Contrôle non destructif Magnétoscopie

Dimension: px
Commencer à balayer dès la page:

Download "Contrôle non destructif Magnétoscopie"

Transcription

1 Contrôle non destructif Magnétoscopie Principes physiques : Le contrôle magnétoscopique encore appelé méthode du flux de fuite magnétique repose sur le comportement particulier des matériaux ferromagnétiques lorsqu ils sont soumis à l'action d'un champ magnétique H. Ce champ magnétique peut être produit : par un conducteur rectiligne parcouru par un courant d'intensité I. A une distance r du conducteur la valeur du champ est donnée par l'expression : [A.m -1 ] par une bobine plate dont les N spires circulaires de rayon r sont parcourues par un courant d'intensité I. Le champ magnétique créé au centre d'une telle bobine a pour valeur : [A.m-1] par une bobine allongée (solénoïde) de longueur L comportant N spires circulaires parcourues par un courant d'intensité I. Le champ magnétique créé selon l'axe d'une telle bobine a pour expression : [A.m-1] Ces différentes expressions ayant pour formule de dimension le quotient d'une intensité exprimée en ampères sur une longueur en mètre soit, l unité d'intensité du champ magnétique sera l'ampère par mètre [A.m -1 ]. 1

2 Lorsque l'on dispose un matériau ferromagnétique dans un champ magnétique d'intensité donnée uniforme H représenté dans l'air par des lignes de force parallèles et équidistantes, on constate une déformation de celles ci au voisinage de ce matériau et une concentration de ces lignes à l'intérieur de celui-ci. Ce phénomène est basé sur l'effet directionnel exercé par le champ magnétique extérieur sur les courants atomiques circulaires dans le matériau. Sous l'influence de ce champ H, ces courants, naturellement désordonnés, deviennent parallèles et leur champ magnétique propre s'ajoute au champ excitateur H. Pour exprimer cette concentration de lignes de force dans le matériau, il convient de définir une grandeur appelée densité de flux magnétique ou induction B exprimée en Tesla 2

3 [T]. Il existe une relation entre l'induction et le champ magnétique H. Dans le vide ou dans l'air, l'induction est égale au produit du champ par un coefficient appelé perméabilité magnétique 0 exprimé en Henry par mètre [H.m -1 ]. et par conséquent [H.m -1 ] Nota : Dans l'ancien système d'unité CGS, 0 était égale à 1. A l'intérieur d'un matériau ferromagnétique placé dans un champ H, la densité de flux magnétique augmente en raison de la concentration des lignes de force du champ et l'expression de l'induction magnétique B devient : dans laquelle r, nombre sans dimension, est appelé perméabilité relative du matériau. Celle-ci dépend de la susceptibilité magnétique K du matériau et : Dans le cas des matériaux ferromagnétiques nous avons vu que était élevée. donc r le sera également. Toutefois, dans le cas de tels matériaux la relation B = f (H) n'est pas linéaire. En effet, si l'on considère la fonction B = f (H), exprimant la variation de l'induction en fonction du champ, elle se traduit par une courbe dite de première aimantation lorsque le matériau n'a jamais été soumis à l'action d'un tel champ (figure 11). 3

4 La courbe représentée correspondant à un acier de construction de nuance XC20 et présente pour des valeurs de champ inférieures à 500 A.m-1 une partie pseudo linéaire, puis un coude correspondant à un changement de pente et enfin, au-delà d'une intensité de champ magnétique d'environ 800 A.m -1 une portion à faible pente dite zone de saturation. Corrélativement, la courbe représentant la variation de la perméabilité relative r du matériau en fonction de ce champ accuse un maximum pour de faibles valeurs de ce champ, puis une décroissance rapide lorsque ce dernier augmente. Nous verrons que la valeur de la perméabilité relative r du matériau contrôlé joue un rôle important vis-à-vis de la sensibilité du contrôle magnétoscopique. Ces rappels succincts concernant les phénomène, magnétiques ayant été énoncés nous pouvons aborder le principe même de la méthode de contrôle. On sait que tous les matériaux ferromagnétiques placés dans un champ magnétique homogène sont le siège d'une induction ou d'une densité de flux magnétique importante. Supposons un barreau d'acier ferritique (milieu 2) disposé dans l'air (milieu 1) où règne un 4

5 champ H comme indiqué sur la figure ci contre. Si l'on considère les phénomènes observés aux limites c'est-à-dire le long des faces du barreau respectivement parallèles et perpendiculaires aux lignes de force du champ les deux lois suivantes peuvent être énoncées : Il existe une continuité du vecteur champ monétique tangentiel par rapport à une surface parallèle au flux magnétique créé. par le champ H ( = B.S, S étant la section de la pièce. et B l'induction dans la pièce ) qui s'écrit : Il existe également une continuité du vecteur induction par rapport à une paroi perpendiculaire au flux magnétique qui se traduit par : Si est la perméabilité magnétique de l'air et r2 la perméabilité magnétique relative du barreau d'acier, l'expression peut encore s'écrire : d'où en devisant les deux termes par 0 : La différence de potentiel magnétique qui existe de part et d'autre de la surface perpendiculaire aux lignes de force du champ sera égale à : Elle sera donc proportionnelle à la valeur de la perméabilité magnétique relative r2 dans le matériau ainsi qu'à l'intensité du champ magnétiseur appliqué H donc à H n2. Le même phénomène sera observé dans le cas d'un défaut débouchant en surface ( voir figure ). C'est cette différence de potentiel magnétique qui créé un champ de fuite magnétique à la surface de la pièce au droit du défaut. Celui-ci est en mesure d'attirer de fines particules ferromagnétiques ( poudres d'oxyde magnétique de fer ) à la façon d'un petit aimant traçant ainsi le dessin du défaut. La détection ainsi que l identification d'une discontinuité non magnétique en surface va dépendre de l'existence, de la finesse et du contraste de son spectre magnétique qui 5

