TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE"

Transcription

1 TD TRIGNMETRIE DNS LE TRINGLE RETNGLE 1. Je me souviens 1. Dans le triangle TM rectangle en T : [T] est le côté adjacent à l angle TM? [M] est le côté adjacent à l angle TM? ou [T] est l hypoténuse? 2. Dans le triangle TM rectangle en T, si l angle TM mesure 2, alors : l angle MT mesure 18? l angle MT mesure 8? ou l angle MT mesure 90 2?. Dans le triangle TM rectangle en T, le cosinus de l angle TM est : TM M? ou T M? M T?. Si 9 = 12, alors : = 9 12? 9 = 12? =? ou = 9 12? 5. Si cos 0 = 5, alors : = 5 cos 0 ou 5 = cos 0?? = 5 cos 0? = cos 0 5? 6. Quelles sont les égalités qui n ont pas de sens : cos = 0,892? cos = 6 5? cos = 5 6? ou cos D = 1,001? 2. Rapports trigonométriques onstruis un triangle rectangle en tel que l angle mesure 50.

2 Mesure les longueurs,, puis calcule les rapports,.. n considère la figure ci-contre : Justifie les égalités suivantes : ' = '' =... = '' '... Démontre que = '' ' ' ' y. Sinus d un angle aigu ' 7 ' y Sur la figure ci-dessus, mesure les segments [], [], [ ] [ ].. alcule les quotients '' '.

3 Que remarques-tu?. vec une calculatrice, calcule sin 7 compare ce résultat avec les résultats obtenus à la question précédente. Démontre que les angles ont même mesure.. Déduis-en que = '' '. La valeur commune de ces quotients dépend-elle de la position du point sur [) de sur [y)?... Tangente d un angle aigu ' " 1 " ' y Sur la figure ci-dessus, mesure les segments [], [], [ ], [ ], [ ] [ ].. alcule les quotients, '' '''' ' ''..

4 Que remarques-tu?. vec une calculatrice, calcule tan 1 compare ce résultat avec les résultats obtenus à la question précédente. Sur la figure ci-contre, sont deu points de la demi-droite [) les points sont les pieds des perpendiculaires à la demi-droite [y) passant par. Démontre que ' = Q'' Déduis-en que '' ' =. ' ' y Sur la figure ci-contre, est un point de la demi-droite [) est un point de la demi-droite [y) tels que =. En eprimant le cosinus de l angle y de deu façons différentes, démontre que =. " " y En appliquant la relation de Pythagore, démontre que = ; Que peut-on conclure pour les quotients '''' ''?

5 5. Deu formules est un triangle rectangle en. désigne la mesure de l angle. Donne les epressions de cos, sin tan. Démontre que (cos )² + (sin )² = 1.. te égalité peut aussi s écrire cos² + sin² = 1. Démontre que tan = sin cos.. 6. Quart de cercle de rayon 1 1. (,I,J) est un repère du plan. Les droites (I) (J) sont perpendiculaires I J mesurent 1 dm. M est un point du quart de cercle de centre de rayon 1 dm tel que l angle IM mesure 0. omplète : Dans le triangle rectangle, cos PM =......, or, M =.. Déduis-en que l abscisse de M est cos 1 J Q 0 M K R I P 1 0. Lis graphiquement une valeur approchée de cos 0. ontrôle avec la calculatrice. u compas, place le point N du quart de cercle tel que le triangle IN soit équilatéral. Donne, en justifiant, l abscisse du point N. 2. omplète : Dans le triangle rectangle MP, sin PM = sin.. =

6 r M =.. le quadrilatère PMQ est un. Déduis-en que l abscisse de M est sin 0. Lis graphiquement une valeur approchée de sin 0. ontrôle avec la calculatrice.. Dans le triangle RI rectangle en I, tan IR = tan.. =.... r IK =..... Déduis-en qu il est possible de lire la valeur de tan 0 sur la demi-droite [I) tangente au cercle en I. 7. Faisons le point Pour chaque question une seule réponse est eacte, entoure-la. RST est un triangle rectangle en R. sin RTS est égal à... R cm cm T 5 cm S 5 5 FG est un triangle rectangle en F est égal à 8 G F cos FG sin FG tan FG Dans quel triangle rectangle D, a- t-on l égalité sin D = D 28 5 D 5 28 D 5 a est la mesure d un angle aigu. Quelle est l égalité vraie? tan a = cos a sin a cos a + sin a = 1 tan a = sin a cos a RST est un triangle rectangle en S tel que T mesure 72 [ST] mesure cm. La longueur RT est égale à sin 72 cos 72 cos 72 MNP est un triangle rectangle en M tel que P mesure 72 [MN] mesure cm. La longueur MP est égale à tan 72 tan 72 cos 72

