LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND

Dimension: px
Commencer à balayer dès la page:

Download "LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND"

Transcription

1 LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 0 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND SERGE HAROCHE DAVID WINELAND Le physicien français Serge Haroche, professeur au Collège de France et directeur de recherche au laboratoire CNRS Kastler - Brossel (CNRS), et le physicien américain David Wineland du National Institute of Standards of Technology (USA, Boulder, Colorado) reçoivent le prix Nobel de physique 0 pour leur travaux de recherche portant sur des méthodes expérimentales avant-gardistes permettant de mesurer et de manipuler l'état quantique de systèmes quantiques individuels (ions,photons,atomes pour faire court ). Intitulé exact : (source The Nobel Prize in Physics 0 was awarded jointly to Serge Haroche and David J. Wineland "for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems" Concrètement, les systèmes quantiques utilisés par le groupe de Serge Haroche sont en fait des atomes alcalins dont les niveaux d'énergie sont en interaction résonante avec une cavité électromagnétique radiofréquence contenant ou non des photons. On entend ici par cavité un système composé de deux miroirs en regard dont les coefficients de réflexion sont très proches de 00%. Ce dispositif permet alors de confiner un champ électromagnétique radiofréquence composé de photons entre les deux miroirs et de soumettre à l'action de ce champ un atome alcalin excité dans les états de Rydberg (états de très haute énergie juste en dessous du seuil d'ionisation). Ces atomes alcalins sont préparés de sorte que certains des niveaux d'énergie sont résonants avec les photons de la cavité. L'interaction entre les atomes et les photons au sein de la cavité permet entre autre d'"intriquer" les états quantiques de l'atome et des photons radiofréquences présents dans la cavité. Dès que cet état quantique intriqué est généré, il devient alors impossible, en quelque sorte, "de séparer ce qui revient à l'atome de ce qui revient au photon". A contrario de la physique classique, la physique quantique n'autorise pas la possibilité séparer les parties (chaque particule : atome et photon(s) pris séparément) du tout (système complet atome + photon). En effet, les miroirs constituants la cavité ne sont pas parfaits. Il en résulte donc une possibilité de fuite pour les photons piégés dans la cavité.

2 Habituellement, pour savoir si un photon est présent ou non à un endroit donné de l espace, il faut utiliser un détecteur qui lors du processus de mesure l absorbe et donc le détruit. Une des applications la préparation des états quantiques intriqués est alors la possibilité de procéder à une mesure quantique non destructive de la présence ou non d'un ou plusieurs photons dans la cavité par l intermédiaire de l atome intriqué. Ce type de mesures non destructives (mesure QND pour «Quantum Non Demolition measurement») permet alors de sonder notamment la durée de résidence moyenne des photons dans la cavité qui finissent inévitablement par s échapper. On peut alors suivre la vie et la mort d un photon dans la cavité. On peut aussi sonder les photons du champ électromagnétique piégé dans la cavité d origine thermique. Au-delà de l illustration d un processus quantique fondamental, id. la vie et la mort d un photon, cette nouvelle manière non - destructive de voir un photon ouvre des perspectives fascinantes du point de vue de la physique quantique, celui de sonder le processus de décohérence. En effet, une information portée par un photon peut être partagée par un grand nombre d atomes interagissant un à un avec lui seul. Si la cavité est dans une superposition de deux états, à la fois vide et contenant un photon, en faisant passer un premier atome résonant, en réglant le temps d interaction avec la cavité pour que la probabilité qu il émette soit de 50%, les atomes traversant ensuite la cavité seront désaccordés pour réaliser la mesure QND. Ils se trouvent alors dans une superposition de deux états quantiques, manifestant une ambiguïté quantique analogue à celle du fameux chat de Schrödinger qui, sous l effet de l interaction avec un atome unique, se retrouve à la fois vivant et mort. Ce dispositif permet alors de réaliser l expérience de pensée imaginée par Erwin Schrödinger dans les années 30.

3 INTERACTION D UN ATOME AVEC UN CHAMP ELECTROMAGNETIQUE A l échelle microscopique, c'est-à-dire atomique l échelle et en deçà, on ne décrit plus l état d un système physique à l aide de notion de mécanique. La détermination simultanée de la position et de la vitesse d un objet est notamment impossible (car interdite par les relation d indétermination de Heisenberg). Il est cependant possible de prédire de façon statistique le comportement d un système atomique à l aide de la mécanique quantique. Les lois de la mécanique quantique permettent de prédire l évolution d un état quantique notamment d un atome. De façon générale, un état quantique est représenté de façon abstraite comme un vecteur appartenant à un espace vectoriel de Hilbert. Dans l exemple concret d un atome, un état quantique correspond à un niveau d énergie atomique particulier dont l énergie est par ailleurs quantifiée (origine des spectres de raies atomiques). Une des conséquences des lois quantiques à l échelle atomique, et qui découle de la propriété de linéarité, est la possibilité de préparer un système dans une superposition de plusieurs états quantiques. En pratique, c est possible à l aide d une onde électromagnétique dont la pulsation (ou fréquence) est résonante avec une transition entre deux niveaux d énergie. Notons e> l état excité et g> l état fondamental de plus basse énergie. Sur le schéma ci-dessous, le paramètre Ω, appelé pulsation de Rabi, traduit la force de couplage du champ électromagnétique entre les deux niveaux d énergie. Si l onde électromagnétique incidente interagit pendant une durée t avec l atome, les lois de la mécanique quantique permettent de montrer alors que l on crée la superposition cohérente en partant Ω t Ω t g + sin e () de l état g> : ψ g cos Ωt Ω t g + cos e () Remarque : si on part de l état e>, on obtient : ψ e sin On ne peut plus alors affirmer que l atome dans les états ψ g ou ψ e est complètement dans l état e> ou l état g>. On ne peut alors remonter qu à une probabilité de détecter l atome dans l état e> ou l état g>. On comprend alors la relation () en remarquant que les états e> et g> constituent une base orthogonale sur laquelle se décompose n importe quel état susceptible d être ainsi préparé. Ainsi, on peut former les produits scalaires pour cette base (voir maths) : g g ; ee ; eg 0 Ω t Ωt cos g + sin e de façon analogue à un vecteur dans l espace, c est-à-dire soit l état sur l état e> ou soit sur l état g>. La mécanique quantique permet de prédire la probabilité de détecter l atome dans g> Ω t Ω t (resp. Pg e ψ g sin ) (respectivement dans e>) avec : Pg g ψ g cos Si on mesure l état d un atome, on projette le vecteur d état ψ g

4 Tant que l on ne mesure pas l état de l atome dans e> ou g>, les atomes ainsi préparés restent dans cet état de superposition. En contrôlant l amplitude du champ électromagnétique (via la pulsation de π Ωt π (impulsion ), Rabi Ω ) et/ou la durée t de l impulsion électromagnétique de telle façon que g + e on obtient partant de g>, l état : ψ π. La probabilité de détecter l atome dans g>, g, respectivement dans e> est alors de 50%. On a réalisé l analogue d une lame séparatrice en optique qui laisse passer avec une probabilité de 50% un photon et réfléchit un photon avec une probabilité de 50 %.

5 INTERFEROMETRE DE RAMSEY En optique, à l aide de lame séparatrice et de miroirs, on peut créer des dispositifs interférométriques à division d amplitude comme l interféromètre de Michelson ou l interféromètre de Mach-Zehnder. Interféromètre de Mach Zehnder En physique atomique, on peut réaliser un interféromètre de Ramsey qui produit des interférences atomiques et qui est un analogue quantique de l interféromètre de Mach-Zehnder. Essayons d expliquer le principe de fonctionnement d un tel dispositif. Schéma de principe d un interféromètre de Ramsey Un interféromètre de Ramsey est basé sur l excitation successive d un même atomes par deux π impulsions à résonance sur la transition atomique au niveau des cavités R et R du schéma ci π dessous. Ces impulsions réalisent les analogues des lames séparatrices qui permettent de séparer puis de recombiner les faisceaux circulant dans les deux bras de l interféromètre. Essayons de montrer que ce dispositif crée des interférences quantiques. Ωt π Supposons, que l on parte depuis l état g> fondamental, l impulsion de R crée la g + e superposition quantique : ψ aprèsr. L atome voyage alors dans le vide jusqu à R pendant L une durée T appelée temps de vol où T (L est la distance séparant R de R et V la vitesse de V l atome). Chaque état g> et e> évolue pendant cette durée T indépendamment tout en restant superposés. Durant cette propagation, ces états acquièrent un déphasage du fait de la rotation de phase due au fait que ces deux états possèdent des niveaux d énergie différenciés. Ainsi, on doit écrire que lors de cette évolution libre : E E iω T iω T g e g g avec ω g g et e e e e avec ω e e

6 Juste avant R, l état du système est décrit par : ψ avantr e iω g T g + e iω et e On pose que : ω 0 ω e ω g Ee E g Pour simplifier les calculs, on peut choisir une référence d énergie nulle pour g> et alors : ω 0 ω e ; ω g 0 et ainsi : ψ g + e iω 0T e. On voit dans cette expression que les états g> et e> acquièrent un déphasage Φ ω 0T comme dans un interféromètre avec deux bras dont les chemins optiques diffèrent (ex. l interféromètre de Mach Zehnder). π Enfin, on ajoute une deuxième impulsion en R qui joue un rôle analogue à la deuxième lame séparatrice permettant de recombiner les faisceaux provenant des deux bras sur l interféromètre de Mach Zehnder). Cette impulsion réalise les transformations des états quantiques d après () et () : g g e g avantr + e + e soit ψ aprèsr g + e ( ) g + e + e iω 0T ( ) e iω 0T g + + e iω 0T e Après R, on en déduit la probabilité de détecter l atome dans l état fondamental qui est : Tout calcul fait, on a donc : ψ ( aprèsr ) ) ω T Φ e iω 0T sin 0 sin ( cos Φ ) aprèsr Après R, on en déduit la probabilité de détecter l atome dans l état excité qui est : Pg gψ ( Φ Pe g ψ aprèsr + e iω 0T cos ( + cos Φ ) Les évolutions de ces deux probabilités dépendent du déphasage acquis lors du temps de vol de l atome, on a l analogue de l évolution de l intensité en sortie des deux voies orthogonales d un interféromètre de Mach Zenhder ou de Michelson en fonction du déphasage!!!