6 sont la résultante d'un grand nombre de paramètres appelés facteurs de sensibilité. Les principaux d'entre eux sont : l'intensité de l'induction B dans la pièce contrôlée qui dépend de l'intensité du champ magnétiseur H L'expérience montre qu'il est recommandé d'utiliser une induction magnétique d'intensité assez grande, sans toutefois atteindre des valeurs trop élevées. La justification de cette affirmation repose sur le phénomène de réfraction magnétique ( figure ci après ). La loi est la suivante : au passage d'un milieu à forte perméabilité relative r, ( acier ferromagnétique ) dans l'air, les lignes d'induction subissent une forte déviation qui obéit à la relation : Celle-ci indique que pour les valeurs élevées de r, l'angle est voisin de 90 et que les lignes d'induction dans l'air sortent quasi perpendiculairement à la surface. Par ailleurs il y a conservation de la composante normale de l'induction de part et d'autre de la surface soit : Cette composante normale de l'induction dans l'air ( B 1n ) nous intéresse particulièrement puisque c'est elle qui va fixer les particules ferromagnétiques au droit des défauts. B 1n étant proportionnelle à B 2, l'induction dans l acier, celle ci doit être suffisamment importante. Une règle pratique qui a fait ses preuves consiste à utiliser une induction delà du coude de la courbe dite de première aimantation ( figure 11 ), mais au-delà du début de la 6

7 partie à faible pente de cette courbe, c'est à dire au commencement de la saturation magnétique du matériau. Pour un matériau très ferromagnétique, tel l'acier de nuance XC 20 considéré, l'induction optimale serait d'environ 1,5 Tesla pour un champ magnétiseur de 1500 A.m -1 ( figure 11 ). Dans le cas des aciers de construction courants, il est cependant recommandé d'utiliser un champ magnétique tangentiel H t1 d'intensité comprise entre 2,4 et 4 ka.m -1 ( soit entre et A.m -1 ) qui est mesurable à l'aide d'un appareil adapté appelé «mesureur de champ tangentiel». En se reportant aux courbes de la figure 11, on voit que les valeurs de champ précitées correspondent à des valeurs de perméabilité relative r comprises pour l'acier XC 20 entre 300 et 500 donc assez élevées auxquelles correspond un angle dans l'air très voisin de 90. Pour des valeurs de champ supérieures à 4 ka.m -1, la perméabilité magnétique relative décroît rapidement, le rapport augmente, donc 1 également. Le vecteur induction dans l'air B 1 se couche sur la surface ce qui réduit sa composante normale B 1n, d'où une moins bonne fixation de la poudre ferromagnétique au droit d'un défaut ( figure 13 ). La profondeur «p» et l'orientation relative de l'induction et des défauts La distorsion des lignes d'induction dans le matériau est maximale lorsque le défaut 7

8 est plan et disposé perpendiculairement à ces lignes d'induction. En effet, l'air ou le milieu constituant ce défaut sont caractérisés par une perméabilité magnétique égale ou très voisine de 0 et jouent dans ce cas le rôle d'une barrière qui s'oppose à la propagation des lignes d'induction. Si le défaut débouche, le flux de fuite magnétique dans l'air est maximal et sa détection sera le plus souvent assurée ( figure 14 a ). Si la partie supérieure du défaut se trouve à une distance ( ou profondeur ) p de la surface de la pièce, il se créera une concentration des lignes d'induction dans le ligament de métal situé au-dessus du défaut et 8

9 le flux de fuite magnétique dans l'air sera très atténué ( figure 14 b ). Dans ce cas, la détection de la discontinuité sera le plus souvent aléatoire et dépendra comme nous le verrons de la nature du champ magnétiseur H. Enfin si le défaut est plan et disposé parallèlement à la surface de matériau, les lignes d'induction dans ce dernier s'écouleront de part et d'autre du défaut sans aucune perturbation quant à leur trajectoire. Aucun flux de fuite magnétique ne sera dans ce cas observé en surface au droit du défaut ( figure 14 c ). La nature du champ magnétiseur H Les considérations précédentes étaient basées sur l'existence d'un flux magnétique uniforme à l'intérieur du matériau. Une telle situation n'est généralement pas observée dans la pratique industrielle des contrôles magnétoscopiques en raison de la forme de la pièce qui influence le choix du mode d'aimantation de celle-ci et la nature du champ magnétiseur. Quelle que soit la forme du circuit utilisé pour produire ce champ, quatre types de courants peuvent être utilisés : un courant continu, un courant puisé redressé double alternance, un courant puisé simple alternance un courant alternatif Des essais ont été réalisés par M. TOITOT sur des barreaux parallélépipédiques en acier de nuance XC 12 comportant des trous borgnes à fonds plats. Les distances «p» de ces fonds plats à la surface des barreaux s'échelonnaient de 1 à 20 mm ( figure 15 ). Ces barreaux ont été disposés dans l'entrefer d'un électroaimant successivement alimenté par les quatre types de courants précités. L'intensité de chaque courant à été augmentée progressivement par paliers afin d'obtenir un accroissement correspondant du 9