7 est un triangle rectangle en tel que [] [] mesurent respectivement cm cm. L arrondi au degré de la mesure de l angle est EFG est un triangle rectangle en E tel que [EF] [EG] mesurent respectivement 7 cm 2 cm. L arrondi au centième de la mesure de l angle F est D après les données de la figure ci-contre, tan est égal à ,6 9 16,6 0,28 15,95 1 sin est égal à

TRIANGLE RECTANGLE ET TRIGONOMETRIE

TRIANGLE RECTANGLE ET TRIGONOMETRIE TRINGLE RETNGLE ET TRIGONOMETRIE I) Le théorème de Pythagore : Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs

Plus en détail

TRIANGLE RECTANGLE ET TRIGONOMETRIE. 1) Triangle rectangle et cercle circonscrit :

TRIANGLE RECTANGLE ET TRIGONOMETRIE. 1) Triangle rectangle et cercle circonscrit : TRINGLE RETNGLE ET TRIGONOMETRIE I) Triangle rectangle : 1) Triangle rectangle et cercle circonscrit : a) Propriété 1 : Si un triangle est rectangle alors il est inscrit dans le cercle de diamètre son

Plus en détail

Trigonométrie. Objectifs du chapitre. Énigme du chapitre.

Trigonométrie. Objectifs du chapitre. Énigme du chapitre. Trigonométrie C H A P I T R E 6 Énigme du chapitre. Voici un plan sommairement relevé par le géomètre Thalide. 366 m 30 B 282 m Objectifs du chapitre. Connaître et utiliser les relations entre le cosinus,

Plus en détail

Autour de LA TRIGONOMETRIE

Autour de LA TRIGONOMETRIE CRPE S.14 Autour de LA TRIGONOMETRIE La trigonométrie est l étude des relations liant les mesures des angles et des longueurs des côtés dans un triangle rectangle. Mise en route A. Dans le triangle MNP,

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

3 e Révisions trigonométrie

3 e Révisions trigonométrie 3 e Révisions trigonométrie xercice a. L'hypoténuse du triangle rectangle est.... b. L'hypoténuse du triangle rectangle G est.... c. ans le triangle rectangle G, le côté opposé à l'angle G est.... d. ans

Plus en détail

Triangle rectangle et applications

Triangle rectangle et applications Triangle rectangle et applications I. osinus d un angle aigu dans le triangle rectangle Vocabulaire : On considère l angle aigu dans le triangle rectangle en. et angle a deux côtés : Le côté [] qui est

Plus en détail

CH III Cosinus, sinus et tangente d'un angle aigu d'un triangle rectangle

CH III Cosinus, sinus et tangente d'un angle aigu d'un triangle rectangle H III osinus, sinus et tangente d'un angle aigu d'un triangle rectangle 1. ctivité : Découverte des trois rapports trigonométriques Voici deux triangles qui ont les mêmes angles. On peut donc mettre le

Plus en détail

Ch.G2 : Trigonométrie

Ch.G2 : Trigonométrie 3 e - programme 01 mathématiques ch.g cahier élève Page 1 sur 15 1 CSUS, SUS ET TGETE D'U GLE GU Ch.G : Trigonométrie 1.1 Définitions ex. 1 à 3 DÉFTS 1 Dans un triangle rectangle, le cosinus d'un angle

Plus en détail

Trigonométrie: les fonctions trigonométriques primaires.

Trigonométrie: les fonctions trigonométriques primaires. Trigonométrie: les fonctions trigonométriques primaires. La trigonométrie est un domaine fondamental de l étude des mathématiques. On y trouve à sa base trois fonctions appelées fonctions trigonométrieques

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

I Exercices I I I I I I I I I I-3

I Exercices I I I I I I I I I I-3 Chapitre 1 Trigonométrie TABLE DES MATÈRES page -1 Chapitre 1 Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE Le triangle A est rectangle en A. C hypoténuse côté opposé à l'angle A B côté adjacent à l'angle A est un triangle donc : B + A + B = 80. A est un triangle

Plus en détail

S14C. Autour de la TRIGONOMETRIE Corrigé

S14C. Autour de la TRIGONOMETRIE Corrigé CRPE S4C. Autour de la TRIGONOMETRIE Corrigé Mise en route A. Le triangle MNP étant rectangle en P, on peut utiliser la trigonométrie. [MN] est l hypoténuse du triangle, [MP] est le côté adjacent à et

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

C3T11 Trigonométrie Exercices 1/5

C3T11 Trigonométrie Exercices 1/5 3T11 Trigonométrie xercices 1/ Relations trigonométriques 1 e bon triangle n se place dans le triangle K rectangle en K. Quelle est son hypoténuse? J K Quels rapports? est un triangle rectangle en. Que

Plus en détail

Correction du contrôle commun n 1

Correction du contrôle commun n 1 orrection du contrôle commun n 1 Sujet Exercice 1 (6 points) = 4 ( 1) ( 2) ( 3) 15 ( 6) Déterminer le signe du nombre : Positif Justifier la réponse. est un produit dans lequel il y a 4 facteurs négatifs

Plus en détail

Trigonométrie dans le triangle rectangle

Trigonométrie dans le triangle rectangle Trigonométrie dans le triangle rectangle I Relations métriques dans le triangle rectangle : A) Le théorème de Pythagore : Propriété : Dans un triangle rectangle, le carré de la longueur de l hypoténuse

Plus en détail

Chapitre 4 : le triangle Activité 2 page 178 avec le triangle ABC tel que BC = 4 cm ; ĈBA = 60 et BCA = 100.

Chapitre 4 : le triangle Activité 2 page 178 avec le triangle ABC tel que BC = 4 cm ; ĈBA = 60 et BCA = 100. hapitre 4 : le triangle ctivité 2 page 178 avec le triangle tel que = 4 cm ; Ĉ = 60 et = 100. I. ngles dans le triangle 1. Propriété 4.1: Dans un triangle, la somme des mesures des angles est égale à 180.

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

1 Des formules utiles

1 Des formules utiles 4 Trigonométrie TD Troisième 1 Des formules utiles ctivité n 1 : osinus d un angle aigu.... 1. Soit un triangle rectangle en avec 3 cm et  60. Déterminer la longueur de l hypoténuse. 2. EFG est un triangle

Plus en détail

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1 Chapitre Trigonométrie TABLE DES MATÈRES page -1 Chapitre Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

Trigonométrie. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires

Trigonométrie. EXTRAIT DU B.O. SPÉCIAL N 6 DU 28 AOÛT 2008 Connaissances Capacités Commentaires Trigonométrie EXTRIT DU O SPÉIL N 6 DU 8 OÛT 008 onnaissances apacités ommentaires Géométrie 1 Figures planes Triangle rectangle, relations trigonométriques onnaître et utiliser les relations entre le

Plus en détail

Collège Pablo Picasso BREVET BLANC. Mathématiques

Collège Pablo Picasso BREVET BLANC. Mathématiques ollège Pablo Picasso REVET LN Mathématiques La calculatrice est autorisée. Les trois parties sont indépendantes. 4 points sont consacrés à la présentation, la rédaction et la rigueur. TIVITES NUMERIQUES

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

ANGLES ORIENTES ET TRIGONOMETRIE

ANGLES ORIENTES ET TRIGONOMETRIE NGLS RNTS T TRGNTR ) UN NUVLL SUR D'NGL ercice préparatoire: Soit le cercle de centre et de raon. n donne les points,, et D de ce cercle tels que = 5, = 90 et D = 80 alculer les longueurs des arcs, et

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent.

en effectuant un pliage le long de la droite, les figures se superposent. en effectuant un demi-tour autour de ce point, les figures se superposent. 1 Symétrie par rapport à une droite JETIF 1 ÉFINITIN ire que deux figures sont symétriques par rapport à une droite signifie que, en effectuant un pliage le long de la droite, les figures se superposent.

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

Chapitre 2 Coordonnées d un point du plan. Table des matières. Chapitre 2 Coordonnées d un point du plan TABLE DES MATIÈRES page -1

Chapitre 2 Coordonnées d un point du plan. Table des matières. Chapitre 2 Coordonnées d un point du plan TABLE DES MATIÈRES page -1 Chapitre 2 Coordonnées d un point du plan TLE DES MTÈRES page -1 Chapitre 2 Coordonnées d un point du plan Table des matières Exercices -1 1................................................ -1 2................................................

Plus en détail

Calculer une distance avec l'énoncé de Pythagore: Méthode Exemple Conclusion IP = Exercice

Calculer une distance avec l'énoncé de Pythagore: Méthode Exemple Conclusion IP = Exercice ÉNONE DE PYTHGORE alculer une distance avec l'énoncé de Pythagore: Méthode?? hercher le ou les triangles rectangles et dire pourquoi ils le sont.?? Rechercher l'hypoténuse (c'est le plus grand côté) du

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Chapitre 2 Coordonnées d un point du plan. Table des matières. Chapitre 2 Coordonnées d un point du plan TABLE DES MATIÈRES page -1

Chapitre 2 Coordonnées d un point du plan. Table des matières. Chapitre 2 Coordonnées d un point du plan TABLE DES MATIÈRES page -1 Chapitre Coordonnées d un point du plan TLE DES MTÈRES page -1 Chapitre Coordonnées d un point du plan Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

Trigonométrie Angles inscrits Angles au centre

Trigonométrie Angles inscrits Angles au centre Trigonométrie ngles inscrits ngles au centre JE FIS E PINT SUR MES NNISSNES 1 a) vec le cos : arrondi et troncature x 9,2 cm (9,237 ) b) vec le cos : arrondi x 8,2 cm (8,191 ), troncature x 8,1 cm c) vec

Plus en détail

Triangles rectangles

Triangles rectangles Triangles rectangles Définitions : L hypoténuse. Le côté adjacent à l angle. Le côté opposé à l angle B. A B. Le côté adjacent à l angle B. Le côté opposé à l angle. Remarque : Dans un triangle rectangle,

Plus en détail

I Exercices I I I I I I I I I I I I I I

I Exercices I I I I I I I I I I I I I I hapitre 6 Géométrie plane TLE ES MTÈRES page -1 hapitre 6 Géométrie plane Table des matières Exercices -1 1................................................ -1 2................................................

Plus en détail

Chapitre 12 Trigonométrie

Chapitre 12 Trigonométrie Chapitre Trigonométrie I. Enroulement de la droite numérique ) Cercle trigonométrique Définition : Dans un repère orthonormé (O ; I, J), on appelle cercle trigonométrique le cercle c de centre O et de

Plus en détail

Cours n 8 : COSINUS D UN ANGLE AIGU. Activité d introduction : livre p Maths 4 ème

Cours n 8 : COSINUS D UN ANGLE AIGU. Activité d introduction : livre p Maths 4 ème ctivité d introduction : livre p. 204. 1 I- OSINUS D UN NGLE IGU D UN TRINGLE RETNGLE 1) Triangle rectangle est un triangle rectangle en [] est l hypoténuse du triangle Définition : le côté adjacent à

Plus en détail

3ème Chapitre 2 Trigonométrie

3ème Chapitre 2 Trigonométrie 3ème Chapitre Trigonométrie Dans tout le chapitre, on travaillera dans un triangle rectangle. I_ Vocabulaire, notations et définitions A. Vocabulaire hypoténuse du triangle rectangle Côté adjacent à l'angle

Plus en détail

Club math du collège privé laïc les «pigeons» TRAVAUX DIRIGES DE MATHEMATIQUES CLASSE 2 e S Année scolaire Fiche numéro 1et 2

Club math du collège privé laïc les «pigeons» TRAVAUX DIRIGES DE MATHEMATIQUES CLASSE 2 e S Année scolaire Fiche numéro 1et 2 TRVUX IRIGES E MTHEMTIQUES LSSE 2 e S nnée scolaire 2011-2012 Fiche numéro 1et 2 Structure : ngles orientés-trigonométrie-produit scalaire-roites et cercles dans le plan Exercice 1. x étant la mesure principale

Plus en détail

TRIGONOMETRIE DANS UN TRIANGLE RECTANGLE

TRIGONOMETRIE DANS UN TRIANGLE RECTANGLE TRIGONOMETRIE DANS UN TRIANGLE RECTANGLE Trigonométrie vient de deux mots grecs «trigone» et «metron» qui signifient respectivement «triangle» et» mesure». Ainsi la trigonométrie» est la science de la

Plus en détail

CHAPITRE 5 TRIANGLES SEMBLABLES TRIANGLES ISOMÉTRIQUES

CHAPITRE 5 TRIANGLES SEMBLABLES TRIANGLES ISOMÉTRIQUES HPITRE 5 TRINGLES SEMLLES TRINGLES ISOMÉTRIQUES I Triangles isométriques Définition ' Deux triangles sont isométriques s ils sont images l un de l autre par une symétrie (axiale ou centrale), rotation,

Plus en détail

Troisième. Trigonométrie. sguhel Collège Grand Parc

Troisième. Trigonométrie. sguhel Collège Grand Parc Troisième Trigonométrie sguhel Collège Grand Parc ... 0 1 Cosinus... 2 1.1 Rappel de quatrième... 2 1.2 Application... 2 2 A la découverte du sinus et de la tangente... 3 2.1 Conjecture... 3 2.2 Démonstration

Plus en détail

Trigonométrie. 360 =...rad 180 =...rad 90 =...rad 45 =...rad. Placer le point M correspondant aux angles précédents dans chaque cercle.

Trigonométrie. 360 =...rad 180 =...rad 90 =...rad 45 =...rad. Placer le point M correspondant aux angles précédents dans chaque cercle. Trigonométrie I) Le cercle trigonométrique ) Le radian n considère une piste d athlétisme circulaire de rayon km et un personnage parcourant à partir du repère I cette piste. La longueur ou le périmètre

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

Chapitre 2 Coordonnées d un point du plan. Table des matières. Chapitre 2 Coordonnées d un point du plan TABLE DES MATIÈRES page -1

Chapitre 2 Coordonnées d un point du plan. Table des matières. Chapitre 2 Coordonnées d un point du plan TABLE DES MATIÈRES page -1 Chapitre 2 Coordonnées d un point du plan TLE DES MTÈRES page -1 Chapitre 2 Coordonnées d un point du plan Table des matières Exercices -1 1................................................ -1 2................................................

Plus en détail

Compléter les tableaux suivants en mesurant les cotés et en calculant les rapports demandés.

Compléter les tableaux suivants en mesurant les cotés et en calculant les rapports demandés. TIVITES Soit 3 triangles rectangles avec le même angle ompléter les tableaux suivants en mesurant les cotés et en calculant les rapports demandés. 1 5 1 2 les les les /.... 10 e nombre environ 0,41 caractérise

Plus en détail

Trigonométrie dans un triangle rectangle

Trigonométrie dans un triangle rectangle Trigonométrie dans un triangle rectangle Définitions A est un triangle rectangle en. On s intéresse à l angle A. Le côté opposé à l angle A est. Le côté adjacent à l angle A est A. Propriétés (démonstrations

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Ch.G1 : Triangle rectangle

Ch.G1 : Triangle rectangle 4 e - programme 2011 mathématiques ch.g1 cahier élève Page 1 sur 18 1 RL T TRIGL RTGL h.g1 : Triangle rectangle 1.1 Pour démontrer qu'un point est sur un cercle ex 1 et 2 THÉRÈ 1 i un triangle est rectangle,

Plus en détail

NOM : THALES 4ème. Exercice 1

NOM : THALES 4ème. Exercice 1 Exercice 1 1) Construire un triangle RST tel que RT = 7cm et RS = 6cm. 2) Placer le point A sur le segment [RS] tel que RA = 2cm. Tracer la parallèle à la droite (ST ) passant par A : elle coupe le segment

Plus en détail

EXERCICE 1 Reconnaître le côté adjacent d un angle et l hypoténuse dans un triangle rectangle

EXERCICE 1 Reconnaître le côté adjacent d un angle et l hypoténuse dans un triangle rectangle EXERIE 1 Reconnaître le côté adjacent d un angle et l hypoténuse dans un triangle rectangle Savoir la formule du cosinus d'un angle aigu Identifier pour chaque triangle le côté adjacent à l angle marqué

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Chapitre 9 : Trigonométrie. Module 1 : Côté adjacent et côté opposé

Chapitre 9 : Trigonométrie. Module 1 : Côté adjacent et côté opposé Module 1 : Côté adjacent et côté opposé 1 ) Côté adjacent Considérons un triangle rectangle puis un des angles (non droit) de ce triangle rectangle. Le côté adjacent à cet angle est le côté : - qui n est

Plus en détail

Chapitre 7 Angles orientés

Chapitre 7 Angles orientés hapitre 7 ngles orientés. ngles orientés. ercle trigonométrique Définition. Le plan est rapporté à un repère orthonormé ; i, Le cercle de et sur lequel on a choisi un sens sens inverse des aiguilles d

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Chapitre n 7 : «Trigonométrie»

Chapitre n 7 : «Trigonométrie» Chapitre n 7 : «Trigonométrie» I. Formules trigonométriques 1/ Rappels de 4 ème Vocabulaire du triangle rectangle Un triangle rectangle est un triangle qui possède un angle droit. L'hypoténuse est le côtés

Plus en détail

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015 Mathématique Sylvie Jancart sylvie.jancart@ulg.ac.be septembre 2015 Equations trigonométriques élémentaires Exemple 1 : résoudre dans IR l équation sin x = 1 : 2 L examen du cercle trigonométrique montre

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

Théorème de Pythagore

Théorème de Pythagore Théorème de Pythagore A) Vocabulaire. Définition : Dans un triangle rectangle l hypoténuse est le côté opposé à l angle droit. Exemple : Si ABC est un triangle rectangle en A alors le côté [BC] est sont

Plus en détail

1. Sur quelle figure les deux dessins sont-ils symétriques par rapport à la droite (d)? 2. Le point O est le milieu du segment [MN] sur la figure

1. Sur quelle figure les deux dessins sont-ils symétriques par rapport à la droite (d)? 2. Le point O est le milieu du segment [MN] sur la figure TD 4 SYMETRIE ENTRLE 1. Je me souviens Pour chacune des trois questions, une seule réponse est exacte. Laquelle? 1. Sur quelle figure les deux dessins sont-ils symétriques par rapport à la droite? 2. Le

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Triangles rectangles et cercles

Triangles rectangles et cercles 1) Médiane d un triangle : Triangles rectangles et cercles Dans un triangle, une médiane est une droite qui passe par un sommet et par le milieu du côté opposé à ce sommet. I est le milieu de [BC], donc

Plus en détail

PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base)

PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base) PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base) GEO_GP501 Unité d'apprentissage :Éléments de géométrie (situer un point) série N 1 : Situer précisément un point. Choisir

Plus en détail

Trigonométrie dans le triangle rectangle.

Trigonométrie dans le triangle rectangle. Trigonométrie dans le triangle rectangle. 1. Rappel 4 ème : le cosinus d un angle dans un triangle rectangle. a Soit C un triangle rectangle en, d angle de sommet noté α. Les droites (DH, (EI, (FJ et (C

Plus en détail

Aide mémoire Géométrie 4 ème

Aide mémoire Géométrie 4 ème ide mémoire Géométrie 4 ème Si un triangle est rectangle, alors la longueur de la médiane relative à l'hypoténuse est égale à la moitié de la longueur de l'hypoténuse. Triangle rectangle et cercle circonscrit:

Plus en détail

Corrigé des exercices concernant les théorèmes de Pythagore et de Thalès

Corrigé des exercices concernant les théorèmes de Pythagore et de Thalès Corrigé des exercices concernant les théorèmes de Pythagore et de Thalès 1. utour du théorème de Pythagore Exercice 1 a. Dans C rectangle en d après le théorème de Pythagore: C² = ² + C² = 5 ² + 7 ² =

Plus en détail

TRIGONOMETRIE. I. Triangle rectangle II. Cosinus, sinus, tangente III. Applications IV. Propriétés

TRIGONOMETRIE. I. Triangle rectangle II. Cosinus, sinus, tangente III. Applications IV. Propriétés TRIGONOMETRIE I. Triangle rectangle II. Cosinus, sinus, tangente III. Applications IV. Propriétés I/ Le triangle rectangle Avant d aborder tout problème de trigonométrie, il faut savoir nommer les côtés

Plus en détail

DOCUMENT DE RÉVISION MAT-4103

DOCUMENT DE RÉVISION MAT-4103 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4103 ÉLABORÉ PAR RICHARD POULIN, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 2005 DOCUMENT

Plus en détail

Exercices de 4 ème Chapitre 4 Le triangle rectangle Énoncés

Exercices de 4 ème Chapitre 4 Le triangle rectangle Énoncés Énoncés Exercice 1 onstruire un triangle quelconque RST. Soit V le point d'intersection de (RS) et du cercle de diamètre [RT]. éterminer ce que représente la droite (VT) pour le triangle RST. Exercice

Plus en détail

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5

H = H = H =30 7 F = 15 F = F = F = F = F = 23 5 BREVET BLANC de MATHEMATIQUES Classe de troisième Correction des exercices 1. Racines carrées Connaître les règles de calcul avec des racines carrées Savoir effectuer un produit ou un quotient avec des

Plus en détail

Périmètre et aire. Te souviens-tu? Activités. 1 Aire et périmètre. chapitre 12 1.B ; 2.C ; 3.B ; 4.A ; 5.C

Périmètre et aire. Te souviens-tu? Activités. 1 Aire et périmètre. chapitre 12 1.B ; 2.C ; 3.B ; 4.A ; 5.C Périmètre et aire chapitre 1 Te souviens-tu? 1. ;. ; 3. ; 4. ; 5. ctivités 1 ire et périmètre 1. Périmètre ou aire? a) Les trois figures remplissent le même nombre de carreaux. Elles ont donc la même aire.

Plus en détail

Théorème de Pythagore Exercices corrigés

Théorème de Pythagore Exercices corrigés Théorème de Pythagore Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calcul de la longueur de l hypoténuse Exercice 2 : calcul de la longueur d un côté adjacent à l angle droit Exercice

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Décembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

Trigonométrie. 1 Trigonométrie, notion et définition

Trigonométrie. 1 Trigonométrie, notion et définition Trigonométrie, notion et définition Trigonométrie. Vocabulaire sur les triangles rectangles. Dans le triangle rectangle suivant, on a le vocabulaire suivant : [] est l hypoténuse du triangle [] est le

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Livret. d'entraînement 3 2009-2010 2010-2011

Livret. d'entraînement 3 2009-2010 2010-2011 3 e Livret e d'entraînement 3 2009-2010 2010-2011 - Les nombres naturels - Les nombres naturels Savoir.1 : éterminer un ordre de grandeur.1.1 onne un ordre de grandeur des nombres suivants : = 8 706 =

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

CHAPITRE 16 COSINUS D UN ANGLE AIGU DANS UN TRIANGLE RECTANGLE.

CHAPITRE 16 COSINUS D UN ANGLE AIGU DANS UN TRIANGLE RECTANGLE. CHAPITRE 1 COSINUS D UN ANGLE AIGU DANS UN TRIANGLE RECTANGLE. I. VOCABULAIRE. DÉFINITION. On considère un triangle ABC rectangle en A. A Angle droit Côté adjacent à l angle ACB B C Angle ACB Hypoténuse

Plus en détail

Trigonométrie. 1 Définitions. 1.1 Côtés d un triangle rectangle. 1.2 Relations entre côtés et angles

Trigonométrie. 1 Définitions. 1.1 Côtés d un triangle rectangle. 1.2 Relations entre côtés et angles Trigonométrie Le mot trigonométrie vient du grec tri qui signifie trois, gonas angle et metron mesure. La trigonométrie s intéresse donc aux mesures dans des figures fermées à trois angles (des triangles).

Plus en détail

Chapitre 8 : Géométrie

Chapitre 8 : Géométrie Chapitre 8 : Géométrie I. Triangles rectangles.le théorème de Pythagore Le côté le plus long dans un triangle rectangle est l hypoténuse ; c est le côté où il n y a pas d angle droit. Le théorème de Pythagore

Plus en détail

3 ème BREVET THEOREME DE THALES

3 ème BREVET THEOREME DE THALES Exercice 1 1 Construire un triangle ABC tel que AB = 6 cm AC = 7,2 cm et BC = 10 cm Placer les points R, T et E tels que : R [AB] et AR = 4,5 cm T [AC] et (RT) // (BC) E [AB) et E [AB] et BE = 2 cm 1 2

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Trigonométrie dans un triangle rectangle

Trigonométrie dans un triangle rectangle Trigonométrie dans un triangle rectangle. Introduction La trigonométrie (du grec τρίγωνος / trígonos, «triangulaire», et µέτρον / métron, «mesure») traite des relations entre distances et angles dans les

Plus en détail

2 ) = 0 sin ( π 2 ) = 1. la fonction «tangente». a) Quel est l ensemble de définition de la fonction tangente?

2 ) = 0 sin ( π 2 ) = 1. la fonction «tangente». a) Quel est l ensemble de définition de la fonction tangente? Transition 1 ère S Terminale S 1] Trigonométrie Dans toute la suite on admettra que : cos ( π { 2 ) = 0 sin ( π 2 ) = 1 1) Déterminez la valeur de cos ( π 4 ), sin (π 4 ), cos (π 8 ) et sin (π 8 ). 2)

Plus en détail

Sujets de bac : Complexes

Sujets de bac : Complexes Sujets de bac : Complexes Sujet n 1 : extrait d Asie juin 2002 1) Dans le plan complexe ; ;, on considère quatre points,, et d affixes respectives 3 ; 4 ; 2 3 et 1. Placer les points,, et dans un plan.

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre.

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. 1 sur 8 TRIGONOMÉTRIE I. Le cercle trigonométrique Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. Définition : Dans

Plus en détail

Espace et géométrie. COURS Cinquième

Espace et géométrie. COURS Cinquième COURS Cinquième Espace et géométrie 1Symétrie centrale et parallélogramme...2 1Définir la symétrie centrale et le centre de symétrie...3 2Utiliser les propriétés de la symétrie centrale...4 3Utiliser les

Plus en détail

-G1- -Triangle rectangle-

-G1- -Triangle rectangle- hapitre -G1- -Triangle rectangle- ernière mise à jour le 4 juin 2015 Sommaire 1.0.1 Le point sur le programme........................... 1 1.0.2 Rappels utiles aux preuves........................... 1

Plus en détail

TRIANGLE RECTANGLE - REVISIONS. Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse ou encore:

TRIANGLE RECTANGLE - REVISIONS. Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse ou encore: TRIANGLE RECTANGLE - REVISIONS I- Cercle circonscrit à un triangle rectangle: 1) Propriété 1: Soit ABC un triangle rectangle en A. Le cercle circonscrit au triangle ABC a pour centre le point I milieu

Plus en détail

Produit scalaire. Expressions et propriétés du produit scalaire

Produit scalaire. Expressions et propriétés du produit scalaire Produit scalaire 1ère STI2D I - Expressions et propriétés du produit scalaire 1 Définitions Le produit scalaire de deux vecteurs non nuls u et v, noté u v, est le nombre, u v = u. u.cos ( u, v. u v θ u

Plus en détail

Rappels de trigonométrie

Rappels de trigonométrie r cos(α) cos(α) Rappels de trigonométrie Définition des fonctions trigonométriques Le cercle trigonométrique (cercle de rayon ) est la situation de base permettant de définir les fonctions sinus et cosinus

Plus en détail

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE

TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE TRIGONOMETRIE DANS LE TRIANGLE RECTANGLE OBJECTIFS Trigonométrie : du grec metron «mesure», et gonas «angle». Le préfixe tri précise que la trigonométrie s occupe des mesures des figures formées avec trois

Plus en détail

Jeu des familles «organisation des étapes» Exemple : prouver que

Jeu des familles «organisation des étapes» Exemple : prouver que afamillespreuve yeqo5og9kdi4i1waehcb89ds5714316_in.doc - 1 - Jeu des familles «organisation des étapes» Exemple : prouver que omposition Jeu de 36 cartes avec 9 familles de 4 cartes. Plateau de quatre

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Chapitre 12 Vecteurs. Table des matières. Chapitre 12 Vecteurs TABLE DES MATIÈRES page -1

Chapitre 12 Vecteurs. Table des matières. Chapitre 12 Vecteurs TABLE DES MATIÈRES page -1 hapitre 12 Vecteurs TLE ES MTIÈRES page -1 hapitre 12 Vecteurs Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail