Présentations personnelles. filière IL

Dimension: px
Commencer à balayer dès la page:

Download "Présentations personnelles. filière IL"

Transcription

1 Présentations personnelles filière IL Résumé Liste de sujets de présentations personnelles. Chaque présentation aborde un sujet particulier, l'objectif étant que la lecture du rapport ainsi que l'écoute de la présentation et les slides présentés permettent au lecteur de se faire une idée précise de la thématique, et de savoir si le produit présenté peut représenter une solution valable pour ses besoins

2 API Bluetooth Bluetooth est un système de transmission et un protocole de proximité destiné au raccordement sans fil d'unités peu distantes (5m) les unes des autres. Il existe plusieurs implémentations du protocole, les deux plus connues étant celles de Broadcomm (ou Widcomm) et celle de Microsoft. La présentation proposée devrait décrire les possibilités de programmation (API) s'offrant au programmeur en C# avec un système.net framework, en utilisant aussi bien des API C# que des API C++ invoquées depuis C#. SAN Storage Area Networks La présentation concerne les aires de stockage réseau, (storage area networks). Présenter les principes, les possibilités (inconvénients, avantages, utilisation, disponibilité, sécurité, redondances), ainsi que les produits existant, aussi bien sur le marché libre que les alternatives payantes. Cache poisoning Une des méthodes préférées des pirates informatiques, qui ont permis de développer des attaques très sophistiquées, comme la récente attaque sur les DNS, par exemple. Présenter le principe de l'attaque, les outils dont dispose le spécialiste pour se prémunir ou pour analyser une situation, et quelques cas d'école, ou le cache poisoning a permis des intrusions particulièrement vicieuses. Honeypots La méthode dite du pot de miel permet d'attirer des pirates informatiques dans des pièges à partir desquels leurs méthodes d'attaque peuvent être traçées et analysées. Expliquer la méthode, en mettre en évidence les forces et les faiblesses. Vote électronique Le vote électronique est en cours d'introduction dans divers pays d'europe; il est à l'essai dans certaines régions de Suisse. Présenter les problèmes qui se posent, et les solutions apportées, ainsi que les risques de fraude éventuelles. Paiement virtuel, carte de crédit électronique Une problématique très actuelle; présenter la problématique, les solutions 2

3 existantes, les problèmes posés, aussi bien de nature technique que sur le plan social. Dangers accrus de traçage des personnes. Confidentialité sur Internet Moteurs de recherche, réseaux sociaux, traque des criminels pédophiles, espionnage des individus à des fins politiques... La liste de raisons plus ou moins bonnes d'espionner les activités sur Internet est longue et sans doute sujette à s'allonger encore. Présenter les principales techniques d'espionnage connues, par quelles applications ces techniques sont utilisées, et comment s'en protéger si toutefois c'est possible. Android SDK Présentation du système Android de Google et ses principales caractéristiques, ainsi que les outils et API mis à disposition dans le SDK. Data warehouses (entrepôts de données) L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant : les données de l'informatique de production (également appelée «informatique transactionnelle»), notamment les progiciels de gestion intégrés (ou ERP, Enterprise Resource Planning) ne se prêtent pas à une exploitation dans un cadre d'analyse décisionnelle. Les systèmes de production sont en effet construits dans le but de traiter des opérations individuelles qui peuvent impliquer différents métiers de l'entreprise et surtout, ne se préoccupent pas de leur compilation ou historisation dans le temps. À l'inverse, les systèmes décisionnels doivent permettre l'analyse par métiers ou par sujets et le suivi dans le temps d'indicateurs calculés ou agrégés. Il est donc souvent indispensable de séparer ces deux mondes et de repenser les schémas de données, ce qui implique l'unification des différents gisements de données de l'entreprise en un entrepôt de données global (datawarehouse) ou dédié à un sujet/métiers (datamart). Bases de données pour les appareils mobiles (mobile and embedded systems) : Exemple Pocket Fusion, Hypersonic, etc... Outils d'interrogation sur PDAs 3

4 Database tuning (optimisation des performances de bases de données) Le futur des applications à grande mobilité Vers quoi se dirigent les applications à grande mobilité sur des terminaux «handheld»? Technologies en devenir, nouvelles possibilités d'entrées-sorties, canaux de transmission plus performants, performance de calcul et de stockage locale, etc... OLAP Online Analytical Processing (OLAP) désignait à l'origine les bases de données multidimensionnelles (aussi appelées cubes ou hypercubes) destinées à des analyses complexes sur des données. Video streaming (protocoles, technologies, serveurs existants, etc.) Langages de métadonnées pour Web Sémantique Ontologies et le Web sémantique.net et les applications mobiles.net compact framework : services, possibilités, diffusion, part de marché. Comparaison avec des systèmes concurrents (Symbian natif, Apple, J2ME CDC / CLDC) Web Services 4

5 Gestion des données XML avec Oracle 10g Arbres de décision : un outil efficace pour classifier les données Signatures électroniques Le paradigme de signature électronique (appelé aussi signature numérique) est un procédé permettant de garantir l'authenticité de l'expéditeur (fonction d'authentification) et de vérifier l'intégrité du message reçu. La signature électronique assure également une fonction de non-répudiation, c'està-dire qu'elle permet d'assurer que l'expéditeur a bien envoyé le message (autrement dit elle empêche l'expéditeur de nier avoir expédié le message). Présenter les technologies, les produits, commenter leur utilisation actuelle et future. Réseaux neuronaux : applications Algorithmes génétiques : applications Algorithmes de compression de données avec et sans pertes Quels sont les principaux algorithmes et outils utilisées, quelle est leur efficacité, quand utiliser quel outil, quand ne pas utiliser quel algorithme? Techniques de classification 5

6 Applications du data mining dans le domaine médical (avenir, problèmes rencontrés, solutions) Data Mining, confidentialité et sécurité Data Mining in E-learning Applications du data mining dans le commerce électronique ( Applications of Data Mining to Electronic Commerce, Ron Kohavi, Foster Provost), Data Mining and Knowledge Discovery 5 (1-2): 5-10, January - April, 2001 Analyse des outils du data mining (software) Software and Hardware for Data Analysis, Pattern Recognition and Image Processing La technologie RSS, génération du flux RSS Langages de description de documents basés sur XML (Il existe de nombreux dialectes, et une normalisation semble se faire jour désormais; plusieurs semi-standards arrivent parmi lesquels certains sont soutenus par des associations internationales de standaradisation. Comparer, expliquer l intérêt.) 6

7 Systèmes LMS (Learning Management System). Qu offrent-ils, quelles sont les normes en vigueur. Etude de cas sur systèmes existants, possibilités et interactivité. Techniques de recherche et de classification d images Etude des outils et des possibilités de classification, utilisation des métadonnées EXIF, bibliothèques permettant l'exploitation des métadonnées EXIF, métadonnées dans les formats propriétaires (RAW) Techniques de segmentation de vidéos JSF, Java Server Faces Java Server Faces (abrégé en JSF) est un framework Java, pour le développement d'applications Web. A l'inverse des autres frameworks MVC traditionnels à base d'actions, JSF est basé sur la notion de composants, comparable à celle de Swing ou SWT, où l'état d'un composant est enregistré lors du rendu de la page, pour être ensuite restauré au retour de la requête. JSF est agnostique à la technologie de présentation. Il utilise JSP par défaut, mais peut être utilisé avec d'autres technologies, comme par exemple Facelets ou XUL. Outils d extraction des caractéristiques physiques d image Bio-engineering et ses applications 7

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données :

Un datawarehouse est un entrepôt de données (une base de données) qui se caractérise par des données : Page 1 of 6 Entrepôt de données Un article de Wikipédia, l'encyclopédie libre. L'entrepôt de données, ou datawarehouse, est un concept spécifique de l'informatique décisionnelle, issu du constat suivant

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence

Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION. Mentions Ingénierie des Systèmes d Information Business Intelligence É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure ARCHITECTURE DES SYSTEMES D INFORMATION Mentions

Plus en détail

Entrepôt de données 1. Introduction

Entrepôt de données 1. Introduction Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de

Plus en détail

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU

PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU PROJET ECUREUIL DU CNIP INFORMATIQUE DÉCISIONNELLE SERVEURS D'ANALYSE OLAP ESNE-IG RAPPORT DE TRAVAIL DE DIPLÔME 2007 FABIEN AIRIAU Fabien Airiau ESNE-IG Rapport de travail de diplôme 2007 Page 1 sur 77

Plus en détail

Introduction à la B.I. Avec SQL Server 2008

Introduction à la B.I. Avec SQL Server 2008 Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide

Plus en détail

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI

5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI 5. Architecture et sécurité des systèmes informatiques Dimension Fonctionnelle du SI Un SI : et pour faire quoi? Permet de stocker de manière définitive des informations volatiles provenant d autre BD.

Plus en détail

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours

Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres juan-manuel.torres@univ-avignon.fr LIA/Université d Avignon Cours/TP

Plus en détail

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)

SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles) SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients

Plus en détail

Le cinquième chapitre

Le cinquième chapitre Le cinquième chapitre Objectif : présenter les supports matériels ou immatériels permettant d'étayer cette nouvelle approche de la fonction maintenance. I. Evolution du domaine technique - Différents domaines

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Intelligence Economique - Business Intelligence

Intelligence Economique - Business Intelligence Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit

Plus en détail

LES ENTREPOTS DE DONNEES

LES ENTREPOTS DE DONNEES Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1

Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA

Plus en détail

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...

CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2. Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP... Table des matières CARTE HEURISTIQUE...1 LA CHAÎNE DÉCISIONNELLE...2 Collecte des données...2 Stockage des Données...3 Exploitation des Données...4 OLTP ET OLAP...6 OPÉRATIONS SUR LES CUBES...7 Exemple

Plus en détail

Business Intelligence : Informatique Décisionnelle

Business Intelligence : Informatique Décisionnelle Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données

Plus en détail

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL

Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Sécurité des entrepôts de données dans le Cloud Un SaaS pour le cryptage des données issues d un ETL Présenté par Hana Gara Kort Sous la direction de Dr Jalel Akaichi Maître de conférences 1 1.Introduction

Plus en détail

Les Entrepôts de Données. (Data Warehouses)

Les Entrepôts de Données. (Data Warehouses) Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS

Bases de Données. Stella MARC-ZWECKER. stella@unistra.u-strasbg.fr. Maître de conférences Dpt. Informatique - UdS Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS stella@unistra.u-strasbg.fr 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

SQL Server 2012 et SQL Server 2014

SQL Server 2012 et SQL Server 2014 SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

Les principes de la sécurité

Les principes de la sécurité Les principes de la sécurité Critères fondamentaux Master 2 Professionnel Informatique 1 Introduction La sécurité informatique est un domaine vaste qui peut appréhender dans plusieurs domaines Les systèmes

Plus en détail

Calendrier prévisionnel 07 Septembre 2015 Tarif HT 350 000FCFA

Calendrier prévisionnel 07 Septembre 2015 Tarif HT 350 000FCFA FORMATIONS 2015 2016 GOUVERNANCE SI Nos formations Types de formation Nos sessions de formations s adresse à tous les professionnels. Deux types de formations vous sont proposés: - séminaires de formations

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN

PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN PROGRAMME DU CONCOURS DE RÉDACTEUR INFORMATICIEN 1. DÉVELOPPEMENT D'APPLICATION (CONCEPTEUR ANALYSTE) 1.1 ARCHITECTURE MATÉRIELLE DU SYSTÈME INFORMATIQUE 1.1.1 Architecture d'un ordinateur Processeur,

Plus en détail

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification

Le terme «ERP» provient du nom de la méthode MRP (Manufacturing Ressource Planning) utilisée dans les années 70 pour la gestion et la planification Séminaire national Alger 12 Mars 2008 «L Entreprise algérienne face au défi du numérique : État et perspectives» CRM et ERP Impact(s) sur l entreprise en tant qu outils de gestion Historique des ERP Le

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

L information et la technologie de l informationl

L information et la technologie de l informationl L information et la technologie de l informationl CRM & informatique décisionnelled CRM CRM & informatique décisionnelle. d 1 2 3 Les Les fondements managériaux managériaux du du CRM. CRM. Les Les fondements

Plus en détail

XCube XML For Data Warehouses

XCube XML For Data Warehouses XCube XML For Data Warehouses Auteurs : Wolfgang Hümmer Andreas Bauer Gunnar Harde Présenté par : David TA KIM 2005-12-05 Sommaire Sommaire I Introduction au Datawarehouse Sommaire I Introduction au Datawarehouse

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Tour d horizon du marché du décisionnel : se repérer dans

Tour d horizon du marché du décisionnel : se repérer dans Tour d horizon du marché du décisionnel : se repérer dans la jungle des outils et intégrateurs Sylvie Delplanque - Directrice adjointe, chargée des SI et de la téléphonie, CH de Calais Mardi 12 mai 2009

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

Introduction à l Informatique Décisionnelle - Business Intelligence (7)

Introduction à l Informatique Décisionnelle - Business Intelligence (7) Introduction à l Informatique Décisionnelle - Business Intelligence (7) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Emergence

Plus en détail

BACHELOR DEVELOPPEUR DE JEUX VIDEO

BACHELOR DEVELOPPEUR DE JEUX VIDEO BACHELOR DEVELOPPEUR DE JEUX VIDEO Objectifs Le Bachelor en Développement de Jeux Vidéo permet aux étudiants d acquérir des compétences très opérationnelles tout en se préparant à une poursuite d études

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Motivations de la filière fouille de données

Plus en détail

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux

Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Filière Data Mining (Fouille de données) Pierre Morizet-Mahoudeaux Plan Objectifs Débouchés Formation UVs spécifiques UVs connexes Enseignants et partenaires Structure générale des études à l UTC Règlement

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

GPC Computer Science

GPC Computer Science CYCLE ISMIN P2015 GPC Computer Science P LALEVÉE lalevee@emse.fr @p_lalevee A3.01 0442616715 C YUGMA yugma@emse.fr A3.01 0442616715 01/09/2014 Présentation GPC CS - Ph. Lalevée - C Yugma 1 Scolarité Site

Plus en détail

Expert technique J2EE

Expert technique J2EE EHRET Guillaume 25, rue de la Richelandiere 42100 SAINT ETIENNE 32 ans - Célibataire Expert technique J2EE Domaines de compétences Environnement et langages Expertise en programmation Java et en architecture

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.

Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc. Filière Fouille de Données et Décisionnel FDD (Data Mining) Pierre Morizet-Mahoudeaux www.hds.utc.fr/~pmorizet pierre.morizet@utc.fr Plan Motivations Débouchés Formation UVs spécifiques UVs connexes Enseignants

Plus en détail

Catalogue des Formations

Catalogue des Formations Catalogue des Formations When skills meet your need Pilotage et management SI Base de donnée et Aide à la décision Développement www.intellectus.ma www.fb.com/intellectusconsulting contact@intellectus.ma

Plus en détail

Urbanisme du Système d Information et EAI

Urbanisme du Système d Information et EAI Urbanisme du Système d Information et EAI 1 Sommaire Les besoins des entreprises Élément de solution : l urbanisme EAI : des outils au service de l urbanisme 2 Les besoins des entreprises 3 Le constat

Plus en détail

Intégration de données hétérogènes et réparties. Anne Doucet Anne.Doucet@lip6.fr

Intégration de données hétérogènes et réparties. Anne Doucet Anne.Doucet@lip6.fr Intégration de données hétérogènes et réparties Anne Doucet Anne.Doucet@lip6.fr 1 Plan Intégration de données Architectures d intégration Approche matérialisée Approche virtuelle Médiateurs Conception

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

LES PROGICIELS DE GESTION

LES PROGICIELS DE GESTION Filières «Agriculture» & «Agroalimentaire & Santé» 3 ème année, tronc commun Module «Systèmes d Information» - Partie II Christophe PUEL Janvier 2010, Institut Polytechnique LaSalle Beauvais 1 Christophe

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

UE 8 Systèmes d information de gestion Le programme

UE 8 Systèmes d information de gestion Le programme UE 8 Systèmes d information de gestion Le programme Légende : Modifications de l arrêté du 8 mars 2010 Suppressions de l arrêté du 8 mars 2010 Partie inchangée par rapport au programme antérieur Indications

Plus en détail

Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui

Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui Formation PARTIE 1 : ARCHITECTURE APPLICATIVE DUREE : 5 h Objectif : Passer de l analyse métier et fonctionnelle à la définition des applications qui automatisent les fonctions Définir une architecture

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

CHAPITRE 1. Introduction aux web services. 1.1 Définition. Contenu du chapitre : Env. De dev. Langage Visual Studio Java EE Qt Creator C#

CHAPITRE 1. Introduction aux web services. 1.1 Définition. Contenu du chapitre : Env. De dev. Langage Visual Studio Java EE Qt Creator C# CHAPITRE 1 Introduction aux web services Contenu du chapitre : Env. De dev. Langage Visual Studio Java EE Qt Creator C# NetBeans JavaScript Eclipse Objective C Xcode PHP HTML Objectifs du chapitre : Ce

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 3 - Data

BI = Business Intelligence Master Data-ScienceCours 3 - Data BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage

Plus en détail

CROSS PLATEFORM MOBILE DEVELOPMENT (Phonegap, RhoMobile)

CROSS PLATEFORM MOBILE DEVELOPMENT (Phonegap, RhoMobile) INGENIEUR EN SCIENCES INFORMATIQUES RAPPORT D ETUDE TECHNOLOGIQUE SUR LES SOLUTIONS WEB CROSS PLATEFORM MOBILE DEVELOPMENT (Phonegap, ) Student : Jiachen NIE Parcours: IHM Subject : Adaptation des Interfaces

Plus en détail

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012

Business Intelligence, Etat de l art et perspectives. ICAM JP Gouigoux 10/2012 Business Intelligence, Etat de l art et perspectives ICAM JP Gouigoux 10/2012 CONTEXTE DE LA BI Un peu d histoire Premières bases de données utilisées comme simple système de persistance du contenu des

Plus en détail

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1)

Introduction à lʼinformatique. Décisionnelle (ID) / Business. Intelligence» (1) Introduction à lʼinformatique Décisionnelle et la «Business Intelligence» (1) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013

Plus en détail

BI = Business Intelligence Master Data-Science

BI = Business Intelligence Master Data-Science BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)

Plus en détail

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Architecture des systèmes d information

Architecture des systèmes d information Architecture des systèmes d information Table des matières 1 La décennie 70 1 2 Le modèle relationnel (les années 80) 1 3 Enrichissement du relationnel (les années 80/90) 2 4 Système d informations (les

Plus en détail

ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE

ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE ANNEXE 2 DESCRIPTION DU CONTENU DE L OFFRE BUSINESS INFORMATION AND ANALYSIS PACKAGE (BUSINESS INTELLIGENCE PACKAGE) Ce document propose une présentation générale des fonctions de Business Intelligence

Plus en détail

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE GUIDE COMPARATIF BUSINESS INTELLIGENCE www.viseo.com Table des matières Business Intelligence :... 2 Contexte et objectifs... 2 Une architecture spécifique... 2 Les outils de Business intelligence... 3

Plus en détail

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise.

Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Solutions PME VIPDev Nos Solutions PME VIPDev sont les Atouts Business de votre entreprise. Cette offre est basée sur la mise à disposition de l ensemble de nos compétences techniques et créatives au service

Plus en détail

Urbanisation des Systèmes d'information

Urbanisation des Systèmes d'information Urbanisation des Systèmes d'information Des composants technologiques disponibles Urbanisation des Systèmes d'information - Henry Boccon-Gibod 1 Plan de l'exposé Technologies à la mode disponibles. Bus

Plus en détail

Référence Etnic Architecture des applications

Référence Etnic Architecture des applications Référence Etnic Architecture des applications Table des matières 1. Introduction... 2 2. Architecture... 2 2.1 Démarche générale... 2 2.2 Modèle d architecture... 3 2.3 Découpe d une architecture applicative...

Plus en détail

CHAPITRE 1 ARCHITECTURE

CHAPITRE 1 ARCHITECTURE 07/04/2014 Université des sciences et de la Technologie Houari Boumediene USTHB Alger Département d Informatique ADMINISTRATION ET TUNING DE BASES DE DONNÉES CHAPITRE 1 ARCHITECTURE RESPONSABLE DR K. BOUKHALFA

Plus en détail

OLAP. Data Mining Decision

OLAP. Data Mining Decision Machine Learning Information Systems Data Warehouses Web & Cloud Intelligence OLAP Knowledge Management Data Mining Decision ENTREPÔTS, REPRÉSENTATION & INGÉNIERIE des CONNAISSANCES Une recherche pluridisciplinaire...

Plus en détail

Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object

Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object Florent Dubien Antoine Pelloux IUP GMI Avignon Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object Professeur Tuteur : Thierry Spriet 1. Cadre du projet... 3 2. Logiciel

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

Les pare-feux : concepts

Les pare-feux : concepts Les pare-feux : concepts Premier Maître Jean Baptiste FAVRE DCSIM / SDE / SIC / Audit SSI jean-baptiste.favre@marine.defense.gouv.fr CFI Juin 2005: Firewall (2) 15 mai 2005 Diapositive N 1 /19 C'est quoi

Plus en détail

Théories de la Business Intelligence

Théories de la Business Intelligence 25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées

Plus en détail

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes

Mission. SOFT COMPUTING et les projets Big Data. Un positionnement de spécialistes SOFT COMPUTING et les projets Big Data Mission Un positionnement de spécialistes Sur le moyen terme, nous sommes profondément convaincus que les organisations qui tireront leur épingle du jeu et feront

Plus en détail

OFFRE DE FORMATION L.M.D.

OFFRE DE FORMATION L.M.D. REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE OFFRE DE FORMATION L.M.D. MASTER PROFESSIONNEL ET ACADEMIQUE Systèmes d Information

Plus en détail

Ici, le titre de la. Tableaux de bords de conférence

Ici, le titre de la. Tableaux de bords de conférence Ici, le titre de la Tableaux de bords de conférence pilotage d entreprise, indicateurs de performance reporting et BI quels outils seront incontournables à l horizon 2010? Les intervenants Editeur/Intégrateur

Plus en détail

Point sur les solutions de développement d apps pour les périphériques mobiles

Point sur les solutions de développement d apps pour les périphériques mobiles Point sur les solutions de développement d apps pour les périphériques mobiles Par Hugues MEUNIER 1. INTRODUCTION a. Une notion importante : le responsive web design Nous sommes en train de vivre une nouvelle

Plus en détail

FAYCAL AYECH GL2. INSAT 2010/2011 INTRODUCTION AUX SYSTÈMES D INFORMATIONS DÉFINITION ET ORGANISATION DE LA FONCTION SI

FAYCAL AYECH GL2. INSAT 2010/2011 INTRODUCTION AUX SYSTÈMES D INFORMATIONS DÉFINITION ET ORGANISATION DE LA FONCTION SI FAYCAL AYECH GL2. INSAT 2010/2011 1 INTRODUCTION AUX SYSTÈMES D INFORMATIONS DÉFINITION ET ORGANISATION DE LA FONCTION SI Chapitre 1 Trois questions se posent dès le départ : Qu'est-ce qu'un système? Qu'est-ce

Plus en détail

L offre Oracle Complete Hardware + Software

L offre Oracle Complete Hardware + Software L offre Oracle Complete Hardware + Software Interview de Jean-Yves Migeon du 13 mars 2012 Postée sur http://itplace.tv Jean-Yves Migeon, Business Development Manager, BU Hardware Stephan Schreiber, Journaliste

Plus en détail

CONCEPTION ET REALISATION D'UN GENERATEUR DE TABLEAUX DE BORD PROSPECTIFS MULTIDIMENSIONNELS

CONCEPTION ET REALISATION D'UN GENERATEUR DE TABLEAUX DE BORD PROSPECTIFS MULTIDIMENSIONNELS CONCEPTION ET REALISATION D'UN GENERATEUR DE TABLEAUX DE BORD PROSPECTIFS MULTIDIMENSIONNELS Nazih Selmoune (*), Zaia Alimazighi (*) Selmoune@lsi-usthb.dz, Alimazighi@wissal.dz (*) Laboratoire des systèmes

Plus en détail

Introduction au domaine du décisionnel et aux data warehouses

Introduction au domaine du décisionnel et aux data warehouses Data warehouse Introduction au domaine du décisionnel et aux data warehouses http://dwh.crzt.fr STÉPHANE CROZAT Paternité - Partage des Conditions Initiales à l'identique : http://creativecommons.org/licenses/by-sa/2.0/fr/

Plus en détail

La place de la Géomatique Décisionnelle dans le processus de décision

La place de la Géomatique Décisionnelle dans le processus de décision Géomatique décisionnelle La place de la Géomatique Décisionnelle dans le processus de décision - Arnaud Van De Casteele Mines ParisTech - CRC Arnaud {dot} van_de_casteele {at} mines-paristech.fr Les rencontres

Plus en détail

ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE

ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE ORACLE DATA INTEGRATOR ENTERPRISE EDITION - ODI EE ORACLE DATA INTEGRATOR ENTERPRISE EDITION offre de nombreux avantages : performances de pointe, productivité et souplesse accrues pour un coût total de

Plus en détail

Conception de systèmes d'information et d'entrepôts de données

Conception de systèmes d'information et d'entrepôts de données Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Conception de systèmes d'information et d'entrepôts de données Vers des structures

Plus en détail

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données.

connaissances «intéressantes» ou des motifs (patterns) à partir d une grande quantité de données. Data Mining = Knowledge Discovery in Databases (KDD) = Fouille de données 1 Définition : Processus ou méthode qui extrait des connaissances «intéressantes» ou des motifs (patterns) à partir d une grande

Plus en détail

Le Web 2.0 : Plus d ergonomie... et moins de sécurité?

Le Web 2.0 : Plus d ergonomie... et moins de sécurité? HERVÉ SCHAUER CONSULTANTS Cabinet de Consultants en Sécurité Informatique depuis 1989 Spécialisé sur Unix, Windows, TCP/IP et Internet Le Web 2.0 : Plus d ergonomie... et moins de sécurité? Journée Sécurité

Plus en détail

Oracle Database 11g pour l'entreposage des données et la Business Intelligence (BI)

Oracle Database 11g pour l'entreposage des données et la Business Intelligence (BI) Livre blanc Oracle Septembre 2009 Oracle Database 11g pour l'entreposage des données et la Business Intelligence (BI) Introduction Oracle Database 11g est une plate-forme de base de données complète pour

Plus en détail

Business Intelligence Reporting

Business Intelligence Reporting Maître de stage : Claude Bordanave Sirinya ON-AT Année 2011 / 2012 Master1 Informatique Université Bordeaux 1 SOMMAIRE REMERCIEMENTS...4 INTRODUCTION...4 I) PRESENTATION DE L ENTREPRISE... 5 1) Raison

Plus en détail

Option OLAP d'oracle Database 10g

Option OLAP d'oracle Database 10g Option OLAP d'oracle Database 10g Quand utiliser l'option OLAP pour améliorer le contenu et les performances d'une application de Business Intelligence Livre blanc Oracle Juin 2005 Option OLAP d'oracle

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Extrait Alimenter l'entrepôt de données avec SSIS Business

Plus en détail

Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza

Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Avant de commencer à travailler avec le produit, il est nécessaire de comprendre, à un haut niveau, les problèmes en réponse desquels l outil a été

Plus en détail

Big Data On Line Analytics

Big Data On Line Analytics Fdil Fadila Bentayeb Lb Laboratoire ERIC Lyon 2 Big Data On Line Analytics ASD 2014 Hammamet Tunisie 1 Sommaire Sommaire Informatique décisionnelle (BI Business Intelligence) Big Data Big Data analytics

Plus en détail

Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS. IDS2014, Nailloux 26-28/05/2014 pascal.dayre@enseeiht.

Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS. IDS2014, Nailloux 26-28/05/2014 pascal.dayre@enseeiht. Evolution et architecture des systèmes d'information, de l'internet. Impact sur les IDS IDS2014, Nailloux 26-28/05/2014 pascal.dayre@enseeiht.fr 1 MVC et le web 27/05/14 2 L'évolution des systèmes informatiques

Plus en détail