Eduardo Almeida. Master Alma Université de Nantes

Dimension: px
Commencer à balayer dès la page:

Download "Eduardo Almeida. Master Alma Université de Nantes {eduardo.almeida@univ-nantes.fr}"

Transcription

1 Data Warehouse - OLAP Master Alma Université de Nantes

2 Objectif Présenter les concepts de base d'un Data Warehouse (DW) et On Line Analytical Processing (OLAP). Présenter des fonctions et outils pour construire un environment DW/OLAP.

3 Bibliographie Berson, Alex e Smith, Stephen J. Data Warehousing, Data Mining & OLAP Kimball, Ralph The Data Warehouse Toolkit Inmon, Willian H. Building the Data Warehouse Thomsen, Erik OLAP Solutions Wu and Alejandro P. Buchmann (1998) Encoded Bitmap Indexing for Data Warehouses Donsez, Didier (présentations) Université Joseph Fourier

4 Problèmes typiques Nous avons une grande quantité de données, mais nous ne pouvons pas les utiliser La pire chose pour un directeur est d'avoir deux personnes présentant le même rapport avec des résultats différents Montre-moi juste l'information la plus importante Nous voulons croiser les informations de toutes les façons possibles The Data Warehouse Toolkit - Ralph Kimball

5 Défi des entreprises Les décideurs Gestionnaires d'informatique Valeur Information correctes Format correct A l'heure Integration Passage à l'échelle et performance Flexibilité Coût Comment une entreprise peut atteindre les deux objectifs?

6 Définition de Bill Inmon (1996) «Le Data Warehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées pour le support d un processus d aide à la décision.»

7 Data Warehousing OLE DB/ODBC Mainframe DB2 MVS, VSAM, CICS/IMS, NCR Teradata SQL Server Oracle Transformation Data Warehouse

8 Data Warehouse est... Orient é sujet UN ITES FINANCES Dat a Warehouse CLIEN T M ARCHE Nous pouvons développer des bases de données ciblées sur quelques sujets lim ités

9 Int é gr é Data Warehouse est... Ext ernal files Ext ernal files form at s DATA WAREH OUSE SGBDs OLTP ODBC and API s Intégration Sé mantique: les incompatibilités entre données de différent es sources Sources Hétérogè nes: il doit être possible d accéder à des données de plusieurs t ypes Chargem ent, Mise-a-jour, Net t oyage...

10 Data Warehouse est... Bas é sur le s t em ps P é riode 1 P é riode 2 P é riode 3 P é riode 4 Chargem ent inicial M ise à jour M ise à jour Dans un DW les données sont stockées en form e d'historique pour perm ettre une analyse tem porelle.

11 Data Warehouse est... Non Volat il INSERT UPD ATE AN Á LISE DE DADOS OLTP LOAD DW UPD ATE INSERT AN Á LISE DE DADOS Non volatil signifie que, une fois entrées dans l'entrepôt, les données ne doivent pas changer.

12 Principe Base de Données utilisée à des fins d analyse. Caractéristiques : orientation sujets («métiers») données intégrées données non volatiles données datées

13 DW versus OLTP Systèmes Opérationnels - OLTP (On Line Transaction Processing) : Les bases de données sont mises à jour en transactionnel SGBD Relationnels Centré sur la mise à jour ponctuelle de données Les transactions échangent de faibles quantités d informations avec l utilisateur et travaillent toujours sur les versions les plus récentes des données.

14 DW versus OLTP Systèmes Tactiques - OLAP (On Line Analysis Processing) Les bases de données décisionnelles sont consultées en interactif (spreadsheets) pour l'analyse des données (ex: histogrammes) Navigation dans la base selon diverses dimensions constituées par des attributs de tables Consultation des versions historiques de la base Les données proviennent des differentes sources (sites)

15 DW versus OLTP Caractéristiques OLTP DW Opérations typiques Mise à jour Analyse Type d accès Lecture et écriture Lecture Niveau d analyse Élémentaire Global Écrans Fixe Variable Quantité d info échang. Faible Importante Orientation Ligne Multidimensions Taille BD au niveau de GB au niveau de TB Ancienneté des données Récente Historique

16 DW versus OLTP OLTP structures de données complexes (3FN) DW structures de données multidimensionnelles peu indexes beaucoup beaucoup jointure quelques unes normalisées duplication dénormalisées rares agrégation fréquentes

17 La suite décisionnelle de base Extract, Transform and Load (ETL) OLAP

18 La suite décisionnelle (staging area) ETL OLAP

19 La suite décisionnelle (staging area and data marts) ETL OLAP

20 Extract, Transform and Load (ETL) Données de production SGBD et supports physiques hétérogènes Qualité inégale des données Représentations hétérogènes

21 Extract, Transform and Load (ETL) L'objectif est l'obtention de données : centralisées fiables interprétables

22 Extract, Transform and Load (ETL) Transformation : Filtrer Trier Homogénéiser Nettoyer...

23 Extract, Transform and Load (ETL) Chargement : Grande quantité Différents types de tableaux Gestion des structures spécialisées (materialized views and summary tables)...

24 Exemples d Applications Concernées Banque Il est important de pouvoir regrouper les informations concernant un client afin de répondre à ses demandes de crédit Grande Distribution Il est intéressant de regrouper les informations des ventes pour déterminer les produits à succès, mieux suivre les phénomènes de mode, détecter les habitudes d achats et les préférences par secteur géographique. Mailing Ciblés Doivent être rapidement élaborés à partir de toutes les informations disponibles sur un client lors de la commercialisation d un nouveau produit Télécommunications Analyser le trafic Etc

25 Exemple pratique (Télécommunications) Le système de télécommunication au Brésil a été privatisé. Le Brésil a été divisé en 4 parties: Région 1 (bleue) Région 2 (rouge) Région 3 (jaune) Région 4 (long distance) Mis en service d'une enterprise de télécommunication au Brésil Constructiuon d'un réseau Recherche de clients

26 Exemple pratique (Télécommunications) Où devons-nous construire le réseau? On a acheté des banques de données (master card, visa, banques, list, etc) On a utilisé un DW pour profiter de ses données

27 Exemple pratique (Télécommunications) On a généré des données pour les charger dans un système de geoprocessing

28 Exemple pratique (Télécommunications) La structure du DW SGBD : Oracle 8i -> 9i OLAP : Business Objects 5.5, Microstrategy 7 ETL : PowerMart OS : HP-UX 11 (sur une machine 32 proc.) Equipe : 12 personnes Chargement Tous les jours 17 systèmes (CRM, billing, traffic, etc) Quelques millions de tuples (8 mi dans la table de trafic) 14 heures pour terminer

29 Exemple pratique (Banque) Etude des fermetures de compte clients par mois Comment prévoir la fermeture d'un compte? Vérifier les attributs le plus importants Créer un cycle de vie client

30 Exemple pratique (Banque) Actions de marketing Nouveaux produits Fidélisation des clients Vente croisée Actions de crédit Réévaluation de crédit Telemarketing

31 Exemple pratique (Banque) La structure du DW SGBD : Sybase IQ 11 OLAP : Business Objects 4 ETL : Programmes (COBOL, C/C++, Java, etc) OS : IBM AIX Equipe : 30 personnes Chargement Tous les mois 67 systèmes (compte, assurances, investissements, etc.) 3 jours pour terminer

32 Conception du DW

33 Conception du DW Logique Phase conceptuelle et abstraite (la définition des types d'informations dont vous avez besoin) Organise une série de relations (dimensions et tables de fait) Schéma multidimensionnel (étoile et flocon)

34 Conception du DW Physique Conception physique Prise en considération des matériels et des E / S Parallélisme et de partitionnement Materialized Views

35 Conception logique

36 Conception logique Logique Dimensions et tables de faits Identifier les sujets ou domaines de données Il n'y a pas de règle (par exemple, 3FN) Identifier l'information qui appartient à une table de faits et ses dimensions associées

37 Table de Dimension Les attributs sont normalement descriptifs (valeurs textuelles) Ils permettent d'interpréter les faits Les dimensions couramment utilisées sont les clients, les produits et le temps. CLIENTS TEMPS PRODUITS FOURNISSEUR #id_client #id_temps #id_produit #id_fournisseur nom jour id_fournisseur fournisseur age moins produit adresse ville années prix_unitaire ville pays stock pays code_postal code_postal

38 Table de Faits Une table de faits a généralement deux types de colonnes: les faits numériques et les clés étrangères des dimensions. Une table de faits contient des faits au niveau de détail ou des faits qui ont été agrégés COMMANDE id_client id_produit id_temps date_comm date_envoi APPEL id_client id_temps num_appele debut_appel fin_appel OPERATION id_client id_temps id_operation valeur

39 Dimension x Faits Les tables de faits ont une grande quantité de données Les dimensions ont une petite quantité de données Les dimensions acceptent la redondance Normalement, les dimensions sont chargées dans la mémoire cache

40 Conception logique

41 Schéma étoile MAGASIN #id_magasin addresse num_tel ville Dimension CLIENTS #id_client nom age ville pays code_postal COMMANDE id_client id_produit id_magasin id_temps date_comm date_envoi quantite remise Table de Faits PRODUITS #id_produit fournisseur produit prix_unitaire stock Dimension TEMPS #id_temps jour mois année

42 Schéma étoile x ER Etoile ER

43 Schéma flocon MAGASIN #id_magasin addresse num_tel ville COMMANDE id_client id_produit PRODUITS #id_produit id_fournisseur id_gamme produit prix_unitaire FOURNISSEUR #id_fournisseur addresse ville num_tel id_magasin stock CLIENTS #id_client nom age ville pays code_postal id_temps date_comm date_envoi quantite remise TEMPS #id_temps jour mois GAMME #id_gamme description années

44 Schéma flocon Structure hiérarchique (plusieurs niveaux de dimensions). Plusieurs jointures pour la reconstruire. Dimensions plus petites.

45 Processus de conception Choisir le processus à modéliser Choisir les grains des faits Niveau de détails (transaction, récapitulatifs mensuels, etc) Choisir les dimensions (temps, clients, produits, etc) Choisir les mesures de faits De préférence des quantité numériques additives

46 Processus de conception D. Donsez, 2006

47 Conception physique

48 Passer de la conception logique à la physique Convertir les données recueillies au cours de la phase de conception logique dans une description physique Se concentrer sur la performance Les aspects de maintenance de la base de données

49 Passer de la conception logique à la physique

50 Structures physiques Tablespaces Tables and Partitioned Tables Views Integrity Constraints Dimensions Structures crées pour l'amélioration de la performance Indexes and Partitioned Indexes Materialized Views

51 Dimensions Dénormalisé create dimension fournisseur_dim LEVEL no_fournisseur IS (fournisseurs.no_fournisseur) LEVEL societe IS (fournisseurs.societe) LEVEL ville IS (fournisseurs.ville) LEVEL pays IS (fournisseurs.pays) HIERARCHY geog_rollup ( ville CHILD OF pays );

52 Dimensions Normalisé create dimension stock_dim LEVEL id_produit LEVEL produit LEVEL fournisseur LEVEL fournisseur_name HIERARCHY geog_rollup ( produit fournisseur CHILD OF IS (produits.ref_produit) IS (produits.nom_produit) IS (fournisseurs.no_fournisseur) IS (fournisseurs.societe) JOIN KEY (produits.no_fournisseur) REFERENCES FOURNISSEUR );

53 Indexes and Partitioned Indexes BITMAP index Reduced response time for large classes of ad hoc queries Reduced storage requirements compared to other indexing techniques Dramatic performance gains even on hardware with a relatively small number of CPUs or a small amount of memory Efficient maintenance during parallel DML and loads

54 Indexes and Partitioned Indexes BITMAP index simple CLIENTS... Ville... Nantes Paris Rennes Nantes Nantes Paris... BITMAP B_nantes B_paris B_rennes

55 Indexes and Partitioned Indexes BITMAP index encodé (Wu et Buchmann, 1998) CLIENTS... Ville... Nantes Paris Rennes Nantes Nantes Paris... BITMAP ENCODE B0 B Calculé par log2(n) n = domaine (par exemple, log2(3)=2) MAPPING Nantes 00 Paris 01 Rennes

56 Indexes and Partitioned Indexes BITMAP CREATE BITMAP INDEX ville_bm_ix ON fournisseurs(pays); Ex. select pays,count(*) from fournisseurs group by pays;

57 Indexes and Partitioned Indexes Sans BITMAP Elapsed: 00:00:00.04 Execution Plan SELECT STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=16 Bytes=144) 1 0 SORT (GROUP BY) (Cost=4 Card=16 Bytes=144) 2 1 TABLE ACCESS (FULL) OF 'FOURNISSEURS' (TABLE) (Cost=3 Ca rd=29 Bytes=261) Avec BITMAP Elapsed: 00:00:00.02 Execution Plan SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=16 Bytes=144) 1 0 SORT (GROUP BY NOSORT) (Cost=1 Card=16 Bytes=144) 2 1 BITMAP CONVERSION (COUNT) (Cost=1 Card=29 Bytes=261) 3 2 BITMAP INDEX (FULL SCAN) OF 'VILLE_BM_IX' (INDEX (BITMAP))

58 Materialized Views Vue agrégée qui améliore le temps d'exécution des requêtes Pré-calcul des jointures et des opérations d'agrégation antérieures au stockage Souvent appelée résumé.

59 Materialized Views L'optimiseur de requêtes reconnaît automatiquement quand une vue matérialisée peut et doit être utilisée pour satisfaire une demande.

60 Materialized Views Tout d'abord, les logs des vues matérialisées doivent être créés CREATE MATERIALIZED VIEW LOG ON fournisseurs WITH SEQUENCE, ROWID (NO_FOURNISSEUR,SOCIETE,VILLE,PAYS) INCLUDING NEW VALUES;

61 Materialized Views CREATE MATERIALIZED VIEW fournisseurs_pays BUILD IMMEDIATE REFRESH FAST ENABLE QUERY REWRITE AS select pays,count(*) from fournisseurs group by pays;

62 Materialized Views select pays,count(*) from fournisseurs group by pays; Elapsed: 00:00:00.00 Execution Plan SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=16 Bytes=352) 1 0 MAT_VIEW REWRITE ACCESS (FULL) OF 'FOURNISSEURS_PAYS' (MAT _VIEW REWRITE) (Cost=3 Card=16 Bytes=352)

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste Christian Soutou Avec la participation d Olivier Teste SQL pour Oracle 4 e édition Groupe eyrolles, 2004, 2005, 2008, 2010, is BN : 978-2-212-12794-2 Partie III SQL avancé La table suivante organisée en

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

Master Exploration Informatique des données DataWareHouse

Master Exploration Informatique des données DataWareHouse Master Exploration Informatique des données DataWareHouse Binôme Ahmed BENSI Enseignant tahar ARIB SOMMAIRE I. Conception...1 1. Contexte des contrats...1 2. Contexte des factures...1 II. Modèle physique...2

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Bases de données multidimensionnelles et mise en œuvre dans Oracle

Bases de données multidimensionnelles et mise en œuvre dans Oracle Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes

L'infocentre sert à prendre des décisions opérationnelles basées sur des valeurs courantes II - II 1ère génération 13 2ème génération : Entrepôt de données / Magasin de données 15 3ème génération OLAP 16 Références Bibliographiques 18 A. 1ère génération Infocentre Tableur Base de données Infocentre

Plus en détail

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 2013/2014 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Fouille de Données : OLAP & Data Warehousing

Fouille de Données : OLAP & Data Warehousing Fouille de Données : OLAP & Data Warehousing Nicolas Pasquier Université de Nice Sophia-Antipolis Laboratoire I3S Chapitre 2. Data warehousing Définition : qu est-ce que le data warehousing? Entrepôt de

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

Les entrepôts de données et l analyse de données

Les entrepôts de données et l analyse de données LOG660 - Bases de données de haute performance Les entrepôts de données et l analyse de données Quelques définitions Entreposage de données (data warehousing): «La copie périodique et coordonnée de données

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI)

Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI) Systèmes d information décisionnels (SIAD) Extraction de connaissances (KDD) Business Intelligence (BI) Imade BENELALLAM Imade.benelallam@ieee.org AU: 2012/2013 Imade Benelallam : imade.benelallam@ieee.org

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France

Restitution. Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Restitution Antoine Lapostolle Ingénieur Avant-Vente Microsoft France Fgi was here Restitution: les problématiques Stocker ne suffit, il faut permettre de comprendre et d analyser ces données. Avec des

Plus en détail

ISC21-1 --- Système d Information Architecture et Administration d un SGBD Compléments SQL

ISC21-1 --- Système d Information Architecture et Administration d un SGBD Compléments SQL ISC21-1 --- Système d Information Architecture et Administration d un SGBD Compléments SQL Jean-Marie Pécatte jean-marie.pecatte@iut-tlse3.fr 16 novembre 2006 ISIS - Jean-Marie PECATTE 1 Valeur de clé

Plus en détail

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse Datawarehouse 1 Plan Ce qu est le datawarehouse? Un modèle multidimensionnel Architecture d un datawarehouse Implémentation d un datawarehouse Autres développements de la technologie data cube 2 Ce qu

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Bases de Données OLAP. Bienvenue. Chapitre 1 Introduction. Horaires et Site Web. Melanie Herschel. Hiver 2011/2012

Bases de Données OLAP. Bienvenue. Chapitre 1 Introduction. Horaires et Site Web. Melanie Herschel. Hiver 2011/2012 Bases de Données OLAP Hiver 2011/2012 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, Groupe Bases de Données, LRI Bienvenue Je suis... 2000-2003 2003-2007 D origine lorraine et bavaroise

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence

L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

La place de la Géomatique Décisionnelle dans le processus de décision

La place de la Géomatique Décisionnelle dans le processus de décision Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres

Plus en détail

Optimisation des bases de données

Optimisation des bases de données Optimisation des bases de données Mise en œuvre sous Oracle Laurent Navarro Avec la contribution technique d Emmanuel Lecoester Pearson Education France a apporté le plus grand soin à la réalisation de

Plus en détail

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation

Introduction. d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamarts Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Techniques d implémenta3on d OLAP

Techniques d implémenta3on d OLAP Techniques d implémenta3on d OLAP Introduc3on On a vu qu il existait 2 grandes alterna3ves : MOLAP = structure de données adhoc, pour le mul3dimensionnel. ROLAP = implémenta3on à l aide d un SGBD rela3onnel

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Datawarehousing and OLAP

Datawarehousing and OLAP Datawarehousing and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today introduction definition data integration model Introduction introduction

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Performances. Gestion des serveurs (2/2) Clustering. Grid Computing

Performances. Gestion des serveurs (2/2) Clustering. Grid Computing Présentation d Oracle 10g Chapitre VII Présentation d ORACLE 10g 7.1 Nouvelles fonctionnalités 7.2 Architecture d Oracle 10g 7.3 Outils annexes 7.4 Conclusions 7.1 Nouvelles fonctionnalités Gestion des

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com

DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com DB2 10.5 BLU Acceleration Francis Arnaudiès f.arnaudies@fr.ibm.com #solconnect13 SOLUTIONS ADAPTEES AUX BESOINS CLIENTS Mobile/Cloud Data Serving and Transaction Processing Mobile Storefront JSON Database

Plus en détail

Indépendance données / applications

Indépendance données / applications Vues 1/27 Indépendance données / applications Les 3 niveaux d abstraction: Plusieurs vues, un seul schéma conceptuel (logique) et schéma physique. Les vues décrivent comment certains utilisateurs/groupes

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

Sommaire. Introduction. Opérations typiques. Langages. Architectures

Sommaire. Introduction. Opérations typiques. Langages. Architectures OLAP IED 2006-2007 Sommaire Introduction Opérations typiques Langages Architectures Introduction Contexte un entrepôt de données offre des données - nombreuses - homogènes - exploitables - multidimensionnelles

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Introduction au domaine du décisionnel et aux data warehouses

Introduction au domaine du décisionnel et aux data warehouses Data warehouse Introduction au domaine du décisionnel et aux data warehouses http://dwh.crzt.fr STÉPHANE CROZAT Paternité - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-sa/2.0/fr/

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Evry - M2 MIAGE Entrepôt de données

Evry - M2 MIAGE Entrepôt de données Evry - M2 MIAGE Entrepôt de données Introduction D. Ploix - M2 Miage - EDD - Introduction 1 Plan Positionnement du BI dans l entreprise Déclinaison fonctionnelle du décisionnel dans l entreprise Intégration

Plus en détail

Datawarehouse and OLAP

Datawarehouse and OLAP Datawarehouse and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today architecture ETL refreshing warehousing projects architecture architecture

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012

CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012 CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des

Plus en détail

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group

Catherine Chochoy. Alain Maneville. I/T Specialist, IBM Information Management on System z, Software Group 1 Catherine Chochoy I/T Specialist, IBM Information Management on System z, Software Group Alain Maneville Executive I/T specialist, zchampion, IBM Systems and Technology Group 2 Le défi du Big Data (et

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données MTI820 Entrepôts de données et intelligence d affaires Concep)on physique des données Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaFi, C. Desrosiers 1 Le cycle de vie d un projet en

Plus en détail

Notes de cours : bases de données distribuées et repliquées

Notes de cours : bases de données distribuées et repliquées Notes de cours : bases de données distribuées et repliquées Loïc Paulevé, Nassim Hadj-Rabia (2009), Pierre Levasseur (2008) Licence professionnelle SIL de Nantes, 2009, version 1 Ces notes ont été élaborées

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

Introduc;on à l intelligence d affaires et aux entrepôts de données

Introduc;on à l intelligence d affaires et aux entrepôts de données MTI820 Entrepôts de données et intelligence d affaires Introduc;on à l intelligence d affaires et aux entrepôts de données C. Desrosiers Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaBi,

Plus en détail

ECR_DESCRIPTION CHAR(80), ECR_MONTANT NUMBER(10,2) NOT NULL, ECR_SENS CHAR(1) NOT NULL) ;

ECR_DESCRIPTION CHAR(80), ECR_MONTANT NUMBER(10,2) NOT NULL, ECR_SENS CHAR(1) NOT NULL) ; RÈGLES A SUIVRE POUR OPTIMISER LES REQUÊTES SQL Le but de ce rapport est d énumérer quelques règles pratiques à appliquer dans l élaboration des requêtes. Il permettra de comprendre pourquoi certaines

Plus en détail

Les bases de données

Les bases de données Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive

Plus en détail

BD parallèles et réparties

BD parallèles et réparties LOG660 - Bases de données de haute performance BD parallèles et réparties Département de génie logiciel et des TI BD parallèles vs réparties BD réparties Les données se trouvent sur plusieurs sites (noeuds)

Plus en détail

Partie I : Introduction

Partie I : Introduction Partie I : Introduction Chapitre I : Introduction et Problématique 1. Introduction A l ère contemporaine, beaucoup d entreprises se sont adaptées au virage de la technologie en informatisant plusieurs

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

Introduction aux bases de données relationnelles

Introduction aux bases de données relationnelles Formation «Gestion des données scientifiques : stockage et consultation en utilisant des ases de données» 24 au 27 /06/08 Introduction aux ases de données relationnelles Christine Tranchant-Dureuil UMR

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

BASES DE DONNEES AVANCEES

BASES DE DONNEES AVANCEES 1.Introduction J.Korczak 1 BASES DE DONNEES AVANCEES Jerzy KORCZAK, Mohammed ATTIK email: {jjk,attik}@lsiit.u-strasbg.fr BDA Objectifs : Ce cours présente des méthodes, modèles et outils d'aide au développement

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Bases de données multimédias Bases de données multidimensionnelles

Bases de données multimédias Bases de données multidimensionnelles Bases de données multimédias Bases de données multidimensionnelles Contenu BD Multimédia : Caractéristiques Modélisation Interrogation Architectures des SGBD multimédias BD Multidimensionnelles Motivations

Plus en détail

Il est nécessaire de connaître au moins un système d'exploitation de type graphique.

Il est nécessaire de connaître au moins un système d'exploitation de type graphique. GBD-030 Oracle Prise en main Saint-Denis à 9h30 5 jours Objectifs : Une formation Oracle complète pour découvrir tous les concepts du système et les différentes façons de les utiliser concrètement tout

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

BUSINESS OBJECTS V5 / V6

BUSINESS OBJECTS V5 / V6 BUSINESS OBJECTS V5 / V6 Durée Objectif 2 jours L objectif de ce cours est de savoir utiliser le logiciel BUSINESS OBJECTS pour faire des interrogations multi - dimensionnelles sur les univers BO et de

Plus en détail

Didier MOUNIEN Samantha MOINEAUX

Didier MOUNIEN Samantha MOINEAUX Didier MOUNIEN Samantha MOINEAUX 08/01/2008 1 Généralisation des ERP ERP génère une importante masse de données Comment mesurer l impact réel d une décision? Comment choisir entre plusieurs décisions?

Plus en détail

Architectures d'intégration de données

Architectures d'intégration de données Architectures d'intégration de données Dan VODISLAV Université de Cergy-ontoise Master Informatique M1 Cours IED lan Intégration de données Objectifs, principes, caractéristiques Architectures type d'intégration

Plus en détail

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé

Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Devoir Data WareHouse

Devoir Data WareHouse Université Paris XIII Institut Galilée Master 2-EID BENSI Ahmed CHARIFOU Evelyne Devoir Data WareHouse Optimisation, Transformation et Mise à jour utilisées par un ETL Mr R. NEFOUSSI Année 2007-2008 FICHE

Plus en détail

Techniques d optimisation standard des requêtes

Techniques d optimisation standard des requêtes 6 Techniques d optimisation standard des requêtes L optimisation du SQL est un point très délicat car elle nécessite de pouvoir modifier l applicatif en veillant à ne pas introduire de bogues. 6.1 Réécriture

Plus en détail

Les entrepôts de données pour les nuls... ou pas!

Les entrepôts de données pour les nuls... ou pas! Atelier aideà la Décision à tous les Etages AIDE@EGC2013 Toulouse Mardi 29 janvier 2013 Cécile Favre Fadila Bentayeb Omar Boussaid Jérôme Darmont Gérald Gavin Nouria Harbi Nadia Kabachi Sabine Loudcher

Plus en détail

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008 K. Smaïli Professeur à l université Nancy2 1/105 K. Smaïli 2008 Introduction au BI (Business Intelligence) Notion de Datawarehouse Cognos Powerplay Powerplay Transformer Impromptu Datamining Le panier

Plus en détail

Bases de données réparties

Bases de données réparties Bases de données réparties J. Akoka - I. Wattiau 1 Contexte Technologique : des solutions de communication efficace entre les machines des SGBD assurent la transparence des données réparties standardisation

Plus en détail

2.2 Etat de l'art en intégration de données

2.2 Etat de l'art en intégration de données Recueil de l état de l art en Intégration de données Patrice BUCHE (2006) http://metarisk.inapg.inra.fr/content/view/full/104 2.2 Etat de l'art en intégration de données Depuis le début des années 1990,

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

IFT3030 Base de données. Chapitre 2 Architecture d une base de données

IFT3030 Base de données. Chapitre 2 Architecture d une base de données IFT3030 Base de données Chapitre 2 Architecture d une base de données Plan du cours Introduction Architecture Modèles de données Modèle relationnel Algèbre relationnelle SQL Conception Fonctions avancées

Plus en détail