Exercices M1 SES Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Dimension: px
Commencer à balayer dès la page:

Download "Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015"

Transcription

1 Exercices M1 SES Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par l intermédiaire du CRAN (Comprehensive R Archive Network) à l adresse Dans chaque exercice, nous ne donnerons que les sorties de R (ici nous ne donnerons pas les commandes utilisées). Exercice 1 : Nous souhaitons étudier les données enregistrées dans le fichier salaires.txt (téléchargeable sur et également sur ma page web). Ce fichier contient les données observées sur un échantillon de 474 employés tirés au sort dans une entreprise canadienne. Les variables étudiées sont les suivantes : salary : salaire brut actuel, en $/an salbegin : salaire de départ, en $/an jobtime : nombre de mois depuis l entrée dans l entreprise prevexp : expérience professionnelle antérieure (nombre de mois de travail avant l entrée dans l entreprise) educ : nombre d années d étude minority : appartenance à une minorité (Non, Oui) sex : sexe (H = Homme, F = Femme) 1. Décrire les données à l aide du résumé de variables et des graphiques ci-dessous. Indiquer quelles sont les variables quantitatives et qualitatives. Commenter les graphiques. Observations: 474 Variables: $ salary (int) 57, 42, 2145, 219, 45, 321, 36, $ salbegin (int) 27, 1875, 12, 132, 21, 135, 1875, $ jobtime (int) 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 98, 9... $ prevexp (int) 144, 36, 381, 19, 138, 67, 114,, 115, 244, 143, $ educ (int) 15, 16, 12, 8, 15, 15, 15, 12, 15, 12, 16, 8, 15, 15,... $ minority (fctr) Non, Non, Non, Non, Non, Non, Non, Non, Non, Non, No... $ sex (fctr) H, H, F, F, H, H, H, F, F, F, F, H, H, F, H, H, H, H... salary salbegin jobtime prevexp Min. : 1575 Min. : 9 Min. :63. Min. :. 1st Qu.: 24 1st Qu.: st Qu.:72. 1st Qu.: Median : Median :15 Median :81. Median : 55. Mean : 3442 Mean :1716 Mean :81.11 Mean : rd Qu.: rd Qu.:1749 3rd Qu.:9. 3rd Qu.: Max. :135 Max. :7998 Max. :98. Max. :476. educ minority sex Min. : 8. Non:37 H:258 1st Qu.:12. Oui:14 F:216 Median :12. Mean : rd Qu.:15. Max. :21. 1

2 H sex F Non minority Oui e+4 1e+5 salary salbegin Nous avons déterminé la matrice des corrélations pour l ensemble des variables quantitatives. salary salbegin jobtime prevexp educ salary salbegin jobtime prevexp educ Indiquer pour quels couples de variables la corrélation linéaire observée est la plus forte, la plus faible. Nous avons tracé, ci-dessous, à gauche le nuage de points représentant les observations conjointes des deux variables salaire de départ salbegin et salaire actuel salary et à droite l ajustement avec un modèle de régression linéaire simple. Nous avons également relevé les sorties de la régression linéaire simple. 2

3 16 1e+5 12 salary salary 8 5e salbegin salbegin Call: lm(formula = salary ~ salbegin, data = Salaire) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 1.928e e * salbegin 1.99e e <2e-16 *** --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 Residual standard error: 8115 on 472 degrees of freedom Multiple R-squared:.7746, Adjusted R-squared:.7741 F-statistic: 1622 on 1 and 472 DF, p-value: < 2.2e Que peut-on dire de la corrélation linéaire entre le salaire de départ et le salaire actuel? La dispersion des salaires actuels augmente-t-elle quand le salaire de départ augmente? Commenter. 4. Commenter les résultats de la régression linéaire simple. On veut savoir si la variable salaire du départ a une influence sur le salaire actuel. Effectuer un test d hypothèses au niveau α = 5% pour répondre à la question (écrire les hypothèses du test, donner la p-valeur et conclure). 5. Que vaut R 2 (coefficient de détermination)? Donner son interprétation. 6. Quel est le graphe qui permet de vérifier la normalité des résidus? Quel est le graphe qui permet de vérifier l homoscédasticité des résidus? Commenter ces deux graphiques : pensez vous que ces deux conditions sur le modèle sont vérifiées? Justifier. 3

4 4 Residuals vs Fitted Normal Q Q Residuals 2 2 Standardized residuals Fitted values 2 2 Theoretical Quantiles 7. Commenter les résultats la régression linéaire multiple suivante. Que vaut R 2? Donner son interprétation. Que vaut R 2 ajusté? Call: lm(formula = salary ~ salbegin + jobtime + prevexp + educ + sex, data = Salaire) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e e *** salbegin 1.723e+ 6.51e < 2e-16 *** jobtime 1.545e e e-6 *** prevexp e e e-8 *** educ 5.93e e *** sexf e e ** --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 Residual standard error: 741 on 468 degrees of freedom Multiple R-squared:.8137, Adjusted R-squared:.8117 F-statistic: 48.7 on 5 and 468 DF, p-value: < 2.2e-16 4

5 Exercice 2 : Nous traitons un problème de défaut bancaire (données du livre An Introduction to Statistical Learning de Gareth James, Daniela Witten Trevor Hastie et Robert Tibshirani, également disponibles sur R). Nous cherchons à déterminer quels clients seront en défaut sur leur dette de carte de crédit (ici defaut = yes si le client fait défaut). La variable defaut est la variable réponse. Nous disposons d un échantillon de taille 1 et 3 variables explicatives : student: Yes si le client est un étudiant et No sinon balance: montant moyen mensuel d utilisation de la carte de crédit income: revenu du client. 1. Décrire les données à l aide du résumé des variables et des graphiques suivants : Observations: 1 Variables: $ default (fctr) No, No, No, No, No, No, No, No, No, No, No, No, No, N... $ student (fctr) No, Yes, No, No, No, Yes, No, Yes, No, No, Yes, Yes,... $ balance (dbl) , , , , , $ income (dbl) , , , , ,... default student balance income No :9667 No :756 Min. :. Min. : 772 Yes: 333 Yes:2944 1st Qu.: st Qu.:2134 Median : Median :34553 Mean : Mean : rd Qu.: rd Qu.:4388 Max. : Max. : No default Yes 1 2 balance income No student Yes Sans perte de généralité, nous notons X une variable ou un vecteur de plusieurs variables explicatives. Nous allons estimer π(x) = P(default = 1 X = x) à l aide du modèle logistique. Pour illustrer un peu le problème 5

6 et le jeu de données, nous commencerons par des modèles simples et nous terminerons par des modèles multiples. Modèle 1 : Call: glm(formula = default ~ balance, family = binomial(link = "logit"), data = Default) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) -1.65e e <2e-16 *** balance 5.499e e <2e-16 *** --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 9999 degrees of freedom Residual deviance: on 9998 degrees of freedom AIC: 16.5 Number of Fisher Scoring iterations: 8 1. On veut savoir si la variable balance a une influence sur la variable default. Effectuer un test d hypothèses au niveau α = 5% pour répondre à la question (écrire les hypothèses du test. donner la p-valeur et conclure). 2. Utiliser les résultats ci-dessus pour donner l équation du modèle logistique ave les coefficients estimés. 3. Relever la valeur de la probabilité de défaut pour un client qui a un balance de 1 dollars et 2 dollars. Que peut-on en conclure? balance Modèle 2 : Call: glm(formula = default ~ student, family = binomial(link = "logit"), data = Default) Deviance Residuals: 6

7 Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** studentyes *** --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 9999 degrees of freedom Residual deviance: on 9998 degrees of freedom AIC: Number of Fisher Scoring iterations: 6 4. Relever les coefficients estimées du modèle 2 et donner l équation du modèle logistique avec les coefficients estimés. Calculer aussi à la main les coefficients estimés du modèle à l aide du tableau de contingence suivant : student No Yes default No Yes Est-ce que vous obtenez les mêmes résultats que celui du logiciel R? 5. Donner à la main les estimations de P(default = Yes student = Yes) et P(default = Yes student = No) (aide : considerer Yes = 1 et No =). Est-ce que vos résultats coïncident avec les sorties ci-dessous? student 1 Yes 2 No Modèle 3 : Call: glm(formula = default ~ student + balance, family = binomial(link = "logit"), data = Default) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) 7

8 (Intercept) -1.75e e < 2e-16 *** studentyes e e e-6 *** balance 5.738e e < 2e-16 *** --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 9999 degrees of freedom Residual deviance: on 9997 degrees of freedom AIC: Number of Fisher Scoring iterations: 8 π (x) Yes No student (Yes ou 1) et no student (No ou ) balance 6. Commenter le graphique obtenu avec les sorties du Modèle 3. Que pouvez vous suggérer? 7. Relever les valeurs estimées des trois coefficients du Modèle 3. Donner l équation du modèle logistique avec les coefficients estimés pour les student=yes et pour les student=no. 8. Commenter les sorties R suivantes : default student balance income 1 No No Yes Yes No No Nous avons relevé les valeurs estimées de la proportion de defaut selon les caractéristiques de trois clients au hasard. Est-ce qu on peut dire si ces trois clients feront default? Que peut-on en conclure? 8

9 Modèle 4 : Call: glm(formula = default ~ balance + income + student, family = binomial, data = Default) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) -1.87e e < 2e-16 *** balance 5.737e e < 2e-16 *** income 3.33e e studentyes e e ** --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 9999 degrees of freedom Residual deviance: on 9996 degrees of freedom AIC: Number of Fisher Scoring iterations: 8 1. Utiliser le critère AIC pour choisir un modèle. Lequel choisissez-vous? Justifier. AIC.glm1 AIC.glm2 AIC.glm3 AIC.glm4 [1,]

10 Exercice 3 : Une étude conduite aux USA en 1986 cherche à cerner les facteurs pouvant augmenter le risque de donner naissance à des bébés de faible poids inférieur à 25 g. Source : Hosmer, D.W. and Lemeshow, S. (1989). Applied Logistic Regression. New York : Wiley (site Les données sont stockées aussi dans le fichier birthwt.txt téléchargeables sur ma page web et également sous R dans le package MASS. Les variables considérées sont mesurées sur 189 bébés. Variable low age lwt race smoke ptl ht ui ftv bwt Nom 1 si poids à la naisance est superieur à 2.5 kg, sinon. âge de la mère. le poids de la mère lors des dernières menstruations l ethnicité de la mère (1 = white, 2 = black, 3 = other). 1 si tabagisme pendant la grossesse, sinon nombre d accouchement prématuré précédente. 1 si antécédent d hypertension, sinon. 1 si présence d irritabilité utérine, sinon. le nombre de visites médicales durant le premier trimestre de grossesse. poids à la naissance en grammes. Observations: 189 Variables: $ low (int),,,,,,,,,,,,,,,,,,,... $ age (int) 19, 33, 2, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 3,... $ lwt (int) 182, 155, 15, 18, 17, 124, 118, 13, 123, 113, 95, $ race (int) 2, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 2, 1, 3,... $ smoke (int),, 1, 1, 1,,,, 1, 1,,,,, 1, 1,, 1,,... $ ptl (int),,,,,,,,,,,,, 1,,,,,,... $ ht (int),,,,,,,,,,,, 1,,,,,,,... $ ui (int) 1,,, 1, 1,,,,,,,,, 1,,,,, 1,... $ ftv (int), 3, 1, 2,,, 1, 1, 1,,, 1,, 2,,,, 3,,... $ bwt (int) 2523, 2551, 2557, 2594, 26, 2622, 2637, 2637, 2663, Ces nécessitent quelques recodages. Nous avons transformé certains variables à facteur (variables qualitatives). Observations: 189 Variables: $ low (fctr) normal, normal, normal, normal, normal, normal, normal,... $ age (int) 19, 33, 2, 21, 18, 21, 22, 17, 29, 26, 19, 19, 22, 3,... $ lwt (int) 182, 155, 15, 18, 17, 124, 118, 13, 123, 113, 95, $ race (fctr) black, other, white, white, white, other, white, other,... $ smoke (fctr) no, no, yes, yes, yes, no, no, no, yes, yes, no, no, no... $ ptl (int),,,,,,,,,,,,, 1,,,,,,... $ ht (fctr) no, no, no, no, no, no, no, no, no, no, no, no, yes, no... $ ui (fctr) yes, no, no, yes, yes, no, no, no, no, no, no, no, no,... $ ftv (int), 3, 1, 2,,, 1, 1, 1,,, 1,, 2,,,, 3,,... $ bwt (int) 2523, 2551, 2557, 2594, 26, 2622, 2637, 2637, 2663,

11 normal low low white black other race no smoke yes age lwt ftv 11

12 bwt ptl no ui yes no ht yes Parmi les variables d intérêt figurent : low, age, lwt, ftv, race. Nous avons croisé la varaible quantitative age avec la variable catégorielle low. Les résumés numériques séparés pour chaque niveau de la variable catégorielle sont : low: normal Min. 1st Qu. Median Mean 3rd Qu. Max low: low Min. 1st Qu. Median Mean 3rd Qu. Max Pour comprende le problème nous avons commencé par des modèles simples et nous avons terminé par des modèles plus complexes. Nous avons ajusté un modèle logistique expliquant la probabilité qu un bébé naisse avec un faible poids à partir de la variable explicative lwt. 12

13 Call: glm(formula = low ~ lwt, family = binomial, data = Poids) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) lwt * --- Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 188 degrees of freedom Residual deviance: on 187 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 Nous avons ajusté un modèle logistique expliquant la probabilité qu un bébé naisse avec un faible poids à partir des variables explicatives age et lwt. Call: glm(formula = low ~ lwt + age, family = binomial, data = Poids) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) lwt * age Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 188 degrees of freedom Residual deviance: on 186 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 Nous avons ajusté un modèle logistique expliquant la probabilité qu un bébé naisse avec un faible poids à partir des variables explicatives age, lwt, ftv et race. 13

14 Call: glm(formula = low ~ lwt + race + ftv + age, family = binomial, data = Poids) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) lwt * raceblack * raceother ftv age Signif. codes: '***'.1 '**'.1 '*'.5 '.'.1 ' ' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: on 188 degrees of freedom Residual deviance: on 183 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 14

Un exemple de régression logistique sous

Un exemple de régression logistique sous Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

Données longitudinales et modèles de survie

Données longitudinales et modèles de survie ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

EXEMPLE : FAILLITE D ENTREPRISES

EXEMPLE : FAILLITE D ENTREPRISES EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : «Applied Multivariate Statistical

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Analyse exploratoire des données

Analyse exploratoire des données Analyse exploratoire des données Introduction à R pour la recherche biomédicale http://wwwaliquoteorg/cours/2012_biomed Objectifs Au travers de l analyse exploratoire des données, on cherche essentiellement

Plus en détail

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE Les résultats donnés par R et SAS donnent les valeurs des tests, la valeur-p ainsi que les intervalles de confiance. TEST DE COMPARAISON

Plus en détail

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement

Notes de cours Économétrie 1. Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Notes de cours Économétrie 1 Shuyan LIU Shuyan.Liu@univ-paris1.fr http ://samm.univ-paris1.fr/shuyan-liu-enseignement Année 2013-2014 Chapitre 1 Introduction Qu est-ce que l économétrie? À quoi sert -

Plus en détail

Une introduction. Lionel RIOU FRANÇA. Septembre 2008

Une introduction. Lionel RIOU FRANÇA. Septembre 2008 Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Chapitre 4 : Régression linéaire

Chapitre 4 : Régression linéaire Exercice 1 Méthodes statistiques appliquées aux sciences sociales (STAT-D-203) Titulaire : Catherine Vermandele Chapitre 4 : Régression linéaire Le diplôme de Master of Business Administration ou MBA est

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas

Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas Fiche TD avec le logiciel : tdr335 Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas F. Menu, A.B. Dufour, E. Desouhant et I. Amat La fiche permet de se familiariser

Plus en détail

Étude des flux d individus et des modalités de recrutement chez Formica rufa

Étude des flux d individus et des modalités de recrutement chez Formica rufa Étude des flux d individus et des modalités de recrutement chez Formica rufa Bruno Labelle Théophile Olivier Karl Lesiourd Charles Thevenin 07 Avril 2012 1 Sommaire Remerciements I) Introduction p3 Intérêt

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

MAT7381 Chapitre 7 Comparaisons multiples

MAT7381 Chapitre 7 Comparaisons multiples MAT7381 Chapitre 7 Comparaisons multiples Supposons qu'on veuille tester plusieurs hypothèses, H 1 ;... ; H k. Si on effectue un test pour chacune des hypothèses, chacun au niveau, la conclusion finale

Plus en détail

Analyse de la variance Comparaison de plusieurs moyennes

Analyse de la variance Comparaison de plusieurs moyennes Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)

Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

MODELE A CORRECTION D ERREUR ET APPLICATIONS

MODELE A CORRECTION D ERREUR ET APPLICATIONS MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques

Plus en détail

Lire ; Compter ; Tester... avec R

Lire ; Compter ; Tester... avec R Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................

Plus en détail

Examen de Logiciels Statistiques

Examen de Logiciels Statistiques G. Hunault Angers, mai 2011 Licence MEF Examen de Logiciels Statistiques On s intéresse ici au dossier EAEF01 qui contient un extrait des données du recensement américain. On trouvera ces données et leur

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour francour@unice.fr Une grande partie des illustrations viennent

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Régression logistique ou modèle binomial

Régression logistique ou modèle binomial 1 Régression logistique ou modèle binomial Résumé Régression logistique ou modèle binomial Rappels sur la régression logistique ou modèle binomial du modèle linéaire général. Définition de la notion de

Plus en détail

Exemples d application

Exemples d application AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Imputation du salaire d ego dans TeO

Imputation du salaire d ego dans TeO Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont

Plus en détail

Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin

Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Sandro Petrillo Université de Neuchâtel - Diplôme Postgrade en Statistique Projet

Plus en détail

Économétrie des Marchés Financiers - Faits Stylisés & Modélisations

Économétrie des Marchés Financiers - Faits Stylisés & Modélisations Faits stylisés Faits stylisés = propriétés statistiques communes à la plupart des actifs financiers les prix suivent un processus multiplicatifs la variable à modéliser est le rendement δ p/p, ce faisant

Plus en détail

Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.

Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. 1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels

Plus en détail

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr

Régression linéaire. Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr Régression linéaire Nicolas Turenne INRA nicolas.turenne@jouy.inra.fr 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R

Plus en détail

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2013-2014.

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2013-2014. Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2013-2014. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Le risque Idiosyncrasique

Le risque Idiosyncrasique Le risque Idiosyncrasique -Pierre CADESTIN -Magali DRIGHES -Raphael MINATO -Mathieu SELLES 1 Introduction Risque idiosyncrasique : risque non pris en compte dans le risque de marché (indépendant des phénomènes

Plus en détail

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011

Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011 Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte jean-marc.labatte@univ-angers.fr

Plus en détail

STATISTIQUES. UE Modélisation pour la biologie

STATISTIQUES. UE Modélisation pour la biologie STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres

Plus en détail

Modèles pour données répétées

Modèles pour données répétées Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque

Plus en détail

1 Importer et modifier des données avec R Commander

1 Importer et modifier des données avec R Commander Université de Nantes 2015/2016 UFR des Sciences et Techniques Département de Mathématiques TP1 STATISTIQUE DESCRIPTIVE Frédéric Lavancier Avant propos Ouvrir l application R Saisir dans la console library(rcmdr)

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES

UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,

Plus en détail

IFT6561. Simulation: aspects stochastiques

IFT6561. Simulation: aspects stochastiques IFT 6561 Simulation: aspects stochastiques DIRO Université de Montréal Automne 2013 Détails pratiques Professeur:, bureau 3367, Pav. A.-Aisenstadt. Courriel: bastin@iro.umontreal.ca Page web: http://www.iro.umontreal.ca/~bastin

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

INTRODUCTION AU LOGICIEL R

INTRODUCTION AU LOGICIEL R INTRODUCTION AU LOGICIEL R Variables et mise en jambe Anne Dubois, Julie Bertrand, Emmanuelle Comets emmanuelle.comets@inserm.fr INSERM UMR738 (UMR738) 1 / 68 Sur le site www.cran.r-project.org : Ou trouver

Plus en détail

Analyses statistiques de base avec R et Rcmdr comme interface graphique

Analyses statistiques de base avec R et Rcmdr comme interface graphique Analyses statistiques de base avec R et Rcmdr comme interface graphique Christian Jost - Biologie Santé - UE 3M7BS15M - 2010/11 Ce polycopié a été développé en 2009 pour une introduction aux statistiques

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse

M1 IMAT, Année 2009-2010 MODELES LINEAIRES. C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse M1 IMAT, Année 2009-2010 MODELES LINEAIRES C.Chouquet Laboratoire de Statistique et Probabilités - Université Paul Sabatier - Toulouse Table des matières 1 Préambule 1 1.1 Démarche statistique...................................

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université

L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université L'évaluation par les pairs dans un MOOC. Quelle fiabilité et quelle légitimité? Rémi Bachelet Ecole Centrale de Lille 24 novembre 2014, Université Paris-Est séminaire annuel IDEA Les diapos seront tweetées

Plus en détail

FORMULAIRE DE DÉCLARATION DE PATRIMOINE

FORMULAIRE DE DÉCLARATION DE PATRIMOINE FORMULAIRE DE DÉCLARATION DE PATRIMOINE TYPE DE DÉCLARATION: Entrée en Fonction Référence : Loi du 20 Février 2008 et Moniteur No. 17 Sortie de Fonction Titre de la Fonction Date de la déclaration../ /.

Plus en détail

Les échanges bilatéraux entre les nations : Une approche linéaire mixte des modèles gravitationnels* Kamel Ghaddab 1

Les échanges bilatéraux entre les nations : Une approche linéaire mixte des modèles gravitationnels* Kamel Ghaddab 1 Les échanges bilatéraux entre les nations : Une approche linéaire mixte des modèles gravitationnels* Kamel Ghaddab 1 Ahmed Silem 2 Introduction Dans le cadre de la détermination empirique de la composition

Plus en détail

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études

FacultéPolytechnique. Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études FacultéPolytechnique Dimensionnement optimal de convertisseurs continu-continu isolés par la méthode des plans d expériences Travail de fin d études Stijn Coorevits Promoteurs : Prof. O. Deblecker Ir C.

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678

AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678 Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées

Plus en détail

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

LE QUESTIONNAIRE ISALEM : ETUDE STATISTIQUE

LE QUESTIONNAIRE ISALEM : ETUDE STATISTIQUE LE QUESTIONNAIRE ISALEM : ETUDE STATISTIQUE 1. OBJECTIFS DE L'ETUDE STATISTIQUE Le traitement statistique des données a été effectué par le Professeur A. ALBERT du Centre Interdisciplinaire de Statistique

Plus en détail

Trajectoires d emploi et chômage

Trajectoires d emploi et chômage Trajectoires d emploi et chômage Séminaire SACEI 15 septembre 2011 Alice Hui PENG Bruno MASSONNET AS-Consultant b.massonnet@as-consultant.com Plan 1. L enquête emploi de l INSEE 3 2 Taux de chômage BIT

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Caractérisation de l incertitude de production éolienne

Caractérisation de l incertitude de production éolienne Caractérisation de l incertitude de production éolienne Pierre Haessig 13 juillet 2011 Résumé En prélude à de futurs travaux sur le dimensionnement et la gestion d un système de stockage d énergie couplé

Plus en détail

Statistique de l assurance

Statistique de l assurance Statistique de l assurance Arthur Charpentier To cite this version: Arthur Charpentier. Statistique de l assurance. 3ème cycle. Université de Rennes 1 et Université de Montréal, 2010, pp.133.

Plus en détail

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre. Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences

Plus en détail

Les enquêtes par quotas comme outil de surveillance Comparaison avec une enquête aléatoire transversale pour la mesure de la prévalence tabagique

Les enquêtes par quotas comme outil de surveillance Comparaison avec une enquête aléatoire transversale pour la mesure de la prévalence tabagique Les enquêtes par quotas comme outil de surveillance Comparaison avec une enquête aléatoire transversale pour la mesure de la prévalence tabagique Romain Guignard, Jean-Louis Wilquin, Jean-Baptiste Richard,

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

metarnaseq: un package pour la méta-analyse de données RNA-seq

metarnaseq: un package pour la méta-analyse de données RNA-seq metarnaseq: un package pour la méta-analyse de données RNA-seq Guillemette Marot, Florence Jaffrézic, Andrea Rau 28/06/13 Overview 1 Introduction 2 Analyse statistique d une seule étude 3 Méta-analyse

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

Chapitre 15 Options et actifs conditionnels. Plan

Chapitre 15 Options et actifs conditionnels. Plan Chapitre 15 Options et actifs conditionnels Plan Fonctionnement des options Utilisation des options La parité put-call Volatilité et valeur des options Les modèles de détermination de prix d option Modèle

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

INTRODUCTION À L'ENVIRONNEMENT DE PROGRAMMATION STATISTIQUE R

INTRODUCTION À L'ENVIRONNEMENT DE PROGRAMMATION STATISTIQUE R INTRODUCTION À L'ENVIRONNEMENT DE PROGRAMMATION STATISTIQUE R Y. BROSTAUX (1) RÉSUMÉ Cette note constitue une introduction au langage et à l'environnement de programmation 5 dans sa version 1.4.1 pour

Plus en détail

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude.

Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Arbitrage et prix des actifs. Prix des actifs en information symétrique sans hypothèse de complétude. Le Cadre Etats de la nature : s = 1,.S,.. p(1),, p(s), Actifs a : m+1 actifs de base {a(0), a(m)} Matrices

Plus en détail

Modélisation de la réforme des pensions

Modélisation de la réforme des pensions Modèle PROST de la Banque Mondiale Modélisation de la réforme des pensions Mécanisme de simulation des options de réforme des retraites, de la Banque Mondiale L es politiques de pension d aujourd hui peuvent

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE

PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE Jean-Paul Valois, Claude Mouret & Nicolas Pariset Total, 64018 Pau Cédex MOTS CLEFS : Analyse spatiale, ACP, Lissage, Loess PROBLEMATIQUE En analyse multivariée,

Plus en détail

Audit des rémunérations Des concepts à la pratique. www.rhinfo.com

Audit des rémunérations Des concepts à la pratique. www.rhinfo.com Audit des rémunérations Des concepts à la pratique Toutes les inégalités ne sont pas des injustices! L essentiel n est pas d identifier les différences mais de les expliquer pour savoir si ce sont des

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2

CHAMPION Matthieu Modèles de Marché en Visual Basic ESILV S04 S6. Sommaire... 1. Introduction... 2 Sommaire Sommaire... 1 Introduction... 2 1 Trois différentes techniques de pricing... 3 1.1 Le modèle de Cox Ross Rubinstein... 3 1.2 Le modèle de Black & Scholes... 8 1.3 Méthode de Monte Carlo.... 1

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

L analyse discriminante

L analyse discriminante L analyse discriminante À Propos de ce document... Introduction... La démarche à suivre sous SPSS... 2. Statistics... 2 2. Classify... 2 Analyse des résultats... 3. Vérification de l existence de différences

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail