Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Dimension: px
Commencer à balayer dès la page:

Download "Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:"

Transcription

1 Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1

2 Plan Introduc<on: Contexte de la thèse Entrepôts de données Défini<on et applica<ons Cube de données Modélisa<ons conceptuelles des entrepôts de données Opéra<ons OLAP Explora<on des cubes de données Couplage fouille de données et analyse en ligne Conclusion Pistes de proposi<ons 2

3 Contexte de la thèse Langage de scénario Accès aux résultats de simulation Requête / interaction Simulateur Modèle décisionnel Modèle biophysique Accès aux connaissances Entrepôt de données : Connaissances Résultats/données Appren<ssage et fouille 3

4 Entrepôts de données Entrepôts de données Data Warehouses (DW) Différentes défini<ons «Un data warehouse est une collec<on de données concernant un sujet par<culier, varie dans le temps, non vola<le et où les données sont intégrées.» W. H. Inmon Objec<fs: Offrir un accès à une version agrégée et historisée de l'ensemble des données de l'entreprise Offrir des ou<ls d'aide à la décision (OLAP) 4

5 Applica<ons d un DW Traitement d informa<ons: Analyses sta<s<ques de base Rapports à l aide de tableaux croisés, graphe, etc. Traitement analy<que: Analyse mul<dimensionnelle des données d un DW Supporte les opéra<ons OLAP Fouille de données: Découverte de connaissances 5

6 Cube de données Un DW est basé sur un modèle mul<dimensionnel où les données sont vues comme des data cubes Un data cube, ex: ventes, permet de voir les données selon plusieurs dimensions Les tables de dimension ex: item (nom_item, marque, type), ou temps (jour, semaine, mois, trimestre, année) La table de faits con<ent des mesures (ex: unités_vendues) et les clés externes faisant référence à chaque table de dimension Dans la liférature du data warehousing, un cube de dimension n est dit cuboïde. Le treillis des cuboïdes d un data warehouse forme un data cube. 6

7 Data Cube TV PC DVD sum Date 1Trim 2Trim 3Trim 4Trim Total annuel des ventes de TV aux U.S.A. sum U.S.A Canada Mexique Pays sum 7

8 Cube: Un treillis de cuboïdes tous D cuboïde temps item lieu fournisseur D cuboïdes temps,item temps,lieu item,lieu Temps, fournisseur item,fournisseur Lieu, fournisseur D cuboïdes temps,item,lieu temps,lieu, fournisseur D cuboïdes Temps, item, fournisseur item,lieu, fournisseur 8 Temps, item,lieu,fournisseur D cuboïde

9 Concept de hiérarchie Montant des ventes comme une fonc<on des paramètres produit, mois, région Dimensions: Produit, Lieu, Temps Chemins de consolidation hiérarchiques Produit Industrie Région Année Catégorie Pays Trimestre Produit Ville Mois Semaine 9 Mois Magasin Jour

10 Modélisa<on Conceptuelle des Data Warehouses Dimensions & mesures Schéma en étoile: Au milieu, une table de faits connectée à un ensemble de tables de dimensions Schéma flocon de neige (snowflake): Un raffinement du précédent où certaines tables de dimensions sont normalisées (donc décomposées) Constella'on de faits: Plusieurs tables de faits partagent quelques tables de dimension (constella<on d étoiles) 10

11 Exemple de schéma en étoile temps Id_temps jour Jour_semaine mois trimestre année 11 branche Id_branche Nom_branche Type_branche Mesures Table de faits ventes id_time id_item id_branche id_lieu unités_vendues montant_ventes moyenne_ventes Id_item Nom_item marque type Type_fournisseur lieu item Id_lieu rue ville département pays

12 Exemple de schéma Snowflake temps Id_temps jour Jour_semaine mois trimestre année 12 branche Id_branche Nom_branche Type_branche Mesures Table de faits Vente Id_temps Id_item Id-branch Id_lieu unités_vendues montant_vente moyenne_vente item Id_item Nom_item Marque type Id_fournisseur lieu Id_lieu rue Id_ville fournisseur Id_fournisseur Type_fournisseur ville Id_ville ville département pays

13 Exemple de Constella<on de faits temps Id_temps jour Jour_semaine mois trimestre année branche Id_branche Nom_branche Type_branche 13 Meesures Table de faits Vente Id_temps Id_item Id-branche Id_lieu unités_vendues montant_vente moyenne_vente lieu item Id_item Nom_item marque type Id_fourniseur Id_lieu rue ville département pays Table de faits Transport Id_temps Id_item Id_transporteur id_départ id_arrivée coût Unités_transportées transporteur Id_Transporteur Nom_transporteur Id_lieu Type_transporteur

14 Opéra<ons typiques de l OLAP Roll up : consolider (résumer) les données Passer à un niveau supérieur dans la hiérarchie d une dimension Drill down : l inverse du Roll up descendre dans la hiérarchie d une dimension Slice et Dice: Projec6on et sélec6on du modèle rela6onnel Pivot (Rotate): Réoriente le cube pour visualisa6on 14

15 15

16 16

17 Explora<on des cubes de données Explora<on guidée par les hypothèses Explora<on par l usager à l'aide des opéra<ons OLAP (drill down, roll up, slice, dice, pivot,..) Avantages Permet de visualiser les données selon diverses perspec<ves Inconvénients Espace de recherche trop grand Pour un cube de n dimensions et Li niveaux de hiérarchie pour la dimension Di T= i=1..n (Li+1) Exemple : un cube de 8 dimensions avec des hiérarchies de dimension de 7 niveaux offre 1,6 millions (8 ^8) cuboïdes possibles 17

18 Explora<on des cubes de données Visualisa<on Manipula<on interac<ve 18

19 Couplage Fouille de données et analyse en ligne Entrepôt de données / OLAP Grande capacité de stockage ECD / Fouille de données Structuration multidimensionnelle des données Entrepôt Cubes de de données / OLAP OLAP Exploration : visualisation et navigation dans les cubes de données OLAP : besoin d une analyse en ligne plus élaborée dépassant la simple exploration et le résumé des cubes de données ECD / Fouille de données OLAP + Fouille de données Extraction La structure des multidimensionnelle connaissances à partir peut de tableaux apporter «Individus-Variables» un contexte d analyse ciblé pour la Fouille fouille de données Approche inductive pour la description et la prédiction Associer l aspect exploratoire de l OLAP à la démarche descriptive et prédictive de la fouille Définir une nouvelle génération d opérateurs OLAP basés sur des techniques de fouille 19

20 Couplage Fouille de données et analyse en ligne 1. Extension des opérateurs OLAP 2. Adaptation des algorithmes de fouille de données 20

21 1. Extension des opérateurs OLAP Etendre le langage de requêtes des opérateurs OLAP pour simuler des techniques de fouille de données Han et al. (OLAM : DBMiner) Sathe et al. (Opérateur RELAX ) Sarawagi (Opérateur DIFF) 21

22 2. Adaptation des algorithmes de fouille de données Application de la fouille au cœur des données multidimensionnelles Palpanas (Visions théoriques : processus d analyse élaborée) Sarawagi et al. (Discovery-driven : détection des valeurs remarquables) Giacometti et al. (Recommandations de requêtes pour OLAP ) 22

23 Conclusion Démarche pour une explora<on efficace et effec<ve des cubes de données dans les entrepôts Présente des défis intéressants dans un contexte mul<dimensionnel Peut abou<r à des connaissances fort u<les décrivant des associa<ons, des groupements ou des excep<ons au niveau des données agrégées Trouve des applica<ons dans plusieurs domaines du monde réel 23

24 Pistes de proposi<ons Orienter l u<lisateur dans l u<lisa<on des opérateurs OLAP Personnalisa<on de la défini<on d une excep<on par l u<lisateur Etablir de nouveaux modèles d appren<ssage en ligne sur les données mul<dimensionnelles Créa<on de nouveaux opérateurs permefant la prédic'on 24

25 Je vous remercie 25

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse Datawarehouse 1 Plan Ce qu est le datawarehouse? Un modèle multidimensionnel Architecture d un datawarehouse Implémentation d un datawarehouse Autres développements de la technologie data cube 2 Ce qu

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot

Entrepôt de données et l Analyse en ligne. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Entrepôt de données et l Analyse en ligne Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Déroulement du cours 17 janvier : cours et TD 20 janvier : cours?

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Entrepôts de données. (data warehouses) NSY 107 Année 2009-2010 PLAN! Introduction! F.-Y. VILLEMIN! CNAM-CEDRIC! Définitions

Entrepôts de données. (data warehouses) NSY 107 Année 2009-2010 PLAN! Introduction! F.-Y. VILLEMIN! CNAM-CEDRIC! Définitions NSY 107 Année 2009-2010 Entrepôts de données (data warehouses) F.-Y. VILLEMIN! CNAM-CEDRIC! f-yv@cnam.fr PLAN! 1." Introduction 2." Limites du relationnel et du transactionnel 3." Bases multidimensionnelles

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI

MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI MTI820 Entrepôts de données et intelligence d affaires Les applica+ons de BI Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet en BI Diagramme

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

Bases de données multidimensionnelles et mise en œuvre dans Oracle

Bases de données multidimensionnelles et mise en œuvre dans Oracle Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou

Plus en détail

Évolu>on et maintenance

Évolu>on et maintenance IFT3912 Développement et maintenance de logiciels Évolu>on et maintenance Bruno Dufour Université de Montréal dufour@iro.umontreal.ca Modifica>on des logiciels Les modifica>ons sont inévitables Des nouveaux

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Intégra*on des données et ETL

MTI820 Entrepôts de données et intelligence d affaires. Intégra*on des données et ETL MTI820 Entrepôts de données et intelligence d affaires Intégra*on des données et ETL Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet en BI

Plus en détail

OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot

OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot OLAP : Mondrian + Pentaho Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Outils Open Source Mondrian : serveur OLAP JFreeReport : ou9l de «Repor9ng» KeHle

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008 K. Smaïli Professeur à l université Nancy2 1/105 K. Smaïli 2008 Introduction au BI (Business Intelligence) Notion de Datawarehouse Cognos Powerplay Powerplay Transformer Impromptu Datamining Le panier

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données MTI820 Entrepôts de données et intelligence d affaires Concep)on physique des données Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaFi, C. Desrosiers 1 Le cycle de vie d un projet en

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

F. Opérations multidimensionnelles

F. Opérations multidimensionnelles F. Opérations multidimensionnelles Roll up (drill-up)/drill down (roll down) Roll up (drill-up) : résumer, agréger des données en montant dans une hiérachie ou en oubliant une dimension Drill down (roll

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

Fouille de Données : OLAP & Data Warehousing

Fouille de Données : OLAP & Data Warehousing Fouille de Données : OLAP & Data Warehousing Nicolas Pasquier Université de Nice Sophia-Antipolis Laboratoire I3S Chapitre 2. Data warehousing Définition : qu est-ce que le data warehousing? Entrepôt de

Plus en détail

Entrepôts de Données

Entrepôts de Données République Tunisienne Ministère de l Enseignement Supérieur Institut Supérieur des Etudes Technologique de Kef Support de Cours Entrepôts de Données Mention : Technologies de l Informatique (TI) Parcours

Plus en détail

Les méthodes Agiles. Introduc)on aux méthodes Agiles Exemple : Scrum

Les méthodes Agiles. Introduc)on aux méthodes Agiles Exemple : Scrum Les méthodes Agiles Introduc)on aux méthodes Agiles Exemple : Scrum Défini)on de base Les méthodes Agiles sont des procédures de concep)on de logiciel qui se veulent plus pragma)ques que les méthodes tradi)onnelles

Plus en détail

Entrepôt de données autour du PMSI pour le pilotage d établissement hospitalier

Entrepôt de données autour du PMSI pour le pilotage d établissement hospitalier 1 Entrepôt de données autour du PMSI pour le pilotage d établissement hospitalier Lama EL SARRAJ Ingénieur Hospitalier (AP-HM) AP-HM 2 année de doctorat en informatique (LSIS) 14 octobre 2011 HOPITECH

Plus en détail

Cours d aide à la décision : Du datawarehouse au datamining. L. Jourdan Laetitia.jourdan@lifl.fr

Cours d aide à la décision : Du datawarehouse au datamining. L. Jourdan Laetitia.jourdan@lifl.fr 1 Cours d aide à la décision : Du datawarehouse au datamining L. Jourdan Laetitia.jourdan@lifl.fr Plan 2 Partie 1 : Introduction aux SI et Besoins liés aux SI décisionnels Partie 2 : Focus sur les entrepôts

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Gouvernance des données et ges1on des données de référence

MTI820 Entrepôts de données et intelligence d affaires. Gouvernance des données et ges1on des données de référence MTI820 Entrepôts de données et intelligence d affaires Gouvernance des données et ges1on des données de référence 1 La gouvernance des données Défini1on: «Processus de supervision et de décision qui permet

Plus en détail

La place de la Géomatique Décisionnelle dans le processus de décision

La place de la Géomatique Décisionnelle dans le processus de décision Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres

Plus en détail

Vers l OLAP sémantique pour l analyse en ligne des données complexes

Vers l OLAP sémantique pour l analyse en ligne des données complexes Vers l OLAP sémantique pour l analyse en ligne des données complexes Sabine Loudcher To cite this version: Sabine Loudcher. Vers l OLAP sémantique pour l analyse en ligne des données complexes. Human-Computer

Plus en détail

Devenez un virtuose de Google. Atelier en informa5que présenté par Dominic P. Tremblay h@p://dominictremblay.com

Devenez un virtuose de Google. Atelier en informa5que présenté par Dominic P. Tremblay h@p://dominictremblay.com Devenez un virtuose de Google Atelier en informa5que présenté par Dominic P. Tremblay h@p://dominictremblay.com Google Google est une société fondée en 1998 en Californie par Larry Page et Sergey Brin.

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail

Nouspresentonslesprincipauxaspectsautourdelanotion(entrep^otde Resume

Nouspresentonslesprincipauxaspectsautourdelanotion(entrep^otde Resume EdgardBentez-Guerrero,ChristineCollet,MichelAdiba Entrep^otsdeDonnees:SyntheseetAnalyse RR1017-I-LSR8 RAPPORTDERECHERCHE Mai1999 e-mail:fedgard.benitez,christine.collet,michel.adibag@imag.fr Entrep^otsdeDonnees:SyntheseetAnalyse

Plus en détail

Création d un opérateur OLAP de prédiction basé sur une technique de fouille de données

Création d un opérateur OLAP de prédiction basé sur une technique de fouille de données UNIVERSITE MOHAMMED PREMIER FACULTE DES SCIENCES OUJDA DEPARTEMENT DE MATHEMATIQUE & INFORMATIQUE UFR : ANITS Mémoire Réalisé par: Najlae KORIKACHE En vue de l obtention de Diplôme des Etudes Supérieures

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 9 Les opérations OLAP 9.1. Présentation de la semaine Nous avons vu la semaine précédente qu il est possible de définir partiellement le paradigme

Plus en détail

Introduction à Business Objects. J. Akoka I. Wattiau

Introduction à Business Objects. J. Akoka I. Wattiau Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états

Plus en détail

Le cycle de vie d'un projet en intelligence d'affaires

Le cycle de vie d'un projet en intelligence d'affaires MTI820 Entrepôts de données et intelligence d affaires Le cycle de vie d'un projet en intelligence d'affaires Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaHi, C. Desrosiers 1 QuesKons

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles

Plus en détail

Gouvernance et étude de l impact du changement des processus mé6ers sur les architectures orientées services

Gouvernance et étude de l impact du changement des processus mé6ers sur les architectures orientées services Gouvernance et étude de l impact du changement des processus mé6ers sur les architectures orientées services 30/10/2012 u Soutenance de thèse Karim DAHMAN François CHAROY Claude GODART Evolu1ons des processus

Plus en détail

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1

Entrepôt de Données. Jean-François Desnos. Jean-Francois.Desnos@grenet.fr ED JFD 1 Entrepôt de Données Jean-François Desnos Jean-Francois.Desnos@grenet.fr ED JFD 1 Définition (Bill Inmon 1990) Un entrepôt de données (data warehouse) est une collection de données thématiques, intégrées,

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Chapitre 1 «mes chiffres clés à portée de mains»

Chapitre 1 «mes chiffres clés à portée de mains» Chapitre 1 «mes chiffres clés à portée de mains» Le volume des données manipulées par les acteurs du tourisme est de plus en plus important. Au delà des données mé6ers qui se complexifient, les données

Plus en détail

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Introduc;on à l intelligence d affaires et aux entrepôts de données

Introduc;on à l intelligence d affaires et aux entrepôts de données MTI820 Entrepôts de données et intelligence d affaires Introduc;on à l intelligence d affaires et aux entrepôts de données C. Desrosiers Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaBi,

Plus en détail

Tour d horizon du marché du décisionnel : se repérer dans

Tour d horizon du marché du décisionnel : se repérer dans Tour d horizon du marché du décisionnel : se repérer dans la jungle des outils et intégrateurs Sylvie Delplanque - Directrice adjointe, chargée des SI et de la téléphonie, CH de Calais Mardi 12 mai 2009

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 013/014 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs. Entrepôts de Données Requêtes Requêtes BD opérationnelles

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France 12 juin 2013 Atelier SOLAP @EDA2013 Démarrage Projet MIDAS - 29 Janvier 2008 1 Plan Projet Fresqueau Objectifs généraux

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ecole nationale Supérieure d Informatique (E.S.I) Oued-Smar Alger.

Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ecole nationale Supérieure d Informatique (E.S.I) Oued-Smar Alger. Ministère de l Enseignement Supérieur et de la Recherche Scientifique Ecole nationale Supérieure d Informatique (E.S.I) Oued-Smar Alger École Doctorale Sciences et Technologies de l'information et de la

Plus en détail

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité Établissement chargé de réaliser l inventaire permanent du patrimoine forestier sur tout le territoire métropolitain indépendamment de toute question de propriété. Parmi ces objectifs: Connaissance de

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 2013/2014 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre

Plus en détail

FreeAnalysis. Schema Designer. Cubes

FreeAnalysis. Schema Designer. Cubes FreeAnalysis Schema Designer Cubes Charles Martin et Patrick Beaucamp BPM Conseil Contact : charles.martin@bpm-conseil.com, patrick.beaucamp@bpm-conseil.com Janvier 2013 Document : BPM_Vanilla_FreeAnalysisSchemaDesigner_v4.2_FR.odt

Plus en détail

CQP 112 Introduc/on à la programma/on. Thème 2 : Architecture d un système informa/que. Département d informa/que

CQP 112 Introduc/on à la programma/on. Thème 2 : Architecture d un système informa/que. Département d informa/que CQP 112 Introduc/on à la programma/on Thème 2 : Architecture d un système informa/que Département d informa/que CQP 112 : Introduc/on à la programma/on Plan 1. Historique des ordinateurs 2. Composants

Plus en détail

HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences.

HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. Notre alliance, Votre atout. HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. C est de cette philosophie qu est née notre partenariat avec la société toulousaine (31) Bewise,

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

Le Data Warehouse. Ladjel BELLATRECHE. LISI/ENSMA - Poitiers bellatreche@ensma.fr

Le Data Warehouse. Ladjel BELLATRECHE. LISI/ENSMA - Poitiers bellatreche@ensma.fr Le Data Warehouse Ladjel BELLATRECHE LISI/ENSMA - Poitiers bellatreche@ensma.fr 1 Plan Entrepôt de données Modélisation multidimensionnelle OLAP Traitement/Optimisation des Requêtes Conduite de Projet

Plus en détail

Introduction au domaine du décisionnel et aux data warehouses

Introduction au domaine du décisionnel et aux data warehouses Data warehouse Introduction au domaine du décisionnel et aux data warehouses http://dwh.crzt.fr STÉPHANE CROZAT Paternité - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-sa/2.0/fr/

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

Architecture matériel et logiciel 2

Architecture matériel et logiciel 2 Architecture matériel et logiciel 2 Architectures Venera Arnaoudova Concep8on architecturale 1. Introduc8on 2. Modéliser l architecture avec UML 3. Éléments architecturaux 4. Styles architecturaux 1. Architecture

Plus en détail

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE

OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE OPEN DATA : CHALLENGES ET PERSPECTIVES D ENTREPOSAGE «Journée Open Data» 5 Novembre 2013 Présenté par : Imen Megdiche Directeur de thèse : Pr. Olivier Teste (SIG-IRIT) Co-directeur de thèse : Mr. Alain

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

BTS Assurance et passerelles mé2ers en Mutualité

BTS Assurance et passerelles mé2ers en Mutualité BTS Assurance et passerelles mé2ers en Mutualité Le BTS Assurance vous prépare à exercer des responsabilités dans le domaine de la souscrip2on des assurances ou du règlement des sinistres Lieux d exercice

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Plan de cours. 1. Mise en contexte. 2. Place du cours dans le programme. 3. Descripteur du cours

Plan de cours. 1. Mise en contexte. 2. Place du cours dans le programme. 3. Descripteur du cours Faculté des sciences Centre de formation en technologies de l information Plan de cours Cours : INF 735 Entrepôt et forage de données Trimestre : Hiver 2015 Enseignant : Robert J. Laurin 1. Mise en contexte

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

L ou%l téléphone dans votre stratégie de marke%ng direct

L ou%l téléphone dans votre stratégie de marke%ng direct L ou%l téléphone dans votre stratégie de marke%ng direct «Allo, vous n avez pas de stratégie téléphone?» Alain Pierre La Chaîne de l Espoir Pascal Fréneaux ADM VALUE Présenta%on de La Chaîne de l Espoir

Plus en détail

DOCUMENTATION KAPTravel Module de gestion des appels de disponibilité

DOCUMENTATION KAPTravel Module de gestion des appels de disponibilité DOCUMENTATION KAPTravel Module de gestion des appels de disponibilité 01/06/15 KAPT Tous Droits Réservés 2 PRÉSENTATION Ce+e présenta3on va vous perme+re de prendre en main la plateforme de ges3on KAPTravel

Plus en détail

Business & High Technology

Business & High Technology UNIVERSITE DE TUNIS INSTITUT SUPERIEUR DE GESTION DE TUNIS Département : Informatique Business & High Technology Chapitre 8 : ID : Informatique Décisionnelle BI : Business Intelligence Sommaire Introduction...

Plus en détail

CATALOGUE 2015 Forma!ons courtes PARCOURS TRADUCTION

CATALOGUE 2015 Forma!ons courtes PARCOURS TRADUCTION CATALOGUE 2015 Forma!ons courtes PARCOURS TRADUCTION - 21, rue d Assas 75270 Paris Cedex 06 Tél. : +33(1) 42 22 33 16 Fax : +33 (1) 45 44 17 67 forma!on.con!nue@isit-paris.fr - www.isit-paris.fr Etablissement

Plus en détail

Datawarehousing and OLAP

Datawarehousing and OLAP Datawarehousing and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today introduction definition data integration model Introduction introduction

Plus en détail

Département Génie Informatique

Département Génie Informatique Département Génie Informatique BD51 : Business Intelligence & Data Warehouse Projet Rédacteur : Christian FISCHER Automne 2011 Sujet : Développer un système décisionnel pour la gestion des ventes par magasin

Plus en détail

BDWA EXAMEN - 27 MARS 2006 Documents autorisés. Exercice 1. Requêtes décisionnelles

BDWA EXAMEN - 27 MARS 2006 Documents autorisés. Exercice 1. Requêtes décisionnelles Nom : Prénom : Page 1 Université Pierre et Marie Curie Paris 6 BDWA EXAMEN - 27 MARS 2006 Documents autorisés Master d'informatique Exercice 1. Requêtes décisionnelles On considère une base de données

Plus en détail

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr

FOUILLE DE DONNEES. Anne LAURENT ECD. laurent@lirmm.fr FOUILLE DE DONNEES Anne LAURENT laurent@lirmm.fr ECD Pourquoi la fouille de données? Données disponibles Limites de l approche humaine Nombreux besoins : Industriels, Médicaux, Marketing, Qu est-ce que

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Améliorez et industrialisez vos feedback produit

Améliorez et industrialisez vos feedback produit Améliorez et industrialisez vos feedback produit Jean- Philippe Gillibert, architecte logiciel et coach agile chez Introduc)on Retour d expérience sur un projet à la SNCF Méthode originale de traitement

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1

La Geo-Business Intelligence selon GALIGEO avec 26/10/2005 1 La Geo-Business Intelligence selon GALIGEO avec ESRI 2005 session «Décisionnel» 26/10/2005 1 La Business Intelligence : Une Définition La Business intelligence permet l utilisation des données opérationnelles

Plus en détail

Entreposage de données complexes pour la médecine d anticipation personnalisée

Entreposage de données complexes pour la médecine d anticipation personnalisée Manuscrit auteur, publié dans "9th International Conference on System Science in Health Care (ICSSHC 08), Lyon : France (2008)" Entreposage de données complexes pour la médecine d anticipation personnalisée

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

DEVELOPPER SON SOURCING VIA LES RESEAUX SOCIAUX FACEBOOK

DEVELOPPER SON SOURCING VIA LES RESEAUX SOCIAUX FACEBOOK DEVELOPPER SON SOURCING VIA LES RESEAUX SOCIAUX FACEBOOK DEVELOPPER SON SOURCING VIA FACEBOOK ATELIER 1 CREATION DE VOTRE PROFIL ATELIER 1 EN GUISE D INTRODUCTION Pourquoi u(liser les réseaux sociaux dans

Plus en détail

Mémoire de fin d études. Thème Conception et réalisation d un Data Warehouse pour la mise en place d un système décisionnel

Mémoire de fin d études. Thème Conception et réalisation d un Data Warehouse pour la mise en place d un système décisionnel Mémoire de fin d études Pour l obtention du diplôme d Ingénieur d Etat en Informatique Option : Systèmes d information Thème Conception et réalisation d un Data Warehouse pour la mise en place d un système

Plus en détail