7 MESURE NON DESTRUCTIVE D UN PHOTON DANS UNE CAVITE : Les éléments du dispositif expérimental Miroir de cuivre usiné avec une rugosité de surface inférieure à 0 nm Dépôt d une couche de µm de niobium (supraconducteur)

8 Assemblage d un miroir sur le dispositif

9 Dispositif complet de la cavité à un photon Vue du dispositif expérimental Schéma de l expérience (vue d artiste)

10

11 MESURE NON DESTRUCTIVE D UN PHOTON DANS UNE CAVITE : Comment le dispositif expérimental fonctionne-t-il? Pour détecter un photon individuel présent dans une cavité radiofréquence à résonance avec la transition e g, l idée est d utiliser la sensibilité des mesures interféromètriques que le dispositif de Ramsey permet. En effet, lors d un couplage très fort entre l atome et le champ radiofréquence de la cavité, les niveaux d énergie des états e> et g> sont déplacés : c est le phénomène de déplacement lumineux, plus communément appelé «light shift». Ce déplacement lumineux dépend de l état considéré et du nombre de photons n présent dans la cavité c (voir schéma), et δ ω 0 ω c le désaccord entre la pulsation de résonance ω c de la cavité et la pulsation de transition résonante e g notée ω 0. On voit donc en sortie de la cavité apparaître une différence d énergie supplémentaire : Ω0 ( n + ). eg 4δ Ω 0 est ici encore la pulsation de Rabi effective qui traduit le couplage entre l atome et le champ. Du fait de cette différence d énergie supplémentaire, et en connaissant le temps de passage tp de l atome dans la cavité résonante, les deux états acquièrent déphasage relatif supplémentaire donné Ω 0 tp par : Φ eg ( n + ). 4δ π L idée est de combiner les paramètres expérimentaux δ et t p pour que : Φ eg pour n 0 photon dans la cavité. Après R, C et R, on en déduit la probabilité de détecter l atome dans l état fondamental qui est : ω T + Φ eg Φ Φ eg i Φ sin ( cos( Φ + Φ eg ) ) Pg,0 g ψ aprèsr e iω 0T e eg sin 0 ( Avec Φ eg ) π, on a : Pg,0 ( + sin ( Φ )) Si maintenant, un photon est présent dans la cavité, n et ainsi : Φ En reprenant le calcul, on montre facilement que Pg, ( sin ( Φ eg 3π. )). Le système des franges est donc décalé de π du fait de la seule présence du photon dans la cavité. Le système fonctionne comme un analogue d un interféromètre de Mach Zenhder dans lequel on aurait introduit un milieu d épaisseur e et d indice optique différent du vide ce qui aurait pour effet de décaler de la même façon les franges d interférences en sortie de l appareil.

12 δ Ω 67 khz, 0 50 khz et pour des atome à π π V 50 m/s, on a : t p 30 µs. On procède expérimentalement de la façon suivante : ) On règle δ pour que les franges de la cavité C vide soient décalées de π/ par rapport à leur position pour un grand δ («cavité hors résonance ou off»). ) On injecte ensuite un photon dans C grâce à un atome résonant initialement dans e (impulsion Rabi d angle π, pas d impulsions Ramsey pour cet atome). 3) On enregistre à l aide d un second atome non - résonant les franges de Ramsey (R C R) dans le champ du photon laissé par le premier atome et on constate qu elles sont bien en opposition de phase avec celles obtenues quand C est vide. L expérience permet de calibrer l interféromètre de Ramsey pour la mesure QND. Pour mener l expérience, les paramètres utilisés sont : Calibrage de l interféromètre 4) Lorsque l on fait la mesure en sortie de l interféromètre de Ramsey sur la voie g par exemple, on s aperçoit que les prédictions sont confirmées par la courbe expérimentale : Mesure de la présence d un photon radiofréquence dans la cavité

13

Etrangeté et paradoxe du monde quantique

Etrangeté et paradoxe du monde quantique Etrangeté et paradoxe du monde quantique Serge Haroche La physique quantique nous a donné les clés du monde microscopique des atomes et a conduit au développement de la technologie moderne qui a révolutionné

Plus en détail

Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris)

Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris) Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris) La physique quantique nous a donné les clés du monde microscopique des atomes et a conduit au développement

Plus en détail

L INTERFEROMETRE DE MICHELSON

L INTERFEROMETRE DE MICHELSON L INTERFEROMETRE DE MICHELSON Chappuis Emilie (chappue0@etu.unige.ch) Fournier Coralie (fournic0@etu.unige.ch) . Introduction.. But de la manipulation. INTERFEROMETRE DE MICHELSON Lors de ce laboratoire,

Plus en détail

Les Prix Nobel de Physique

Les Prix Nobel de Physique Revue des Questions Scientifiques, 2013, 184 (3) : 231-258 Les Prix Nobel de Physique Plongée au cœur du monde quantique Bernard Piraux et André Nauts Institut de la Matière Condensée et des Nanosciences

Plus en détail

Peut-on mesurer une variation de longueur de quelques nanomètres des interférences lumineuses?

Peut-on mesurer une variation de longueur de quelques nanomètres des interférences lumineuses? Peut-on mesurer une variation de longueur de quelques nanomètres en utilisant des interférences lumineuses? Il a fallu attendre le début des années 1980 pour «voir» pour la première fois des atomes de

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Chapitre 12 Physique quantique

Chapitre 12 Physique quantique DERNIÈRE IMPRESSION LE 29 août 2013 à 13:52 Chapitre 12 Physique quantique Table des matières 1 Les niveaux d énergie 2 1.1 Une énergie quantifiée.......................... 2 1.2 Énergie de rayonnement

Plus en détail

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique

Photons, expériences de pensée et chat de Schrödinger: une promenade quantique Photons, expériences de pensée et chat de Schrödinger: une promenade quantique J.M. Raimond Université Pierre et Marie Curie Institut Universitaire de France Laboratoire Kastler Brossel Département de

Plus en détail

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION

- 1 - Expérience no 21 ELEMENTS D OPTIQUE 1. INTRODUCTION - 1 - Expérience no 21 1. INTRODUCTION ELEMENTS D OPTIQUE Dans cette expérience les principes de l optique géométrique sont applicables car les obstacles traversés par la lumière sont beaucoup plus grands

Plus en détail

Atome et lumière. Le monde qui nous entoure est peuplé d atomes. Les deux atomes les plus abondants dans l Univers

Atome et lumière. Le monde qui nous entoure est peuplé d atomes. Les deux atomes les plus abondants dans l Univers Atome et lumière Le monde qui nous entoure est peuplé d atomes. electron proton Hydrogène (H) Les deux atomes les plus abondants dans l Univers Hélium (He) et l essentiel de l information que nous en recevons

Plus en détail

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? exposé UE SCI, Valence Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés Université

Plus en détail

Voir un photon sans le détruire

Voir un photon sans le détruire Voir un photon sans le détruire J.M. Raimond Université Pierre et Marie Curie UPMC sept 2011 1 Un siècle de mécanique quantique: 1900-2010 Planck (1900) et Einstein (1905): Quanta lumineux la lumière est

Plus en détail

Effet d une onde électromagnétique sur un atome à deux niveaux

Effet d une onde électromagnétique sur un atome à deux niveaux Université Pierre et Marie Curie Master de sciences et technologie Interaction matière-rayonnement Effet d une onde électromagnétique sur un atome à deux niveaux Introduction On considère un système atomique

Plus en détail

Information quantique

Information quantique Information quantique J.M. Raimond LKB, Juin 2009 1 Le XX ème siècle fut celui de la mécanique quantique L exploration du monde microscopique a été la grande aventure scientifique du siècle dernier. La

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Dates partiel MASC : Mardi 29/04, 8h-9h30 Documents autorisés : 3 feuilles A4 recto-verso Programme limité au premier fascicule

Dates partiel MASC : Mardi 29/04, 8h-9h30 Documents autorisés : 3 feuilles A4 recto-verso Programme limité au premier fascicule Dates partiel MASC : Mardi 29/04, 8h-9h30 Documents autorisés : 3 feuilles A4 recto-verso Programme limité au premier fascicule Déplacement d un TD : ven 18/04, 14h-15h30 (groupe II) Créneau de remplacement

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Energie. L intérêt de ce milieu amplificateur est que la fréquence de la transition laser, ν 0 = E 2 E 1

Energie. L intérêt de ce milieu amplificateur est que la fréquence de la transition laser, ν 0 = E 2 E 1 1 Université Paris XI Centre d Orsay Master 1 de Physique Fondamentale Magistère de Physique Fondamentale 2 ième année Examen de Physique des Lasers Examen de 2 ieme cycle Première session 2011-2012 Épreuve

Plus en détail

Optique Quantique en région parisienne

Optique Quantique en région parisienne Optique Quantique en région parisienne Antoine Heidmann Laboratoire Kastler Brossel Ecole Normale Supérieure, Université P. et M. Curie http://www.lkb.ens.fr/information-et-optique-quantique Pourquoi utiliser

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 Optique 2 Mariano-Goulart QCM n 1 : A, C A. Vrai. Hz.m -1.s => B. Faux.. C. Vrai. L'équation donnée montre que l onde électrique

Plus en détail

Électromagnétisme et Optique Physique

Électromagnétisme et Optique Physique Électromagnétisme et Optique Physique Dr.R.Benallal DÉPARTEMENT DE PHYSIQUE École Préparatoire en Sciences et Techniques de Tlemcen Physique 4 Fevrier-Juin 2013 Programme du module I Électromagnétisme

Plus en détail

TP fibre optique dopée erbium

TP fibre optique dopée erbium TP fibre optique dopée erbium Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : le faisceau du laser de pompe est puissant. Pour des raisons de sécurité et de sauvegarde de la santé des

Plus en détail

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? exposé Ateliers de l information Bibliothèque Universitaire, Grenoble Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et

Plus en détail

Université de Nice Sophia Antipolis Licence de physique

Université de Nice Sophia Antipolis Licence de physique Université de Nice Sophia Antipolis Licence de physique Projet tutoré en laboratoire : Année 2009/2010 Miradji Faoulat Barnaoui Serine Ben Abdeljellil Wael Encadrant : Mr. Anders Kastberg 1 Remerciement

Plus en détail

Microscopie à Force Atomique

Microscopie à Force Atomique M1 SCIENCES DE LA MATIERE - ENS LYON ANNEE SCOLAIRE 2009-2010 Microscopie à Force Atomique Compte-rendu de Physique Expérimentale Réalisé au Laboratoire de Physique de l ENS Lyon sous la supervision de

Plus en détail

DEUXIÈME COMPOSITION DE PHYSIQUE. Deux phénomènes d hystérésis

DEUXIÈME COMPOSITION DE PHYSIQUE. Deux phénomènes d hystérésis ÉCOLE POLYTECHNIQUE ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2009 FILIÈRE PC DEUXIÈME COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est

Plus en détail

Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer?

Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer? Comment peut-on bloquer les réflexions de la lumière sur la surface de l eau pour mieux voir ce qu il y a sur le fond de la mer? www.digital-photography-tips.net/stay_focussed-newsletter-march-2013.html

Plus en détail

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures ÉCOE POYTECHNIQUE Promotion 2009 CONTRÔE DU COURS DE PHYSIQUE PHY311 undi 12 juillet 2010, durée : 2 heures Documents autorisés : cours, recueil de problèmes, copies des diapositives, notes de PC Indiquer

Plus en détail

La physique quantique couvre plus de 60 ordres de grandeur!

La physique quantique couvre plus de 60 ordres de grandeur! La physique quantique couvre plus de 60 ordres de grandeur! 10-35 Mètre Super cordes (constituants élémentaires hypothétiques de l univers) 10 +26 Mètre Carte des fluctuations du rayonnement thermique

Plus en détail

Physique quantique au lycée

Physique quantique au lycée Physique quantique au lycée Une expérience au Liceo di Locarno Christian Ferrari Cours de formation CRP/CPS Champéry, 23 septembre 2011 Plan de l exposé 1 1 L expérience dans l option spécifique (OS) et

Plus en détail

PHYSIQUE 2 - Épreuve écrite

PHYSIQUE 2 - Épreuve écrite PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère

Plus en détail

1 Introduction générale : spectre électromagnétique, lumière polarisée

1 Introduction générale : spectre électromagnétique, lumière polarisée Expérience n 12 Polarisation de la lumière Domaine: Optique, ondes électromagnétiques Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale:

Plus en détail

INTERFÉROMÈTRE DE MICHELSON

INTERFÉROMÈTRE DE MICHELSON INTERFÉROMÈTRE DE MICHELSON ATTENTION! LASER ET LAMPE À MERCURE : DANGER! - Ne jamais regarder directement le faisceau Laser, sous peine de brûlures irréversibles de la rétine. - Ne jamais regarder directement

Plus en détail

Détection exaltée de molécules fluorescentes avec des structures photoniques : application aux mesures dynamiques en solution

Détection exaltée de molécules fluorescentes avec des structures photoniques : application aux mesures dynamiques en solution Détection exaltée de molécules fluorescentes avec des structures photoniques : application aux mesures dynamiques en solution Jérôme Wenger Institut Fresnel, CNRS, Université Aix-Marseille, Ecole Centrale

Plus en détail

5/ Fonctionnement du laser

5/ Fonctionnement du laser 5/ Fonctionnement du laser La longueur d onde du laser est de 532 nanomètres (532x10-9 m) soit dans le vert. Le choix de cette longueur d onde n est pas fait au hasard car la matière va interagir avec

Plus en détail

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE

LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE LUMIERE BLANCHE - LUMIERE MONOCHROMATIQUE I LE PHENOMENE DE DISPERSION 1 Expérience 2 Observation La lumière émise par la source traverse le prisme, on observe sur l'écran le spectre de la lumière blanche.

Plus en détail

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER

Comment réaliser physiquement un ordinateur quantique. Yves LEROYER Comment réaliser physiquement un ordinateur quantique Yves LEROYER Enjeu: réaliser physiquement -un système quantique à deux états 0 > ou 1 > -une porte à un qubitconduisant à l état générique α 0 > +

Plus en détail

TP vélocimétrie. Laser, Matériaux, Milieux Biologiques. Sécurité laser

TP vélocimétrie. Laser, Matériaux, Milieux Biologiques. Sécurité laser TP vélocimétrie Laser, Matériaux, Milieux Biologiques Sécurité ATTENTION : le faisceau du Hélium-Néon utilisé dans cette salle est puissant (supérieur à 15 mw). Il est dangereux et peuvent provoquer des

Plus en détail

Propriétés ondulatoires du son

Propriétés ondulatoires du son Propriétés ondulatoires du son But de la manipulation : Illustrer le caractère ondulatoire du son. Introduction : Pour se convaincre que le son est une onde, il suffit de montrer que son comportement est

Plus en détail

NOTE SUR LA SPECTROSCOPIE INTERFERENTIELLE DES LAMPES HP ET BP DU MERCURE

NOTE SUR LA SPECTROSCOPIE INTERFERENTIELLE DES LAMPES HP ET BP DU MERCURE Préparation à l agrégation de Montrouge Note sur la spectroscopie interférentielle des lampes HP et BP du mercure Clément Sayrin clement.sayrin@ens.fr NOTE SUR LA SPECTROSCOPIE INTERFERENTIELLE DES LAMPES

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

Les Frontières du Monde quantique

Les Frontières du Monde quantique Les Frontières du Monde quantique J.M. Raimond Université Pierre et Marie Curie Institut Universitaire de France Laboratoire Kastler Brossel Département de Physique Ecole Normale Supérieure IUF, Lille,

Plus en détail

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière

Plan. Physique - Optique et applications pour la Synthèse d Images. IUT StDié. Introduction. 1. Nature et propagation i. de La la lumière lumière Physique - Optique et applications pour la Synthèse d Images IUT StDié Cours niveau Licence Optique v.2005-10-05 Stéphane Gobron Plan Introduction 2. Image, réflexion et réfraction 4. Interférences et

Plus en détail

Puissance et étrangeté de la physique quantique

Puissance et étrangeté de la physique quantique Puissance et étrangeté de la physique quantique S.Haroche, Collège de France et ENS La théorie quantique nous a ouvert au XX ème siècle le monde microscopique des particules et des atomes..et nous a ainsi

Plus en détail

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE

PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PRISME ET RESEAU APPLICATION A LA MESURE DE LONGUEURS D'ONDE PARTIE THEORIQUE A - RESEAUX 1 - Définition On appelle réseau plan le système constitué par un grand nombre de fentes fines, parallèles, égales

Plus en détail

Spectroscopie d émission: Luminescence. 1. Principe 2. Exemples et applications 3. Lasers (Rubis et YAG)

Spectroscopie d émission: Luminescence. 1. Principe 2. Exemples et applications 3. Lasers (Rubis et YAG) Spectroscopie d émission: Luminescence 1. Principe 2. Exemples et applications 3. Lasers (Rubis et YAG) I. Principe Etat excité instable Photon Retour à l état fondamental??? Conversion interne (non radiatif)

Plus en détail

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière

Physique 51421. Module 3 Lumière et optique géométrique. Rappel : les ondes. Caractéristiques des ondes. Vitesse de la lumière Physique 51421 Module 3 Lumière et optique géométrique Rappel : les ondes Il existe deux types d ondes : Ondes transversale : les déformations sont perpendiculaire au déplacement de l onde. (ex : lumière)

Plus en détail

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h)

Sujet. calculatrice: autorisée durée: 2 heures (10h-12h) DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 2 heures (10h-12h) Sujet Vaisseau spatial... 2 I.Vaisseau spatial dans un champ newtonien... 2 II.Vitesse de libération...3 A.Option

Plus en détail

Aucune frontière entre. Jean-Louis Aimar

Aucune frontière entre. Jean-Louis Aimar Jean-Louis Aimar Aucune frontière entre la Vie et la Mort 2 2 «Deux systèmes qui se retrouvent dans un état quantique ne forment plus qu un seul système.» 2 3 42 Le chat de Schrödinger L expérience du

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

obs.5 Sources de lumières colorées exercices

obs.5 Sources de lumières colorées exercices obs.5 Sources de lumières colorées exercices Savoir son cours Mots manquants Chaque radiation lumineuse peut être caractérisée par une grandeur appelée longueur d onde dans le vide. Les infrarouges ont

Plus en détail

SPECTROSCOPIE RAMAN I APPLICATIONS

SPECTROSCOPIE RAMAN I APPLICATIONS SPECTROSCOPIE RAMAN La spectroscopie Raman est une technique d analyse non destructive, basée sur la détection des photons diffusés inélastiquement suite à l interaction de l échantillon avec un faisceau

Plus en détail

1 Introduction générale

1 Introduction générale Expérience n 10 Éléments d optique Domaine: Optique, ondes électromagnétiques Lien avec le cours de Physique Générale: Cette expérience est liée aux chapitres suivants du cours de Physique Générale: -

Plus en détail

Amplificateur à fibre dopée erbium

Amplificateur à fibre dopée erbium Amplificateur à fibre dopée erbium Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 980 nm est puissante (100 mw). Pour des raisons de sécurité et de sauvegarde de la santé

Plus en détail

Approche documentaire : «Oscillateur optique, Laser»

Approche documentaire : «Oscillateur optique, Laser» Approche documentaire : «Oscillateur optique, Laser» Objectifs : en relation avec le cours sur les ondes, les documents suivants permettent de décrire le fonctionnement d un laser en termes de système

Plus en détail

1. L idée de quanta 2. La dualité onde-corpuscule 3. L équation d onde des quanta 4. Le principe de superposition 5. L indéterminisme s invite en

1. L idée de quanta 2. La dualité onde-corpuscule 3. L équation d onde des quanta 4. Le principe de superposition 5. L indéterminisme s invite en Le monde quantique 1. L idée de quanta 2. La dualité onde-corpuscule 3. L équation d onde des quanta 4. Le principe de superposition 5. L indéterminisme s invite en physique 6. Le spin Rayonnement dans

Plus en détail

Microscopie I : Bases de la Microscopie

Microscopie I : Bases de la Microscopie Microscopie I : Bases de la Microscopie 1. Nature de la lumière 1.1 Le photon : définition D une manière générale, la lumière est constituée par des trains d ondes électromagnétiques. Ces trains d ondes

Plus en détail

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION

LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,

Plus en détail

Paire Amplitude de l onde 1 Amplitude de l onde 2 Différence de phase A 3 mm 6 mm π rad B 5 mm 1 mm 0 rad C 9 mm 7 mm π rad D 2 mm 2 mm 0 rad

Paire Amplitude de l onde 1 Amplitude de l onde 2 Différence de phase A 3 mm 6 mm π rad B 5 mm 1 mm 0 rad C 9 mm 7 mm π rad D 2 mm 2 mm 0 rad 1. Laquelle des affirmations suivantes est fausse? A) Pas toutes les ondes ne sont des ondes mécaniques. B) Une onde longitudinale est une onde où les particules se déplacent de l avant à l arrière dans

Plus en détail

TS 32 Stockage de données sur un CD

TS 32 Stockage de données sur un CD FICHE 1 Fiche à destination des enseignants TS 32 Stockage de données sur un CD Type d'activité Activité documentaire Tâche complexe Notions et contenus Stockage optique Écriture et lecture des données

Plus en détail

ANALYSE SPECTRALE. monochromateur

ANALYSE SPECTRALE. monochromateur ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle

Plus en détail

Les photons sont des vecteurs d'information infatiguables.

Les photons sont des vecteurs d'information infatiguables. La détection des photons est habituellement un processus brutal, dans lequel les quanta lumineux sont détruits. Cette destruction n'est pas exigée par la mécanique quantique qui autorise un détecteur parfaitement

Plus en détail

Titre : Introduction à la spectroscopie, les raies de Fraunhofer à portée de main

Titre : Introduction à la spectroscopie, les raies de Fraunhofer à portée de main P a g e 1 Titre : Description de l activité : Mieux appréhender l analyse de la lumière par spectroscopie. Situation déclenchante : La décomposition de la lumière par un prisme de verre est connue depuis

Plus en détail

Quelleestlavaleurdel intensitéiaupointm?

Quelleestlavaleurdel intensitéiaupointm? Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Diffraction [6] Polarisation [7] Interférences

Plus en détail

Laboratoire d'optique

Laboratoire d'optique Laboratoire d'optique ATENTION: Ne JAMAIS regarder directement le faisceau laser. Ca peut endommager vos yeux! Partie 1: L'optique géométrique But de la manipulation: Introduction à l'optique géométrique

Plus en détail

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction C. Fabre fabre@spectro.jussieu.fr rdres de grandeur - échelle terrestre : d 7 10 m 25 10 Kg - échelle terrestre : d 7 10

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS

TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS TP HF Manipulation 3 ANALYSEUR DE RESEAUX VECTORIELS I. Introduction En hyperfréquence, la caractérisation des dispositifs passifs ou actifs est assez différentes des techniques utilisées en basse fréquence.

Plus en détail

Les appareillages des Spectrométrie optique

Les appareillages des Spectrométrie optique ATELIERS DE BIOPHOTONIQUE Les appareillages des Spectrométrie optique 1. Spectroscopies optiques conventionnelles Spectrophotomètre, Spectrofluorimètre, 2. Analyse Spectrale en Microscopie de fluorescence

Plus en détail

Master 1 Physique----Université de Cergy-Pontoise. Effet Kerr EFFET KERR. B. AMANA, Ch. RICHTER et O. HECKMANN

Master 1 Physique----Université de Cergy-Pontoise. Effet Kerr EFFET KERR. B. AMANA, Ch. RICHTER et O. HECKMANN EFFET KERR B. AMANA, Ch. RICHTER et O. HECKMANN 1 I-Théorie de l effet Kerr L effet Kerr (1875) est un phénomène électro-optique de biréfringence artificielle. Certains milieux, ordinairement non-biréfringents,

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Caractérisation risation thermique photothermiques périodiques

Caractérisation risation thermique photothermiques périodiques Journée «Contrôle non destructif par voie optique infrarouge : De nouvelles techniques et de nouvelles applications». Salon Mesurexpo, Paris-Expo, Porte de Versailles, Jeudi Caractérisation risation thermique

Plus en détail

Optique Géométrique. Lois de l optique géométrique. 1 Nature de la lumière. 1.1 Aspects historiques. Jimmy ROUSSEL - ENSCR (Sept.

Optique Géométrique. Lois de l optique géométrique. 1 Nature de la lumière. 1.1 Aspects historiques. Jimmy ROUSSEL - ENSCR (Sept. Optique Géométrique Lois de l optique géométrique Jimmy ROUSSEL - ENSCR (Sept. 2010) Résumé Cette fiche de cours porte sur les bases de l optique géométrique : le rayon lumineux, l indice de réfraction,

Plus en détail

DIFFRACTion des ondes

DIFFRACTion des ondes DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène

Plus en détail

- I - Fonctionnement d'un détecteur γ de scintillation

- I - Fonctionnement d'un détecteur γ de scintillation U t i l i s a t i o n d u n s c i n t i l l a t e u r N a I M e s u r e d e c o e ffi c i e n t s d a t t é n u a t i o n Objectifs : Le but de ce TP est d étudier les performances d un scintillateur pour

Plus en détail

Introduction à l optique : approche ondulatoire

Introduction à l optique : approche ondulatoire PCSI1-Lycée Michelet 2015-2016 Introduction à l optique : approche ondulatoire I. Bref historique La nature de la lumière a fait l objet d une controverse dès le XVII eme siècle : Descartes puis Newton

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

What s in the experiment bag?

What s in the experiment bag? What s in the experiment bag? Dans votre kit d expériences, vous trouverez Un laser pointeur violet (405 nm) sans pile (Utilisez deux piles crayon AAA ; le côté + à placer dans le fond du capuchon.) Un

Plus en détail

Signal et propagation

Signal et propagation SP1 Signal et propagation Exercice 1 Communication à distance Identifier des types de signaux et les grandeurs physiques correspondantes Déterminer comment changer la nature d un signal On considère deux

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

Optique ondulatoire Lycée Marcelin Berthelot PC* - 2006/2007

Optique ondulatoire Lycée Marcelin Berthelot PC* - 2006/2007 Optique ondulatoire Lycée Marcelin Berthelot PC* - 2006/2007 Table des matières 1 Modèle scalaire de la lumière 7 1.1 Introduction............................ 7 1.2 Nature de la vibration lumineuse................

Plus en détail

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre

TP fibres optiques. Laser, Matériaux, Milieux Biologiques. Sécurité laser. Précautions à prendre TP fibres optiques Laser, Matériaux, Milieux Biologiques Sécurité laser ATTENTION : la diode laser à 810 nm est puissante (50 mw). Pour des raisons de sécurité et de sauvegarde de la santé des yeux, vous

Plus en détail

Chapitre 2 LE LASER. I- Principe de fonctionnement du LASER

Chapitre 2 LE LASER. I- Principe de fonctionnement du LASER Chapitre 2 LE LASER Objectifs : - Connaître le principe de fonctionnement du LASER - Connaître les différents types de LASER et les précautions liées à son utilisation - Connaître les applications médicales

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

2 Les pions dans les collisions d ions lourds ultra relativistes

2 Les pions dans les collisions d ions lourds ultra relativistes 2 Les pions dans les collisions d ions lourds ultra relativistes Dans notre étude des données de l expérience WA98, nous nous sommes principalement intéressés aux pions. Parmi les hadrons, ce sont les

Plus en détail

Les fonctions sinus et cosinus

Les fonctions sinus et cosinus DERNIÈRE IMPRESSION LE 6 juin 03 à 5:06 Les fonctions sinus et cosinus Table des matières Rappels. Mesure principale.............................. Résolution d équations...........................3 Signe

Plus en détail

4. Microscopie électronique à balayage

4. Microscopie électronique à balayage 4. Microscopie électronique à balayage 4.1. Principe de formation des images en MEB 4.2. Mise en œuvre 4.3. Les différents modes d imagerie 4.4. Les différents types de contraste 4.5. Performances 4.5.1.

Plus en détail

Les ondes au service du diagnostic médical

Les ondes au service du diagnostic médical Chapitre 12 Les ondes au service du diagnostic médical A la fin de ce chapitre Notions et contenus SAV APP ANA VAL REA Je maitrise Je ne maitrise pas Signaux périodiques : période, fréquence, tension maximale,

Plus en détail

Spectroscopie d émission atomique

Spectroscopie d émission atomique Année Universitaire : 2010 / 2011 Spectroscopie d émission atomique Réalisé par demoiselles: Chadia BOUCHEFRA. Meryem MIMI. 1 PLAN: INTRODUCTION Spectroscopie d émission atomique: Définition. Avantages.

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

1LOISDEL OPTIQUEGÉOMÉTRIQUE

1LOISDEL OPTIQUEGÉOMÉTRIQUE 1LOISDEL OPTIQUEGÉOMÉTRIQUE Ce premier chapitre rappelle les bases de l optique géométrique : la notion de rayon lumineux, d indice de réfraction, les lois de la réflexion, de la réfraction et de la dispersion.

Plus en détail

Ouverture au monde quantique

Ouverture au monde quantique Ouverture au monde quantique I) QUELQUES RAPPELS 1) Force de gravitation et force électrique 2) Les ondes électromagnétiques a) Domaine des ondes électromagnétiques - les infrarouges (IR), de 800 à 1400

Plus en détail

Les sources de lumière.

Les sources de lumière. Les sources de lumière. 1. La lumière. La lumière fait partie des ondes électromagnétiques qui vont des rayons cosmiques aux ondes radar. Ces ondes se différencient par leur longueur d onde et par l énergie

Plus en détail

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction :

Cours Physique Interaction onde-matière classe : 4ème Maths 3+Tech 1 Introduction : Cours Physique Interaction onde-matière classe : 4 ème Maths 3+Tech I- Introduction : En laissant l œil semi-ouvert lors de la réception de la lumière on observe des annaux alternativement brillants et

Plus en détail

TP 11A : Oscillateurs mécaniques et mesure du temps

TP 11A : Oscillateurs mécaniques et mesure du temps TP 11A : Oscillateurs mécaniques et mesure du temps Objectifs : - Mesurer la période d oscillation d un pendule en étudiant ses oscillations. - Mettre en évidence les différents paramètres influençant

Plus en détail

interféromètre à division d'amplitude de Michelson

interféromètre à division d'amplitude de Michelson interféromètre à division d'amplitude de Michelson 1. description, intérêt historique, intérêt pratique 1.1 intérêt historique 1.2 description de l'appareil 1.3 intérêt pratique 2. utilisation en lame

Plus en détail

Le mystère de la grenadine et la perception des couleurs

Le mystère de la grenadine et la perception des couleurs 17 POLYNÉSIE FRANÇAISE JUIN 2006 PARTIE I 13 POINTS Le mystère de la grenadine et la perception des couleurs Document 1 Les tribulations d un sirop Trois phénomènes se combinent pour expliquer la couleur

Plus en détail

Physique Transmission et stockage de l information Chap.22

Physique Transmission et stockage de l information Chap.22 TS Thème : Agir Activités Physique Transmission et stockage de l information Chap.22 I. Transmission de l information 1. Procédés physique de transmission Une chaîne de transmission peut se schématiser

Plus en détail

5. Les conducteurs électriques

5. Les conducteurs électriques 5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,

Plus en détail