Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones

Dimension: px
Commencer à balayer dès la page:

Download "Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones"

Transcription

1 Détection de la défaillance des entreprises tunisiennes par la régression logistique semi paramétrique et les réseaux de neurones Abdeljelil Farhat Unité de recherche EAS-Mahdia Faculté des sciences économiques et de gestion de Mahdia, Université de Monastir, Tunisie. Sami Mestiri Unité de recherche EAS-Mahdia Faculté des sciences économiques et de gestion de Mahdia, Université de Monastir, Tunisie. Manel Hamdi Unité de recherche IFGT-Tunisia Faculté des sciences économiques et de gestion de Tunis, Université El Manar, Tunisie. Résumé : L objectif de cet article est de comparer deux techniques de classification des entreprises : la régression logistique semi paramétrique et les réseaux de neurones dans le but de prévoir le risque la défaillance des entreprises tunisiennes. L échantillon utilisé comporte 528 firmes tunisiennes de différents secteurs d activités dont nous disposons des bilans et des comptes financiers des exercices Une différence a été constatée entre le modèle de régression logistique et celui reposant sur un réseau de neurones artificiels en termes de performance de distinction entre les entreprises saines et les entreprises en détresse financière. En fait, nous avons démontré que les modèles basés sur les réseaux de neurones donnent des résultats des prévisions de la défaillance financière en terme de bon classement ainsi que par les résultats obtenus de la courbe ROC.. Mots clés : Prévision ; Risque de crédit ; Régression logistique semi paramétrique ; Réseaux de neurones ; Courbe ROC. Abstract : The aim of this paper is to compare two different forecasting models : the semi parametric logistic model versus the neural networks in order to predict the credit risk of banks in Tunisia. The sample includes 528 Tunisian firms from different sectors of activities that we have balance sheets and income statements for fiscal years There was performance 1

2 difference between models based on logistic regression and an artificial neural network for differentiating the financial health firm and firm default. The results obtained show that the use of artificial neural network improves the quality of model predictions in terms of good classification as well as by the ROC curve result. Key words :Forecasting ; Logistic semi parametric model ; Neural networks ; Curve ROC. 1 Introduction La prévision de la détresse financière d entreprises est une procédure très importante pour ceux qui y sont impliqués (actionnaires, gestionnaires, salariés, prêteurs, fournisseurs, clients et surtout l État). Les modèles de prévision servent comme "système d alerte " pour les gestionnaires d entreprises qui peuvent entreprendre des actions de prévention contre le risque de faillite (par exemple, opération de rachat, de liquidation, de redressement, etc.). D autre part, ces modèles peuvent aussi être utiles pour les professionnels des établissements financiers dans l évaluation et la sélection des entreprises auxquelles ils prêtent des crédits. En partant de ces considérations et devant l ampleur du phénomène, diverses études et recherches ont été menées dans ce sens durant ces trente dernières années. Elles visaient à mettre en évidence les principaux indicateurs permettant de prévoir à temps les difficultés éprouvées par les entreprises. Nous pouvons citer parmi les premiers travaux, à titre d exemple, ceux de Beaver (1966) et Altman(1968). Depuis cette période et jusqu à nos jours, le nombre d études sur l évaluation des risques de faillite et la prévision de la détresse financière des entreprises ne cesse d accroître. Il suffit de citer Bardos et Zhu (1997), Chava et Jarrow (2004) et Hillegeist (2004). La grande majorité de ces recherches s appuie sur des outils d analyse statistique de grandeurs comptables et de ratios financiers pour discriminer les entreprises saines des entreprises défaillantes. Ces études ont abouti à une fonction de score qui est un indicateur de synthèse censé de donner en un chiffre, le degré de défaillance possible d une entreprise. Dans une étude relative à des entreprises américaines, Press et Wilson (1978) ont utilisé des données en coupe transversale des ratios financiers pour déterminer les ratios les plus déterminants de la faillite des entreprises à partir du modèle de la régression logistique. Une caractéristique importante de ce modèle est que la moyenne conditionnelle de la variable expliquée est 2

3 liée paramétriquement aux variables explicatives. Cependant, la considération que la forme fonctionnelle entre les variables est linéaire n est pas souvent appropriée surtout lorsque le phénomène étudié est compliqué. Pour contourner cette lacune, Zhang et Lin (2003) ont proposé une modélisation plus flexible des variables explicatives ou le prédicteur linéaire dans le modèle de régression est remplacé par des fonctions non paramétriques. Le nouveau modèle est nommé par "Modèle de régression logistique semi paramétrique". L intérêt principal de ce modèle est qu il permet de distinguer les relations linéaires et non linéaires au sein d un même modèle. D un autre côte, pour améliorer la prise de décision du banquier, Tam et Kiang (1992) et Altman (1994) ont intégré les progrès enregistrés en matière d intelligence artificielles pour la construction des modèles de prévision de la détresse financière des firmes. Des autres chercheurs ont proposé l emploi de modèles basés sur les réseaux de neurones, on cite à titre d exemple (Perez, 2006 ; Chih-Fong et Jhen-Wei, 2008 ;Tilmont, 1998 ; Bardos et Zhu, 1997). Les modèles développés sont non linéaires et non paramétriques et tiennent compte des avancées effectuées en matière de reproduction artificielle des réseaux de neurones et de génétique. Ce papier s intègre dans le cadre de comparaison deux techniques de classification des entreprises : la régression logistique semi paramétrique et les réseaux de neurones, en utilisant un processus de validation. Ce processus sert à estimer les performances du modèle qui vient d être construit sur un jeu de données. Notre démarche empirique se base sur le calcul des taux de mauvaise classement et élaboration de la courbe de ROC pour chacun du modèle de score construits. L article est organisé comme suit : Dans la section 1, nous présenterons la structure des données de notre étude. Dans la section 2, la régression logistique semi paramétrique sera appliquer pour la prévision de la détresse financière. La troisième section sera réserver à la présentation et à l application de la technique des réseaux de neurones artificiels. Dans la section 4, nous étudierons la validation des fonctions de scores établies. Ce papier s achèvera par l analyse de quelques conclusions et commentaires. 3

4 2 La structure des données 2.1 L échantillon La source d information qui a été utilisée pour cette étude est la Banque centrale de Tunis. Une série de données financières a été collectée à partir des documents de synthèse (bilans et comptes de résultats) sur la période ( ). Notre base de données est constituée d un échantillon de 528 entreprises appartenant à différents secteurs d activité. 2.2 Les variables explicatives Les ratios financiers sont des variables les plus souvent utilisées dans le modèle de prévision du risque. Comme il existe des dizaines de ratios, le choix de ces variables indépendantes est un problème fondamental dans l élaboration d un modèle de prédiction de défaillance. Dans notre application, nous avons choisi de retenir des ratios liés aux différentes dimensions de l analyse financière et qui représentent les différents critères d appréciation de la bonne santé d une entreprise. Les thèmes sont la structure financière, rotation, rentabilité, charges financières, la solvabilité et la liquidité. Les variables explicatives de l étude sont récapitulées dans le tableau de l annexe 1. La batterie des variables de l étude comporte 26 ratios. 2.3 La variable expliquée Le critère de classification retenu pour la détermination de la variable expliquée a priori est l état juridique de l entreprise. Ce critère est jugé bon du fait qu il reflète la solvabilité des entreprises. La structure de cet échantillon est décrite sous deux classes juridiques : saines ou défectueuses. La variable expliquée Y peut être écrite par des valeurs binaires : Y = { 1 pour les entreprises en détresse 0 pour les entreprises saines (1) En adoptant ces critères de classement, nous avons pu décomposer a priori l échantillon en deux sous-groupes. Le premier groupe est composé par 448 entreprises saines et le second groupe est composé par 80 entreprises en situation de détresse. 4

5 3 L analyse par le modèle de régression logistique semi paramétrique 3.1 Présentation générale du modèle D après la figure (1), Les nuages des points les données des ratios en fonction des rapports de chances correspondants (figure 1) montre que les variables R 7, R 9, R 10, R 20, R 23 ont une liaison linéaire avec leurs rapports de chances tandis que les données de la variable R 21 a une relation non linéaire. Sur la base de ces constats tirées a partir de la figure 1, il est intéressant de considérer une modification de la variable R 21 dans le modèle de régression. Ainsi, le modèle de régression logistique semi paramétrique s écrit sous la forme suivante : ( ) pi log 1 p i = β 1 R 7,i + β 3 R 9,i + β 4 R 10,i + β 4 R 14,i +β 5 R 15,i + β 6 R 20,i + f(r 21,i ) (2) Avec p i = P (y i = 1 R i ), pour(i = 1,..., n) est la probabilité a posteriori d appartenance au groupe d entreprises en détresse, β est un coefficient inconnu et f est une fonction de lissage inconnue. 3.2 Présentation économétrique du modèle D après les nuages des points de la variable R 21, il semble que la relation entre cette variable et les rapports de chances prend une forme quadratique. Par conséquent, nous proposons d approximer la fonction de lissage f par des bases de fonctions puissances tronquées du seconde degré : f(r 21,i ) = δ 0 + δ 1 R 21,i + δ 2 R 2 21,i + K b k (R 21,i κ k ) 2 + (3) où κ 1,..., κ K est un ensemble de noeuds distincts tirés des observations de la variable R 21 et X + = max(0; X). Le nombre de noeuds K est assez grand (d ordre K 30) pour assurer l exigibilité de la courbe. 5 k=1

6 En suivant l approche de Wand et Ngo (2004), le modèle de régression logistique semi paramétrique s écrit sous la forme du modèle de régression logistique à effets aléatoires. En effet, en remplaçant l équation (2) dans (3), on obtient le modèle suivant : ( ) pi log 1 p i = δ 0 + δ 1 R 21,i + δ 2 (R 21,i ) 2 + β 1 R 7,i + β 3 R 9,i K +β 4 R 14,i + β 5 R 20,i + b k (R 21,i κ k ) + (4) k=1 Pour écrire le modèle (4) sous la forme matricielle, nous désignons par : 1 R 21,1 (R 21,1 ) 2.. R 20,1 a)x = : : : : est une matrice composée par les 1 R 21,n (R 21,n ) 2.. R 20,n variables explicatives, (R 21 κ 1 ) +... (R 21 κ K ) + b) Z = : : est une matrice (n, K) composée (R 2n κ 1 ) +... (R 2n κ K ) + par les bases, c) β = (δ 0, δ 1, δ 2, β 1, β 3, β 4, β 5 ) est un vecteur des paramètres inconnus, d) b = (b 1,..., b K ) est un vecteur composé par les coefficient associés à la matrice Z et f) P = (P (y 1 = 1),..., P (y n = 1)) est le vecteur des probabilités a posteriori. Le modèle (4) admet une représentation matricielle sous la forme suivante : ( ) P log = Xβ + Zb (5) 1 P En supposant que le vecteur des effets aléatoires b normalement distribués N(0, G θ ), l estimation du modèle de régression logistique semi paramétrique (5) revient à estimer le modèle de régression logistique à effets aléatoires. L estimation des paramètres β et θ peut être réalisé par la méthode de Quasi-Vraisemblance Pénalisée (PQL) développée par Breslow et Clayton 6

7 (1993). L application de la méthode PQL consiste à définir le vecteur fonctionnel par Y = Xβ + Zb + (Y P ) avec = diag{p i (1 p i )} et aussi la matrice fonctionnelle de poids par Σ = W 1 + ZG θ Z, avec W = diag{p i }. 3.3 Les résultats d estimation du modèle La table (1) rapporte les résultats d estimation du modèle (5) pour les données de notre échantillon. Les ratios Valeurs estimés Pouv. discrim. t value p value (cst) R 7 : Rotation de l actif R 9 : Rentabilité économique R 10 : Rentabilité des capitaux R 14 : Taux de rentabilité des capitaux R 15 : Rotation des capitaux R 23 :Ratio de charges financières Tab. 1 les estimateurs du modèle de régression logistique semi paramétrique σ 2 k α2 k σ 2 k α 2 k Le pouvoir discriminant du ratio R k est défini par le rapport : avec σ k est l écart type du ratio R k. Il exprime l influence du ratio dans la fonction de score. D après la table (1), les ratios R 9 et R 10 jouent un rôle capital dans la formation de la fonction de score des entreprises puisque ces ratios ont un pouvoir discriminant de l ordre de 99%. D après la table (1), nous remarquons que l effet estimé de la variable R 9 (la rentabilité économique) a un signe positif. Cela signifie que l augmentation des frais financiers fait diminuer la rentabilité économique ce qui explique l accroissement de la probabilité d être en détresse. Par contre la variable R 10 (la rentabilité des capitaux investis) présente un signe négatif ce qui induit que l augmentation des résultats net implique une augmentation de risque de défaillance. La fonction de lissage dans le modèle de régression logistique semiparamétrique (2) permet de détecter un effet de seuil de ratios sur la probabilité d etre en détresse. Aprés l estimation des composantes du modèle par la méthode PQL nous avons obtenu la courbe de la fonction f(r 21 ) estimée de la variable capacité d endettement à long terme avec son intervalle de confiance à 95%. D après ce graphe (2), pour un seuil inférieur à 1, la probabilité de 7

8 détresse est une fonction décroissante de la capacité d endettement à long terme et pour un seuil supérieur à 1, elle devient croissante. 4 Les réseaux de neurones Dans le paragraphe précédent, nous avons vu que l analyse par le modèle de régression logistique semi paramétrique est une procédure économétrique caractérisés par deux étapes (la création d un modèle suivie par l estimation de ses paramètres).cependant, les réseaux de neurones appartiennent a une catégorie différente d outils d analyse des données. Comme leur nom le suggère, les réseaux de neurones ont eu comme point de départ les connaissances biologiques et plus précisément neuro-physiologiques à propos du cerveau humain. 4.1 Présentation générale du réseaux de neurones Le développement de la technique des réseaux de neurones artificiels découle d une imitation de certains mécanismes du cerveau humain. Un réseau de neurone est un ensemble d unités interconnectées qui disposent d une grande capacité d apprentissage et de traitement de l information. Il s agit en fait d un algorithme mathématique qui permet de traiter parfaitement les connaissances relatives à la relation entre les valeurs d entrées et de sorties, afin de classer correctement les situations. Un réseau de neurones est généralement formé d une couche d entrée représentant les neurones d entrées (variables d input), d une couche de sortie représentent le vecteur des variables d outputs permettant de transférer les informations en dehors du réseau, et d une ou de plusieurs couches cachées présentant l ensemble des noeuds cachés ayant des connexions entrantes qui proviennent des neurones d entrée. Ces unités n ont pas d interaction directe avec l environnement. Elles permettent au réseau d apprendre des tâches complexes en exploitant, progressivement, les caractéristiques les plus significatives des neurones d entrées. Un poids est attribué à chaque connexion du réseau, et l ensemble correspond au schéma de pondérations de la figure Le recours aux réseaux de neurones artificiels a débuté avec le travail pionnier de McCulloch et Pitts (1943) lors de la mise au point de l algorithme de rétropropagation des erreurs, qui a fait naître l espoir de pouvoir tirer 8

9 partie des phénomènes présents pour la prévision des phénomènes futurs. Cet algorithme, développé par la suite par Rumelhart, Hinton et Williams (1985), comprend deux phases : une phase de forward propagation et une phase de backward propagation. La procédure de calibration du réseau de neurones est une méthode de calcul de poids optimaux. L algorithme le plus utilise dans ce but est l algorithme de rétropropagation,( Backpropagation), qui peut être utilisé pour l apprentissage surveillé. Dans la propagation forward, chaque neurone de la couche d entrée reçoit un signal externe, le traite et l émet aux neurones de la couche cachée. A ce niveau l entrée globale, que reçoit chaque neurone caché, est donnée par la somme pondérée de tous les entrées. a j = N i=0 w (1) ij x i (6) Ou x i est le neurone de rang i de la couche d entrée, qui en contient N. w ij est la pondération du signal émis par le neurone x i, de la couche d entrée, vers le neurone h j de la couche cachée. a j est le signal total reçu par le neurone h j de la couche cachée, qui en contient m. Les neurones de cette dernière couche, agrègent les signaux émis par la couche d entrée, sur la base de la fonction d activation et gênèrent des signaux de sortie. La fonction d activation calcule la transformation de l état d activation à l instant k + 1 à partir de l état d activation à l instant k. h j = g 1 (a j ) (7) Ces signaux seront transférés, après traitement, à la couche suivante qui subit les mêmes transformations pour obtenir enfin la sortie calculée par le réseau : a k = m j=0 w (2) kj h j (8) La fonction de sortie calcule la valeur de sortie d un neurone en fonction de son état d activation. [ m ( N )] y k = g 2 w (2) kj g 1 w (1) ij x i (9) j=0 9 i=0

10 Le choix de la fonction d activation dépend du type de l application. Dans certaines applications, on utilise souvent des sigmoïdes comme fonctions d activation. Dans d autres exemples on utilise la fonction logit ou la tangente hyperbolique. Un réseau de neurones artificiels composé de couches successives et avec des fonctions d activation sigmoïdales s appelle perceptron multi-couche (Multilayer-Perzeptron - MLP). 4.2 Procédure d apprentissage : l algorithme de rétropropagation La seconde phase "Backward" détermine la direction et le degré d ajustement aux pondérations de connexions individuelles. Le processus d apprentissage peut être considéré comme un problème de minimisation avec une fonction objectif E définie dans l espace de pondérations W. L apprentissage surveillé est un apprentissage par correction des erreurs. Ainsi, il faut d abord définir une fonction d erreur. Cette fonction pourrait être par exemple l erreur moyenne quadratique : E (w) = 1 N N m (y i,j yi,j) 2 (10) i=1 j=1 Ou N représente le nombre de couples (x i, y i ) utilisés pour l apprentissage, m est le nombre de neurones dans la couche de sortie et y i est la réponse du réseau pour l entrée x i. L algorithme de rétropropagation peut être appliqué pour n import quel type de fonction d erreur. La fonction d erreur dépend de tous le poids du réseau et doit être minimisée. A cause de la non-linéarité du réseau on ne peut pas trouver un minimum global par une méthode analytique. C est pour cette raison qu on cherche un minimum local par une méthode itérative par une descente de gradient recursive. L algorithme d optimisation le plus utilisé est celui de rétropropagation du gradient basé sur l idée suivante : en tout point w, le vecteur gradient de E (w) pointe dans la direction de l erreur croissante. Pour faire décroître E (w) il suffit donc de se déplacer en sens contraire. Il s agit d un algorithme itératif modifiant les poids de chaque neurone selon : 10

11 w ij (t) = w ij (t 1) + w ij (t) (11) Les ajustements des poids sont déterminés dans le chemin de propagation à chaque niveau et ce en évaluant les dérivées partielles de cette fonction E par rapport aux poids synaptiques. L ajustement du poids de chaque peut être calculé comme suit : w ij (t) = E w ij ε (12) Ou ε est le taux d apprentissage. Après l interaction de large nombre de cycles, l erreur est réduite au niveau acceptable, et le processus s arrête. Le réseau de l étude a été entraîné sur tout l ensemble d apprentissage correspondant aux 8 ratios calculés. Pour chaque configuration à tester, le réseau de neurones essaie de déterminer l ensemble des pondérations optimales des inputs. 5 La validation des fonctions de score de la détresse Après avoir déterminé des fonctions de score de la détresse, il faut en évaluer leurs efficacités. Nous pouvons le faire par les tests du pouvoir discriminant et les tests du pouvoir prédictif. Ainsi, nous allons calculer le taux d erreur de classement et tracer la courbe de ROC "Receiver Operating Curve" en calculant les indices associés tels que l aire sous la courbe de ROC. Étant donné que les modèles de réseaux de neurones se construisent par apprentissage à partir d un certain nombre d observations. Tout au long de cette application, nous avons utilisé uniquement 80% des observations pour la Formation (Apprentissage) et le 20% restant pour le Test afin de tester la capacité prédictive réelle du réseau. Pour évaluer la capacité à bien classer le modèle, nous pourrons construire une colonne prédiction Ŷ. Étant choisi 0,5 le seuil de coupure (césure de 11

12 classement), chaque firme est classée saine si sa probabilité de défaut est inférieur à 0,5 et vulnérable sinon. Il est plus judicieux de construire ce que l on appelle une matrice de confusion (la table 2). Elle confronte toujours les valeurs observées de la variable dépendante avec celles qui sont prédites, puis comptabilise les bonnes et les mauvaises prédictions. L intérêt de la matrice de confusion est qu elle permet à la fois d appréhender le taux d erreur et de se rendre compte de la structure de l erreur (la manière de se tromper du modèle). Ŷ = 1 Ŷ = 0 Total Y = 1 n 11 n 10 n 1 Y = 0 n 01 n 00 n 0 Tab. 2 Matrice de confusion Nous rappelons que le taux d erreur de classement est égal au nombre de mauvais classement rapporté à l effectif total. La table 3 présente les taux d erreur de classement. Le taux d erreur de classement égale à 14% pour le modèle de la régression logistique semi paramétrique et 12.8% pour les réseaux des neurones c.à.d une amélioration de prédiction de 1.2%. Ce qui prouve que la technique des réseaux des neurones est une méthode plus efficace pour calculer de risque de la détresse. De même dans le but de comparer le modèle de la régression logistique semi paramétrique et les réseaux des neurones, nous présentons la courbe ROC de chaque modèle. Ce courbe est un outil graphique qui permet d évaluer et de comparer globalement le comportement des fonctions de scores (Pepe(2000). La courbe ROC met en relation le taux de vrais positifs (T V P = n 11 /n 1 ) (la sensibilité) qui indique la capacité du modèle à retrouver les positifs et le taux de faux positifs (T F P = n 10 /n 0 ) qui correspond à la proportion de négatifs qui ont été classés positifs, dans un graphique de nuage de points. Habituellement, nous comparons ˆp à un seuil s = 0.5 pour effectuer une prédiction Ŷ. Nous pouvons ainsi construire la matrice de Le réseaux de neurones La régre. logistique semi Ŷ = 1 Ŷ = 0 Total Ŷ = 1 Ŷ = 0 Total Y = Y = Le taux d erreur Tab. 3 Matrice de confusion des modèles estimés pour l échantillon test 12

13 confusion et en extraire les 2 indicateurs précités. La courbe ROC généralise cette idée en faisant varier s pour toutes les valeurs possibles entre 0 et 1. Pour chaque configuration, nous construisons la matrice de confusion et nous calculons le TVP et le TFP. Dans la pratique, il n est pas nécessaire de construire explicitement la matrice de confusion, nous procédons de la manière suivante : 1. Calculer le score ˆp de chaque individu à l aide du modèle de prédiction. 2. Trier le fichier selon un score décroissant. 3. Considérons qu il n y a pas d ex-aequo. Chaque valeur du score peut être potentiellement un seuil s. Pour toutes les observations dont le score est supérieur ou égal à s, les individus dans la partie haute du tableau, nous pouvons comptabiliser le nombre de positifs n 11 (s) et le nombre de négatifs n 10 (s). Nous en déduisons (T V P = n 11 (s)/n 1 ) et (T F P = n 10 (s)/n 0 ). 4. La courbe ROC correspond au graphique nuage de points qui relie les couples (TVP, TFP). Le premier point est forcément (0,0), le dernier est (1,1). La procédure de calcul du nuages des points de la courbe ROC a été effectué en utilisant le logiciel R. D après la courbe ROC,(la figure (4)), il est évident que la règle de classification basée sur les réseaux de neurones est plus performante que celle basée sur la régression logistique semi paramétrique. Ceci nous amène à conclure que la validité de la fonction de score issue du modèle de réseaux de neurones est meilleure que celle obtenue à partir du modèle de régression logistique semi paramétrique. Il est possible de caractériser numériquement la courbe ROC en calculant la surface située sous la courbe. C est le critère d aire sous la courbe (AUC, pour Area Under Curve). Elle exprime la probabilité de placer un individu positif devant un négatif. Ainsi, dans le cas d une discrimination parfaite AUC = 1, les positifs sont sûrs d être placés devant les négatifs. Au contraire, si AUC = 0.5 le classificateur attribue des scores au hasard, il y a autant de chances de placer un positif devant un négatif que l inverse. La courbe ROC se confond avec la première bissectrice. C est la situation de référence, notre classificateur doit faire mieux. L aire sous la courbe ROC mesure la qualité de discrimination du modèle et traduit la probabilité qu une entreprise saine ait un score supérieur au 13

14 score d une entreprise en détresse, ceux-ci étant tirés au hasard. L aire sous la courbe ROC du modèle de régression logistique semi paramétrique est égale à 0.61 par contre l aire sous la courbe ROC de réseaux de neurones est égale à ; ces deux valeurs sont très proches de un. 6 Conclusions La gestion de risque de crédit présente un intérêt primordial pour tous les organismes et institutions financières. Ainsi, la nécessité de prédiction de risque devient un enjeu important. Dans ce contexte plusieurs chercheurs ont développé des outils statistiques dans le but de prévoir la détresse financière des entreprises. Dans ce papier, nous avons réalisé une recherche exploratoire des nouvelles relations fonctionnelles entre les ratios et la probabilité de la détresse. Ces relations fonctionnelles ont été estimées à travers le modèle de régression logistique semi paramétrique. D un autre coté, nous avons appliqué la technique des réseaux de neurones artificiels à la prévision de la détresse financière des firmes tunisiennes. Une fois le modèle de score est élaboré, nous avons montré que la méthode de prévision basée sur le réseau des neurones admet un pouvoir discriminant et prédictif plus que la méthode basée sur le modèle de régression logistique semiparamétrique en utilisant un processus de validation. En conclusion, dans ce papier nous avons de montrer que les réseaux de neurones artificiels est un outil de prévision puissant en matière de détresse financière des firmes. D autre part nous avons attirer l attention sur l aspect non linéaire des relations entre les ratios et la probabilité de la détresse. 14

15 Bibliographie [1] Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4) : [2] Altman E.I, Marco G. and Varetto F. (1994), Corporate distress diagnosis : comparisons using linear discriminant analysis and neural networks : the Italian experience, Journal of banking and finance, vol. 18 n 3, pp [3] Bardos, M. and Zhu, W. H. (1997). Comparaison de l analyse discriminante linéaire et des réseaux de neurones. application à la détection de défaillance d entreprises. Revue Statistique Appliquée. [4] Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4 : [5] Breslow, N. and Clayton, D. G. (1993). Approximate Inference in Generalized Linear Mixed Models. Journal of the American Statistical Association 88 :9-25. [6] Chava, S. and Jarrow, R. A. (2004). Bankruptcy Prediction with Industry Effects. Review of Finance, 8(4) : [7] Tam K.Y.et Kiang M.Y. (1992), Managerial application of neural networks : the case of bank failure predictions, Management science, vol.38 n 7, pp [8] Ngo, L. and Wand, M. (2003). Smoothing with mixed model software. Journal of Statistical Software, 4(1) :1-54. [9] Pepe, M. S. (2000). Receiver operating characteristic methodology. Journal of the American Statistical Association, 95(449) : [10] Press, S. J. and Wilson, S. (1978). Choosing between logistic regression and discriminant analysis. Journal of the American Statistical Association, 73(364) : [11] S. Hillegeist, E. Keating, D. C. and Lundstedt, K. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9 :5-34. [12] Zhang, D. and Lin, X. (2003). Hypothesis testing in semi parametric additive mixed models.biostat, 4(1) :

16 1.pdf logit logit datapq$r15 0e+00 1e+06 2e+06 3e+06 datapq$r20 logit logit datapq$r datapq$r23 16 Fig. 1 Les nuages des points des variables explicatives et de leurs logits

17 2.pdf s(x2,2) X2 17 Fig. 2 La courbe de la fonction estiméef(r 21 )

18 3.pdf R R R R14 R15 R20 R21 R23 sect y Error: Steps: Fig. 3 Les estimations des réseaux de neurones

19 4.pdf La courbe ROC de semi param. (AUC=0.684) La courbe ROC des réseaux (AUC=0.70 sensibilité sensibilité spécificité spécificité 19

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit

Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers

Plus en détail

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base

Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base Estimation du Quantile conditionnel par les Réseaux de neurones à fonction radiale de base M.A. Knefati 1 & A. Oulidi 2 & P.Chauvet 1 & M. Delecroix 3 1 LUNAM Université, Université Catholique de l Ouest,

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

INF6304 Interfaces Intelligentes

INF6304 Interfaces Intelligentes INF6304 Interfaces Intelligentes filtres collaboratifs 1/42 INF6304 Interfaces Intelligentes Systèmes de recommandations, Approches filtres collaboratifs Michel C. Desmarais Génie informatique et génie

Plus en détail

L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion

L utilisation des réseaux de neurones artificiels en finance. Philippe PAQUET Professeur de Gestion L utilisation des réseaux de neurones artificiels en finance Philippe PAQUET Professeur de Gestion 2 Résumé Depuis le début de la décennie 1990, les réseaux de neurones artificiels habituellement utilisés

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

ANALYSE DU RISQUE DE CRÉDIT

ANALYSE DU RISQUE DE CRÉDIT ANALYSE DU RISQUE DE CRÉDIT Banque & Marchés Cécile Kharoubi Professeur de Finance ESCP Europe Philippe Thomas Professeur de Finance ESCP Europe TABLE DES MATIÈRES Introduction... 15 Chapitre 1 Le risque

Plus en détail

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring

ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

La prévision de la faillite fondée sur l analyse financière de l entreprise : un état des lieux par Catherine REFAIT

La prévision de la faillite fondée sur l analyse financière de l entreprise : un état des lieux par Catherine REFAIT Cet article est disponible en ligne à l adresse : http://www.cairn.info/article.php?id_revue=ecop&id_numpublie=ecop_162&id_article=ecop_162_0129 La prévision de la faillite fondée sur l analyse financière

Plus en détail

Cours de méthodes de scoring

Cours de méthodes de scoring UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall

L utilisation d un réseau de neurones pour optimiser la gestion d un firewall L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Réseaux de Neurones Récurrents Appliqués à l Automatisation du Marché à Terme : cas Producteur-Consommateur

Réseaux de Neurones Récurrents Appliqués à l Automatisation du Marché à Terme : cas Producteur-Consommateur Réseaux de Neurones Récurrents Appliqués à l Automatisation du Marché à Terme : cas Producteur-Consommateur Salima KENDI, Fodil LAIB, and Mohammed Said RADJEF Laboratoire de Modélisation et d Optimisation

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

La classification automatique de données quantitatives

La classification automatique de données quantitatives La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Relation entre deux variables : estimation de la corrélation linéaire

Relation entre deux variables : estimation de la corrélation linéaire CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence

Plus en détail

Apprentissage Statistique. Bureau d étude :

Apprentissage Statistique. Bureau d étude : Apprentissage Statistique Bureau d étude : Score d appétence en GRC Hélène Milhem IUP SID M2 2011/2012 Institut de Mathématiques de Toulouse UMR CNRS C5219 Equipe de Statistique et Probabilités Université

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining

GUIDE DU DATA MINER. Scoring - Modélisation. Data Management, Data Mining, Text Mining GUIDE DU DATA MINER Scoring - Modélisation Data Management, Data Mining, Text Mining 1 Guide du Data Miner Scoring - Modélisation Le logiciel décrit dans le manuel est diffusé dans le cadre d un accord

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Classification Automatique de messages : une approche hybride

Classification Automatique de messages : une approche hybride RECIAL 2002, Nancy, 24-27 juin 2002 Classification Automatique de messages : une approche hybride O. Nouali (1) Laboratoire des Logiciels de base, CE.R.I.S., Rue des 3 frères Aïssiou, Ben Aknoun, Alger,

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI 1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage

Plus en détail

La méthode des scores, particulièrement de la Banque de France

La méthode des scores, particulièrement de la Banque de France La méthode des scores, particulièrement de la Banque de France Devant la multiplication des défaillances d entreprises au cours des années 80 et début des années 90, la Banque de France a produit des travaux

Plus en détail

EXEMPLE : FAILLITE D ENTREPRISES

EXEMPLE : FAILLITE D ENTREPRISES EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : «Applied Multivariate Statistical

Plus en détail

Classification de données binaires via l introduction de mesures de similarités dans les modèles de mélange

Classification de données binaires via l introduction de mesures de similarités dans les modèles de mélange Classification de données binaires via l introduction de mesures de similarités dans les modèles de mélange Seydou N. SYLLA 1,2,3, Stéphane GIRARD 1, Abdou Ka DIONGUE 2 Aldiouma DIALLO 3 & Cheikh SOKHNA

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Chapitre 2/ La fonction de consommation et la fonction d épargne

Chapitre 2/ La fonction de consommation et la fonction d épargne hapitre 2/ La fonction de consommation et la fonction d épargne I : La fonction de consommation keynésienne II : Validations et limites de la fonction de consommation keynésienne III : Le choix de consommation

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Construire un perceptron multicouches avec TANAGRA

Construire un perceptron multicouches avec TANAGRA Objectif Comparer TANAGRA, SIPINA et WEKA lors de l apprentissage d un réseau de neurones. S agissant de l apprentissage d un réseau de neurones, un perceptron multicouches dans notre cas (MULTILAYER PERCEPTRON

Plus en détail

Didacticiel - Etudes de cas. Comparer TANAGRA, ORANGE et WEKA lors de la construction d une courbe ROC à partir de la régression logistique.

Didacticiel - Etudes de cas. Comparer TANAGRA, ORANGE et WEKA lors de la construction d une courbe ROC à partir de la régression logistique. Objectif Comparer TANAGRA, ORANGE et WEKA lors de la construction d une courbe ROC à partir de la régression logistique. TANAGRA, ORANGE et WEKA sont trois logiciels de data mining gratuits. S ils poursuivent

Plus en détail

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Déterminants de l assurance dans les entreprises non financières. Approche empirique

Déterminants de l assurance dans les entreprises non financières. Approche empirique Déterminants de l assurance dans les entreprises non financières. Approche empirique Hassen RAÏS. Enseignant-Chercheur. IAE -Toulouse. CRM UMR 5303 CNRS. hassen.rais@iae-toulouse.fr - +33(0)6 33 09 16

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

Arbres binaires de décision

Arbres binaires de décision 1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

LE TABLEAU DE BORD DE SUIVI DE L ACTIVITE

LE TABLEAU DE BORD DE SUIVI DE L ACTIVITE TABLEAU DE BORD LE TABLEAU DE BORD DE SUIVI DE L ACTIVITE DEFINITION Le tableau de bord est un support (papier ou informatique) qui sert à collecter de manière régulière des informations permettant de

Plus en détail

Une pénalité de groupe pour des données multivoie de grande dimension

Une pénalité de groupe pour des données multivoie de grande dimension Une pénalité de groupe pour des données multivoie de grande dimension Laurent Le Brusquet 1, Arthur Tenenhaus 1,2, Gisela Lechuga 1, Vincent Perlbarg 2, Louis Puybasset 3 & Damien Galanaud 4. 1 Laboratoire

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS

La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS Rev. Energ. Ren. : Chemss 2000 39-44 La Recherche du Point Optimum de Fonctionnement d un Générateur Photovoltaïque en Utilisant les Réseaux NEURO-FLOUS D.K. Mohamed, A. Midoun et F. Safia Département

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

ECOLE SUPERIEURE DE COMMERCE D ALGER

ECOLE SUPERIEURE DE COMMERCE D ALGER MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE ECOLE SUPERIEURE DE COMMERCE D ALGER PROGRAMME DE LICENCE EN SCIENCES COMMERCIALES ET FINANCIERES OPTION : FINANCE ( applicable à partir

Plus en détail

Projetde SériesTemporelles

Projetde SériesTemporelles COMMUNAUTE ECONOMIQU E ET MONETAIRE DE L AFRIQUE CENTRALE (CEMAC) INSTITUT SOUS REGIONAL DE STATISTIQUES ET D ECONOMIE APPLIQUEE (ISSEA) Projetde SériesTemporelles MODELISATION DE LA RENTABILITE DE L INDICE

Plus en détail

Chapitre 1. L algorithme génétique

Chapitre 1. L algorithme génétique Chapitre 1 L algorithme génétique L algorithme génétique (AG) est un algorithme de recherche basé sur les mécanismes de la sélection naturelle et de la génétique. Il combine une stratégie de survie des

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Économétrie, causalité et analyse des politiques

Économétrie, causalité et analyse des politiques Économétrie, causalité et analyse des politiques Jean-Marie Dufour Université de Montréal October 2006 This work was supported by the Canada Research Chair Program (Chair in Econometrics, Université de

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Exercice 3 du cours Management Bancaire : «Risque de crédit et scoring»

Exercice 3 du cours Management Bancaire : «Risque de crédit et scoring» Exercice 3 du cours Management Bancaire : «Risque de crédit et scoring» Ce cas a pour objectif d étudier le risque de crédit d une entreprise à l aide de la méthode du scoring. Cette méthode statistique

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Comment ne pas construire un score-titanic

Comment ne pas construire un score-titanic Comment ne pas construire un score-titanic Mon mailing Olivier Decourt ABS Technologies / Educasoft Formations 1- Les principes 2- Un premier exemple : les vins de France 3- Mise en œuvre sous SAS 4- Un

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

L'intelligence d'affaires: la statistique dans nos vies de consommateurs

L'intelligence d'affaires: la statistique dans nos vies de consommateurs L'intelligence d'affaires: la statistique dans nos vies de consommateurs Jean-François Plante, HEC Montréal Marc Fredette, HEC Montréal Congrès de l ACFAS, Université Laval, 6 mai 2013 Intelligence d affaires

Plus en détail

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7

Table des matières. PREMIÈRE PARTIE Étapes initiales des études marketing 7 Table des matières Préface Public 1 Structure de l ouvrage 1 Caractéristiques de l ouvrage 3 Contenu 3 Pédagogie 4 Remarques sur l adaptation française 4 Ressources numériques 5 Biographie 6 PREMIÈRE PARTIE

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

Introduction au Data-Mining

Introduction au Data-Mining Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme

Plus en détail

NOTE SUR LA MODELISATION DU RISQUE D INFLATION

NOTE SUR LA MODELISATION DU RISQUE D INFLATION NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui

Plus en détail

Synthèse «Le Plus Grand Produit»

Synthèse «Le Plus Grand Produit» Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot

Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,

Plus en détail

L'analyse de la structure financière

L'analyse de la structure financière 2 L'analyse de la structure financière Les différentes conceptions La structure financière d une entreprise dépend principalement des contraintes technico-économiques liées à la nature des activités développées

Plus en détail

Point de Vue - la validation des inputs, le cas du marché obligataire et des spreads de crédit. 2012-05. Auteur: Simon Rosenblatt, Valnext

Point de Vue - la validation des inputs, le cas du marché obligataire et des spreads de crédit. 2012-05. Auteur: Simon Rosenblatt, Valnext Groupe de Travail Valorisation des Instruments Complexes Point de Vue - la validation des inputs, le cas du marché obligataire et des spreads de crédit. 2012-05 Auteur: Simon Rosenblatt, Valnext Avec le

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Leçon 12. Le tableau de bord de la gestion des stocks

Leçon 12. Le tableau de bord de la gestion des stocks CANEGE Leçon 12 Le tableau de bord de la gestion des stocks Objectif : A l'issue de la leçon l'étudiant doit être capable de : s initier au suivi et au contrôle de la réalisation des objectifs fixés au

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

HEC Montréal MODÈLE DE PROBABILITÉ DE DÉFAUT DES PRÊTS D UNE BANQUE CANADIENNE

HEC Montréal MODÈLE DE PROBABILITÉ DE DÉFAUT DES PRÊTS D UNE BANQUE CANADIENNE HEC Montréal MODÈLE DE PROBABILITÉ DE DÉFAUT DES PRÊTS D UNE BANQUE CANADIENNE Par Fatoumata A dite Woybi Touré 11135079 Science de la gestion (Ingénierie financière) Projet supervisé présenté en vue de

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

CHAPITRE 5. Stratégies Mixtes

CHAPITRE 5. Stratégies Mixtes CHAPITRE 5 Stratégies Mixtes Un des problèmes inhérents au concept d équilibre de Nash en stratégies pures est que pour certains jeux, de tels équilibres n existent pas. P.ex.le jeu de Pierre, Papier,

Plus en détail

Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative

Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative Business School W O R K I N G P A P E R S E R I E S Working Paper 2014-317 Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative Sami Ben Jabeur Youssef Fahmi

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Cours de Data Mining PageRank et HITS

Cours de Data Mining PageRank et HITS Cours de Data Mining PageRank et HITS Andreea Dragut Univ. Aix-Marseille, IUT d Aix-en-Provence Andreea Dragut Cours de Data Mining PageRank et HITS 1 / 48 Plan du cours Présentation Andreea Dragut Cours

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail