carrée ABE de centre O Soit D le point de l espace tel que ( O ; OA, OB, OD ) soit un repère orthonormé Le point S a pour coordonnées

Plus en détail

GEOMETRIE DANS L ESPACE

GEOMETRIE DANS L ESPACE GEOMETRIE DNS L ESPCE I. RPPELS SUR LE PRODUIT SCLIRE DNS LE PLN a) Différentes expressions du produit scalaire Soient u et v deux vecteurs du plan. Si l un des vecteurs est nul alors le produit scalaire

Plus en détail