10 champ donc de l'induction dans les barreaux. C'est la composante tangentielle H t de ce champ qui a été mesurée lors de chaque palier lors de la recherche du ou des trous décelables au moyen d'une poudre ferromagnétique. L'aimantation ayant été maintenue pendant 5 secondes lors de chaque palier ( temps à caractère industriel ), les résultats obtenus sont exprimés par les courbes de la figure 16 qui représentent pour chaque type de courant, donc de champ, la profondeur de détection maximale «d» en fonction de la valeur de la composante tangentielle du champ Ht. Bien que de tels trous ne soient pas entièrement représentatifs des défauts réels, ils n'en démontrent pas moins l'influence des champs utilisés sur la profondeur de détection des défauts. Si celle-ci atteint 4 à 5 mm pour un champ continu de 2,4 à 4 ka.m -1 qui sont les valeurs extrêmes du domaine recommandé, elle n'est en revanche que de 0,5 mm environ pour un champ alternatif de mêmes valeurs qui est le plus fréquemment utilisé en raison de la simplicité et de la compacité des équipements qui le produisent. Ce résultat s'explique par l'effet de peau accentué qui caractérise les courants alternatifs et par conséquent les champs alternatifs de fréquence industrielle ( f = 50 Hz ). Parmi les autres facteurs de sensibilité qu'il convient de citer et qui jouent un rôle 10

11 important on trouve : la forme des défauts, plane ou volumique, qui, selon l'orientation de ceux-ci, favorise plus on moins l'écoulement des lignes d'induction dans le matériau. L'importance relative des défauts et de la pièce exprimée par l'expression où : s : surface de défaut, S : section de la pièce contenant le défaut. En principe plus cette importance relative est grande meilleure sera la détection du défaut. Toutefois, l'utilisation d'un champ alternatif permettra la détection de très petits défauts en surface grâce à la concentration superficielle des lignes d'induction qu'il procure. L'état de surface de la pièce en épreuve dont une trop grande rugosité peut s'opposer au libre déplacement des particules ferromagnétiques vers les plages caractérisées par une différence de potentiel magnétique élevée en raison de la présence d'un défaut. Une rugosité inférieure à 10 m parait souhaitable. Les caractéristiques des poudres et liqueurs détectrices. Encore appelées produits révélateurs, ces poudres sèches ou en suspension dans Un liquide ( liqueur ) sont caractérisées par : Leur nature, les produits de base étant des oxydes de fer Fe2O3, Fe3O4 ou encore des poudres de fer finement divisées Leur présentation : ces poudres pouvant être utilisées sèches ou encore en suspension dans un liquide qui peut être un produit pétrolier ( huile légère, kérosène, etc. ) de faible viscosité dynamique ou de l'eau additionnée d'un agent mouillant ( pour une meilleure répartition de la poudre ) et d'un inhibiteur de corrosion. Les poudres sèches peuvent être utilisées jusqu'à des températures de 400 C et elles conduisent dans tous les cas à la formation rapide des tracés des défauts. Les liqueurs mises en œuvre aux températures ambiantes sont les plus couramment utilisées. Lorsque leur concentration en poudre répond aux exigences normatives soit 4 à 6 grammes de poudre par litre, ces liqueurs procurent des spectres très fins favorables à une caractérisation satisfaisante des défauts. Les dimensions des particules comprises entre 30 et 300 m pour les poudres sèches et de 0,5 à 1 m pour celles qui sont en suspension dans un liquide. 11

12 Leur couleur qui doit conduire à un contraste élevé avec la surface de là pièce en examen. A cet égard, la magnétite ( Fe 3 O 4 ) est de couleur gris sombre et le complexe Fe 3 O 4 Fe 2 O 3 de couleur rouge violacée. Afin d'améliorer la visibilité des spectres, il existe des poudres magnétiques enrobées d'une pigmentation fluorescente lorsqu'elles sont soumises à un rayonnement ultraviolet de longueur d'onde égale à 360 manomètres. Comme pour les pénétrants fluorescents utilisés en ressuage, ces pigmentations émettent une lumière jaune-verte de longueur d'onde égale à 550 manomètres pour laquelle I œil est le plus sensible. Les poudres fluorescentes sont généralement en suspension dans un liquide et les examens sont effectués dans un local sombre. Enfin lors des contrôles réalisés en lumière du jour avec des poudres colorées non fluorescentes, le contraste des images magnétiques avec la surface de la pièce peut être amélioré par le dépôt sur celle-ci d'une fine couche de peinture blanche d'épaisseur comprise entre 10 et 30 m. Désaimantation des pièces à l'issue d'un contrôle : Il est recommandé de procéder à un nettoyage de la pièce ou partie de la pièce examinée afin de ne pas affecter l'utilisation ultérieure ou la poursuite du programme de fabrication de la pièce. De même, si cela est nécessaire, il faut contrôler l'aimantation résiduelle et 12

13 éventuellement procéder à une désaimantation dont l'efficacité sera également vérifiée. La désaimantation des pièces de petites dimensions ou de faible section est réalisée au moyen d'une bobine alimentée par un courant alternatif d'intensité progressivement décroissante au centre de laquelle la pièce à désaimanter est déplacée lentement. Cette procédure créé dans la pièce un cycle d'hystérésis décroissant qui annule l'induction rémanente B. La figure 17 rend compte des variations du courant de magnétisation dans la bobine et des variations correspondantes de l'induction dans la pièce. Lors de la désaimantation de pièces longues ( barres, ronds, profilés... ), l'intensité du courant de magnétisation dans la bobine peut être maintenue constante, car la diminution de l'induction dans chaque portion de pièce est obtenue par son éloignement lent et régulier de la bobine. 13

Electromagnétisme. Chapitre 1 : Champ magnétique

Electromagnétisme. Chapitre 1 : Champ magnétique 2 e BC 1 Champ magnétique 1 Electromagnétisme Le magnétisme se manifeste par exemple lorsqu un aimant attire un clou en fer. C est un phénomène distinct de la gravitation, laquelle est une interaction

Plus en détail

CHAPITRE 14. CHAMP MAGNETIQUE

CHAPITRE 14. CHAMP MAGNETIQUE CHAPITRE 14. CHAMP MAGNETIQUE 1. Notion de champ Si en un endroit à la surface de la Terre une boussole s'oriente en pointant plus ou moins vers le nord, c'est qu'il existe à l'endroit où elle se trouve,

Plus en détail

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience :

S 5 F I) Notion de champ magnétique : 1) Mise en évidence : a) Expérience : Chapitre 5 : CHAMP MAGNETIQUE S 5 F 1) Mise en évidence : a) Expérience : Des petites aiguilles aimantées montées sur pivots sont disposées près d'un aimant droit. Chaque aiguille constitue un dipôle orienté.

Plus en détail

Contrôle Non Destructif C.N.D.

Contrôle Non Destructif C.N.D. Contrôle Non Destructif C.N.D. 16 Principales techniques Particules magnétiques Pénétrants 7% Autres 7% 6% Ultrasons 30% Objets divers Pétrochimique 15% 10% Aérospatial 25% Courants de Foucault 10% Autres

Plus en détail

LE CHAMP MAGNETIQUE Table des matières

LE CHAMP MAGNETIQUE Table des matières LE CHAMP MAGNETQUE Table des matières NTRODUCTON :...2 MSE EN EVDENCE DU CHAMP MAGNETQUE :...2.1 Détection du champ magnétique avec une boussole :...2.2 Le champ magnétique :...3.2.1 Le vecteur champ magnétique

Plus en détail

TP Cours Ferromagnétisme - Transformateur

TP Cours Ferromagnétisme - Transformateur TP Cours Ferromagnétisme - Transformateur 1. PROPRIETES DES MILIEUX FERROMAGNETIQUES La réalisation de transformateurs nécessite l utilisation de matériaux fortement aimantables. Ce sont les ferromagnétiques.

Plus en détail

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault

Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault Page 1 25 octobre 2012 Journée «Contrôle non destructif et caractérisation de défauts» Caractérisation de défauts par Magnétoscopie, Ressuage, Courants de Foucault Henri Walaszek sqr@cetim.fr Tel 0344673324

Plus en détail

CHAPITRE 8 LE CHAMP MAGNETIQUE

CHAPITRE 8 LE CHAMP MAGNETIQUE CHAPTRE 8 LE CHAMP MAGETQUE ) Champ magnétique 1) Magnétisme Phénomène connu depuis l'antiquité. Les corps possédant des propriétés magnétiques sont appelés des aimants naturel (fer, oxyde magnétique de

Plus en détail

Chapitre P12 : Le magnétisme

Chapitre P12 : Le magnétisme : ) Qu'est-ce que le champ magnétique? 1) Comment détecter un champ magnétique? Expérience : Voir fiche Expériences 1 et 2 En un lieu donné, une aiguille aimantée, pouvant tourner dans un plan horizontal,

Plus en détail

Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique

Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique Utilisation des matériaux magnétostrictifs filaires comme capteurs de mesure de champ magnétique Eric CRESCENZO 1 Evagelos HRISTOFOROU 2 1) IXTREM 9 rue Edouard Denis Baldus, F-711 CHALON SUR SAONE Tél

Plus en détail

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant :

MAGNETISME. 3) Effet du magnétisme 31) Action sur un aimant : MAGNETISME 1) Les différentes sources de champ magnétique La terre crée le champ magnétique terrestre Les aimants naturels : les magnétites Fe 3 O 4 L acier que l on aimante Les électroaimants et circuits

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section i-prépa annuel - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section i-prépa annuel - I. Vecteur champ magnétique : a) Détection : si l on saupoudre de limaille de fer un support horizontal au-dessous

Plus en détail

Observation : Le courant induit circule dans le sens opposé.

Observation : Le courant induit circule dans le sens opposé. 2 e BC 3 Induction électromagnétique 21 Chapitre 3: Induction électromagnétique 1. Mise en évidence du phénomène : expériences fondamentales a) Expérience 1 1. Introduisons un aimant dans une bobine connectée

Plus en détail

École Nationale d Aérotechnique (ÉNA) 5555, place de l ÉNA, Saint-Hubert (Québec) J3Y 8Y9 Tél. : 450 678-3560

École Nationale d Aérotechnique (ÉNA) 5555, place de l ÉNA, Saint-Hubert (Québec) J3Y 8Y9 Tél. : 450 678-3560 DESCRIPTION Titre : Lieu : Durée de la Formation : École Nationale d Aérotechnique (ÉNA) 5555, place de l ÉNA, Saint-Hubert (Québec) J3Y 8Y9 Tél. : 450 678-3560 80 heures 2 350 $* plus taxes, par participant.

Plus en détail

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants

Chapitre 7. Électromagnétisme. 7.1 Magnétisme. 7.1.1 Aimants Chapitre 7 Électromagnétisme 7.1 Magnétisme 7.1.1 Aimants Les aimants furent découverts d abord en Chine et puis en Grèce. Les premiers aimants sont des pierres noires qui ont la propriété d attirer des

Plus en détail

Chapitre 5. Le champ magnétique. 5.1 Introduction et historique. 5.1.1 Les phénomènes magnétiques

Chapitre 5. Le champ magnétique. 5.1 Introduction et historique. 5.1.1 Les phénomènes magnétiques Chapitre 5 Le champ magnétique 5.1 Introduction et historique Le domaine de l électrostatique est celui de l interaction entre charges immobiles et de ses effets. Nous allons compléter notre étude en nous

Plus en détail

Champ électromagnétique?

Champ électromagnétique? Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables.

Electromagnétisme. Bipolarité Un champ magnétique possède toujours un pôle nord et un pôle sud. Ils sont indissociables. Electromagnétisme Les champs magnétiques Les sources de champs magnétiques existent à l état naturel (Terre, aimant naturel) ou peuvent être crées artificiellement (aimant, électro-aimant). L unité du

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

C - LE CHAMP MAGNÉTIQUE

C - LE CHAMP MAGNÉTIQUE C - LE CHAMP MAGNÉTQUE C - 1 - ORGNE DES CHAMPS MAGNÉTQUES L existence de champs magnétiques est liée aux déplacements de charges électriques. En plus d un champ électrique, une charge électrique en mouement

Plus en détail

Guide Utilisateur des Techniques Alternatives au Ressuage et à la Magnétoscopie

Guide Utilisateur des Techniques Alternatives au Ressuage et à la Magnétoscopie Guide Utilisateur des Techniques Alternatives au Ressuage et à la Magnétoscopie Fiche thématique A01 Les techniques alternatives au ressuage et à la magnétoscopie Cette fiche liste les techniques qui peuvent

Plus en détail

TPE : travaux pratiques encadrés.

TPE : travaux pratiques encadrés. TPE : travaux pratiques encadrés. Problématique : Qu est- ce que le magnétisme? Comment l appliquer à la création d un verrou magnétique? Lucie Lalmand. Nathalie Lambin. Année 2006-2007. Elodie Devos.

Plus en détail

Charge électrique loi de Coulomb

Charge électrique loi de Coulomb Champ électrique champ magnétique Charge électrique loi de Coulomb 1/ répulsion réciproque de deux charges < r 12 > Q 1 Q 2 Les deux charges Q 1 et Q 2 se repoussent mutuellement avec une force F 12 telle

Plus en détail

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres LE M O TE U R A C O U R A N T C O N TI N U La loi de LAPLACE Un conducteur traversé par un courant et placé dans un champ magnétique est soumis à une force dont le sens est déterminée par la règle des

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

ELECTROMAGNÉTISME. EM1 Magnétisme et champ magnétique. 1 Propriétés des aimants. 2 Vecteur champ magnétique

ELECTROMAGNÉTISME. EM1 Magnétisme et champ magnétique. 1 Propriétés des aimants. 2 Vecteur champ magnétique LCD Physique II è BC 1 ELECTROMAGÉTISME EM1 Magnétisme et champ magnétique 1 Propriétés des aimants Aimant=corps capable de désorienter une boussole, d'attirer du fer, de repousser ou d'attirer un autre

Plus en détail

CHAPITRE CP1 C Conversion électromagnétique statique

CHAPITRE CP1 C Conversion électromagnétique statique PSI Brizeux Ch. CP1: Conversion électromagnétique statique 1 CHAPITRE CP1 C Conversion électromagnétique statique Les sources d énergie, naturelles ou industrielles, se trouvent sous deux formes : thermique

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

Champ magnétique de la barre aimantée.

Champ magnétique de la barre aimantée. Module expérimental : Etude de la loi de Faraday Étude de la loi de Faraday Objectif Etude expérimentale de la loi de Faraday de l induction. La loi de Faraday de l induction est abordée par l observation

Plus en détail

CHAPITRE XI : Le magnétisme

CHAPITRE XI : Le magnétisme CHAPITRE XI : Le magnétisme XI. 1 Les scientifiques n'ont découvert qu'au XIX ème le lien qui existe entre le magnétisme et l'électricité. Pourtant le magnétisme était connu depuis fort longtemps. Son

Plus en détail

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test

PY401os (2011-2012) Vous pouvez prévisualiser ce test, mais s'il s'agit d'une tentative réelle, vous serez bloqué en raison de : Navigation du test Navigation PY401os (2011-2012) Collège École de Commerce PER Université Impressum Connecté sous le nom «Bernard Vuilleumier» (Déconnexion) Réglages Outils de travail Outils de travail Accueil Cours Collège

Plus en détail

CONTRÔLE D'UNE AUBE DE RÉACTEUR

CONTRÔLE D'UNE AUBE DE RÉACTEUR ACTIVITE ITEC TP 9 Durée : 2h Centre d intérêt : CONTROLE NON DESTRUCTIF CONTRÔLE D'UNE AUBE DE RÉACTEUR DE MIRAGE 2000 BA133 COMPETENCES TERMINALES ATTENDUES NIVEAU D ACQUISITION 1 2 3 * Moyens pour réaliser

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

Capteurs. Capteur. 1. Position du problème. 2. définitions. s = f(m) 3. Les principes physiques mis en oeuvres

Capteurs. Capteur. 1. Position du problème. 2. définitions. s = f(m) 3. Les principes physiques mis en oeuvres Ce cours est destiné à donner un aperçu : - des possibilités de mesure des grandeurs physiques ; - des principales caractéristiques dont il faut tenir compte lors de l utilisation d un capteur. Bibliographie

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Transferts thermiques par conduction

Transferts thermiques par conduction Transferts thermiques par conduction Exercice 1 : Température de contact entre deux corps* On met en contact deux conducteurs thermiques cylindriques, calorifugés sur leurs surfaces latérales. On se place

Plus en détail

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 Optique 2 Mariano-Goulart QCM n 1 : A, C A. Vrai. Hz.m -1.s => B. Faux.. C. Vrai. L'équation donnée montre que l onde électrique

Plus en détail

Rec. UIT-R P.527-3 1 RECOMMANDATION UIT-R P.527-3 * CARACTÉRISTIQUES ÉLECTRIQUES DU SOL

Rec. UIT-R P.527-3 1 RECOMMANDATION UIT-R P.527-3 * CARACTÉRISTIQUES ÉLECTRIQUES DU SOL Rec. UIT-R P.527-3 1 RECOMMANDATION UIT-R P.527-3 * CARACTÉRISTIQUES ÉLECTRIQUES DU SOL Rec 527-3 (1978-1982-1990-1992) L'Assemblée des radiocommunications de l'uit, considérant a) que la propagation de

Plus en détail

L'apport de la physique au diagnostic médical

L'apport de la physique au diagnostic médical L'apport de la physique au diagnostic médical L'application des découvertes de la physique à l'exploration du corps humain fournit aux médecins des informations essentielles pour leurs diagnostics. Ils

Plus en détail

Plan du cours sur le magnétisme

Plan du cours sur le magnétisme Plan du cours sur le magnétisme. ntroduction historiue Aimants, pôle nord, pôle sud, l'expérience de Hans Christian Oersted, représentation du champ magnétiue terrestre... V. La découverte de Oersted Lien

Plus en détail

Plan du chapitre «Milieux magnétiques»

Plan du chapitre «Milieux magnétiques» Plan du chapitre «Milieux magnétiques» 1. Sources microscopiques de l aimantation en régime statique 2. Etude macroscopique de l aimantation en régime statique 3. Aimantation en régime variable 4. Les

Plus en détail

4. Microscopie électronique à balayage

4. Microscopie électronique à balayage 4. Microscopie électronique à balayage 4.1. Principe de formation des images en MEB 4.2. Mise en œuvre 4.3. Les différents modes d imagerie 4.4. Les différents types de contraste 4.5. Performances 4.5.1.

Plus en détail

9. Équations différentielles

9. Équations différentielles 63 9. Équations différentielles 9.1. Introduction Une équation différentielle est une relation entre une ou plusieurs fonctions inconnues et leurs dérivées. L'ordre d'une équation différentielle correspond

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Electromagnétique 4 (1 ère session)

Electromagnétique 4 (1 ère session) Licence SP Sem4 mardi 30 mai 2006 (1 ère session) Durée : 2 h 00 Document autorisé : aucun Calculatrice : non autorisée I. Equations locales : En intégrant les équations locales en considérant un régime

Plus en détail

ELASTICITE. l'isotropie du corps considéré: les propriétés élastiques sont les mêmes dans toutes les directions de l'espace;

ELASTICITE. l'isotropie du corps considéré: les propriétés élastiques sont les mêmes dans toutes les directions de l'espace; 7 M1 EASTICITE I.- INTRODUCTION orsqu'un corps est soumis à des contraintes externes, celui-ci subit des déformations qui dépendent de l'intensité de ces contraintes. Si ces dernières sont faibles, on

Plus en détail

CHAPITRE IX : Les appareils de mesures électriques

CHAPITRE IX : Les appareils de mesures électriques CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant

Plus en détail

GUIDE D UTILISATION A492

GUIDE D UTILISATION A492 GUIDE D UTILISATION A492 Axe RF compteur Guide de démarrage rapide Cet appareil présente de nombreuses fonctions, y compris la mémoire, alarme, date / heure, etc moyenne qui nécessitera une étude du manuel

Plus en détail

Test d auto-évaluation 2010

Test d auto-évaluation 2010 SwissPhO Olympiade Suisse de Physique 2010 Test d auto-évaluation 2010 Ce test permet aux intéressés d évaluer leurs capacités à résoudre des problèmes et de reconnaître des lacunes dans certaines notions.

Plus en détail

Ludovic Grossard. Chapitre VI Polarisation de la lumière. Chapitre VI. Département Mesures Physiques, IUT du Limousin Université de Limoges

Ludovic Grossard. Chapitre VI Polarisation de la lumière. Chapitre VI. Département Mesures Physiques, IUT du Limousin Université de Limoges Chapitre VI Polarisation de la lumière Ludovic Grossard Département Mesures Physiques, IUT du Limousin Université de Limoges 1 Dénition 2 Types de polarisation 3 Polariseurs / analyseurs 4 Les lames de

Plus en détail

LE MAGNETISME DES AIMANTS ET DES COURANTS

LE MAGNETISME DES AIMANTS ET DES COURANTS LE MAGNETISME DES AIMANTS ET DES COURANTS 1. Les aimants Un aimant comporte toujours deux pôles appelés le pôle nord (N) et le pôle sud (S) situés, en général, à deux extrémités. Un aimant exerce une action

Plus en détail

Electromagnétisme. Les aimants sont des objets capables d'en attirer d'autres grâce à une force étrange appelée «force magnétique».

Electromagnétisme. Les aimants sont des objets capables d'en attirer d'autres grâce à une force étrange appelée «force magnétique». Electromagnétisme (Sources principales : «C'est pas sorcier : Magnétisme», articles «Ligne à haute tension», «Circuit magnétique», «Haute tension» de Wikipedia, «Courant continu et courant alternatif»

Plus en détail

PINCES AMPEREMETRIQUES ET CAPTEURS DE COURANT

PINCES AMPEREMETRIQUES ET CAPTEURS DE COURANT PINCES AMPEREMETRIQUES ET CAPTEURS DE COURANT INTRODUCTION Les pinces ampèremétriques sont destinées à étendre les capacités de mesure des multimètres, appareils de mesure de puissance, oscilloscopes,

Plus en détail

DS SCIENCES PHYSIQUES MATHSPÉ

DS SCIENCES PHYSIQUES MATHSPÉ DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Écrantage d'un champ magnétique...2 I.Deux solénoïdes...2 II.Cylindre conducteur dans un solénoïde...3 A.Approximation du cylindre

Plus en détail

Conversion électronique statique

Conversion électronique statique Conversion électronique statique Sommaire I) Généralités.2 A. Intérêts de la conversion électronique de puissance 2 B. Sources idéales.3 C. Composants électroniques..5 II) III) Hacheurs..7 A. Hacheur série

Plus en détail

EM.1 Origine du magnétisme: Le mouvement des électrons au sein de l'atome ainsi que sur eux mêmes est responsable du magnétisme.

EM.1 Origine du magnétisme: Le mouvement des électrons au sein de l'atome ainsi que sur eux mêmes est responsable du magnétisme. EM.1 Origine du magnétisme: Le mouvement des électrons au sein de l'atome ainsi que sur eux mêmes est responsable du magnétisme. Les atomes de certains éléments se comportent comme de petits aimants. La

Plus en détail

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère )

ÉLECTRICITÉ 1/5. En rotation : W = M.q. M = F.r. P = W t. eo. Q S W = VAB. Q VA - VB AB. I = Q t W = U. Q. P = U. I I : intensité ( ampère ) ÉLECTRICITÉ / Travail ( W ) en joule En translation : W = F.d Puissance mécanique ( P ) en watt Champ électrique uniforme ( e ) en volt/mètre Travail de la force électrique ( W ) en joule Champ et potentiel

Plus en détail

Electricité. Chapitre 1: Champ électrique

Electricité. Chapitre 1: Champ électrique 2 e BC 1 Champ électrique 1 Electricité L interaction électromagnétique a été évoqué dans la partie «Interactions fondamentales» en énonçant la loi de Coulomb, et en analysant des phénomènes macroscopiques

Plus en détail

MATIE RE DU COURS DE PHYSIQUE

MATIE RE DU COURS DE PHYSIQUE MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel

Plus en détail

Chapitre 5 - Réfraction et dispersion de la lumière

Chapitre 5 - Réfraction et dispersion de la lumière I. Réfraction de la lumière A. Mise en évidence expérimentale 1. Expérience 2. Observation - Dans l air et dans l eau, la lumière se propage en ligne droite. C est le phénomène de propagation rectiligne

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Conseil économique et social

Conseil économique et social Nations Unies Conseil économique et social ECE/TRANS/WP.15/AC.1/2014/30 Distr. générale 31 décembre 2013 Français Original: anglais Commission économique pour l Europe Comité des transports intérieurs

Plus en détail

Chapitre 4 - Lumière et couleur

Chapitre 4 - Lumière et couleur Choix pédagogiques Chapitre 4 - Lumière et couleur Manuel pages 64 à 77 Ce chapitre reprend les notions introduites au collège et en classe de seconde sur les sources de lumières monochromatiques et polychromatiques.

Plus en détail

Chapitre1: Concepts fondamentaux

Chapitre1: Concepts fondamentaux Dans ce chapitre, nous présentons un certain nombre de concepts et des notions scientifiques qui seront utilisés dans notre étude. Dans cette partie qui constitue un support théorique pour notre mémoire,

Plus en détail

CHAPITRE V : Le champ électrique

CHAPITRE V : Le champ électrique CHAPITRE V : Le champ électrique V.1 La notion de champ a été introduite par les physiciens pour tenter d'expliquer comment deux objets peuvent interagir à distance, sans que rien ne les relie. A la fois

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

Mouvement et vitesse . A A B

Mouvement et vitesse . A A B Chapitre 1 Mouvement et vitesse I/ Caractère relatif d'un mouvement Le mouvement d'un objet est décrit par rapport à un autre objet qui sert de référence ( le référentiel) exemple : assis dans une voiture

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

RESISTANCES SILOHM ET RHF Résistances fixes de puissance non-inductives

RESISTANCES SILOHM ET RHF Résistances fixes de puissance non-inductives SOMMAIRE APPLICATIONS 3 CHOIX D UNE RESISTANCE 3 LES RESISTANCES SILOHM 4 CARACTERISTIQUES 4 RESISTANCES SILOHM : TUBES ET BÂTONNETS, TYPE RS 5 Gamme de valeur ohmique 5 Puissance maximale admissible 6

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Energétique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND LE PUBLIE

Plus en détail

Chapitre II : Propriétés thermiques de la matière

Chapitre II : Propriétés thermiques de la matière II.1. La dilatation thermique Chapitre II : Propriétés thermiques de la matière Lorsqu on chauffe une substance, on provoque l augmentation de l énergie cinétique des atomes et des molécules, ce qui accroît

Plus en détail

Moteurs à courant continu Moteurs asynchrones

Moteurs à courant continu Moteurs asynchrones Chapitre 17 Sciences Physiques - BTS Moteurs à courant continu Moteurs asynchrones 1 Loi de Laplace 1.1 Etude expérimentale Le conducteur est parcouru par un courant continu ; il est placé dans un champ

Plus en détail

La Mesure de force. Les Forces PROBLEMATIQUE VECTORIELLE ACTION ET REACTION ISOSTATISME ACTION A DISTANCE

La Mesure de force. Les Forces PROBLEMATIQUE VECTORIELLE ACTION ET REACTION ISOSTATISME ACTION A DISTANCE La Mesure de force Les Forces PROBLEMATIQUE VECTORIELLE En mécanique classique une force est définie comme " une action susceptible de modifier la quantité de mouvement d'un point matériel". Il en résulte

Plus en détail

GUIDE DES BONNES PRATIQUES EN MAGNÉTOSCOPIE. Une aide pour choisir la technique la mieux adaptée

GUIDE DES BONNES PRATIQUES EN MAGNÉTOSCOPIE. Une aide pour choisir la technique la mieux adaptée GUIDE DES BONNES PRATIQUES EN MAGNÉTOSCOPIE Une aide pour choisir la technique la mieux adaptée Mars 2012 1- INTRODUCTION La magnétoscopie est une méthode de contrôle non destructif utilisée pour détecter

Plus en détail

Capteurs et Métrologie :

Capteurs et Métrologie : République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed KHIDER Biskra Faculté des Sciences et de la Technologie Département

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

Électromagnétisme et Optique Physique

Électromagnétisme et Optique Physique Électromagnétisme et Optique Physique Dr.R.Benallal DÉPARTEMENT DE PHYSIQUE École Préparatoire en Sciences et Techniques de Tlemcen Physique 4 Fevrier-Juin 2013 Programme du module I Électromagnétisme

Plus en détail

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS)

INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS) 1 Géologie, géotechnique, risques naturels, hydrogéologie, environnement et services scientifico-techniques INTERPRÉTATION ET ANOMALIES DE LA PROSPECTION À RÉSONANCE MAGNÉTIQUE (MRS) INTERPRETATION DES

Plus en détail

Différents types de matériaux magnétiques

Différents types de matériaux magnétiques Différents types de matériaux magnétiques Lien entre propriétés microscopiques et macroscopiques Dans un matériau magnétique, chaque atome porte un moment magnétique µ (équivalent microscopique de l aiguille

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

Les Capteurs. Images informationnelles utilisables. Informations traitées

Les Capteurs. Images informationnelles utilisables. Informations traitées I. INTRODUCTION : Les Capteurs Le traitement des informations par un système s'effectue aujourd'hui de manière électronique. Il est donc indispensable que ces informations soient supportées par des signaux

Plus en détail

ACFM & AMIGO ACFM & AMIGO

ACFM & AMIGO ACFM & AMIGO ACFM & AMIGO 1 Principe de base de l ACFM Alternating Current Field Measurment (ACFM) ACFM est une technique basée sur la mesure absolue du champ magnétique en surface qui est produit par un champ magnétique

Plus en détail

LTP : Laboratoire de Technologie des Poudres Prof. H.Hofmann

LTP : Laboratoire de Technologie des Poudres Prof. H.Hofmann LTP : Laboratoire de Technologie des Poudres Prof. H.Hofmann I. EXERCICES DE PHÉNOMÈNES DE TRANSFERT DE CHALEUR 1. Une paroi d'une surface de 5m 2 a une température de 700 C d'un côté et de 20 C de l'autre.

Plus en détail

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE

ÉLECTROMAGNÉTISME BLINDAGE ELECTROMAGNETIQUE Spé ψ 1-11 Devoir n ÉLECTROMAGNÉTISME LINDAGE ELECTROMAGNETIQUE Ce problème s intéresse à certains aspects du blindage électromagnétique par des conducteurs La section A rassemble quelques rappels destinés

Plus en détail

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010

ELECTROTECHNIQUE. Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles. Électromagnétisme. Michel PIOU. Édition: 01/06/2010 ELECTROTECHNIQUE Électromagnétisme Michel PIOU Chapitre 5 Bobines couplées magnétiquement Inductances mutuelles Édition: 0/06/00 Extrait de la ressource en ligne MagnElecPro sur le site Internet Table

Plus en détail

MESURES DE DILATOMETRIE SUR DEUX NUANCES D ACIER INOX : 1.4542 ET 1.4057 le 04/01/00

MESURES DE DILATOMETRIE SUR DEUX NUANCES D ACIER INOX : 1.4542 ET 1.4057 le 04/01/00 1 EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE POLITECNICO FEDERALE DI LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE DEPARTEMENT DE MICROTECHNIQUE INSTITUT DE PRODUCTION MICROTECHNIQUE CH - 1015

Plus en détail

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS Manip n 9 Avril 2014 J. ALBET P. de CARO C. SAUDEJAUD 2 ème Année ATELIER INTER UNIVERSITAIRE DE GENIE DES PROCEDES Objectifs de la manipulation

Plus en détail

La thermique dans le bâtiment

La thermique dans le bâtiment La thermique dans le bâtiment I] Les modes de propagation de la chaleur : La conduction : La transmission de chaleur par conduction se fait à travers un ou plusieurs éléments en contact direct. Le flux

Plus en détail

Radiographie Niveau 2 (accès direct)

Radiographie Niveau 2 (accès direct) Objectifs Connaître les bases du contrôle par radiographie. Mettre en œuvre des contrôles par radiographie suivant des instructions écrites. Rédiger un rapport d examen. Préparation à la certification

Plus en détail

Le rôle du capteur dans les systèmes de mesure

Le rôle du capteur dans les systèmes de mesure MECA2755 Automatisation Industrielle Le rôle du capteur dans les systèmes de mesure H. BUYSE 2004 - Université catholique de Louvain Le rôle du capteur dans les systèmes de mesure Grandeur Physique capteur

Plus en détail

Interactions des rayonnements avec la matière

Interactions des rayonnements avec la matière UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.

Plus en détail

Systèmes électromécaniques

Systèmes électromécaniques Haute Ecole d Ingénierie et de Gestion du Canton de Vaud Systèmes électromécaniques Chapitre 0 CIRCUITS ÉLECTRIQUES ET MAGNÉTIQUES RAPPEL CD\SEM\Cours \Chap0.doc M. Correvon T A L E D E S M A T I E R

Plus en détail

COMMENT CALCULER ET PREVOIR LES PERTES THERMIQUES D UN LOCAL?

COMMENT CALCULER ET PREVOIR LES PERTES THERMIQUES D UN LOCAL? COMMENT CALCULER ET PREVOIR LES PERTES THERMIQUES D UN LOCAL? Un problème important dans le bâtiment est celui de l'isolation thermique. De nombreuses déperditions ayant lieu, il est important de les limiter

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail