Filtrage stochastique non linéaire par la théorie de représentation des martingales

Dimension: px
Commencer à balayer dès la page:

Download "Filtrage stochastique non linéaire par la théorie de représentation des martingales"

Transcription

1 Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de Grenoble 51, rue des Mathématiques, 3841-Grenoble cedex 9 France Résumé A partir de l étude d une équation de filtrage associée à un bruit modélisé par une infinité des mouvements browniens généralisés, on montre qu une condition suffisante pour l existence d une forme explicite de l estimateur du signal au sens des moindres carrés est l équivalence des mesures induites par le signal observé et le bruit. On montre que l estimateur admet une représentation en fonction de la dérivée de Radon-Nikodym des deux mesures. En utilisant un théorème de représentation des martingales et l orthogonalité des polynômes de Hermite par rapport à la mesure gaussienne, on construit son approximation en moyenne quadratique. On obtient ainsi un algorithme d extraction du signal par un filtre non linéaire. Mots clés: filtrage stochastique, processus d innovation, martingales, polynômes de Hermite Abstract Based on the study of a filtering equation associated with a noise modelled by an infinity of generalized Brownian motions, it is shown that a sufficient condition for the existence of an explicit form for the least mean square estimator of the signal is the equivalence of the measures induced by the observation and the noise. It is shown that the estimator admits a representation depending on the Radon-Nikodym derivative of the two measures. Its approximation on quadratic mean is built by means of a martingales representation theorem and the orthogonality of Hermite polynomials with respect to the Gaussian measure. Hence, an algorithm of signal extraction by a non linear filter is done. Keywords: stochastic filtering, innovation process, martingales, Hermite polynomials 1 Introduction Un cas particulier de la théorie du filtrage non linéaire est celui où l observation, le bruit et le signal à estimer sont liés par une équation différentielle stochastique, soit Z ω, t) = Σ B dx) S ω, u) + B ω, t), t [, 1] 1

2 B = B 1, B 2,...) : Ω [, 1] IR est le processus stochastique modélisant le bruit, dont les composantes sont des mouvements browniens généralisés indépendants. Chaque B n, t), t [, 1], suit une loi normale N, β n t)), où β n est une fonction monotone non décroissante et continue. β n désigne aussi la mesure induite sur [, 1] par la fonction de même sigle. Σ B = diag β 1, β 2,...) représente la matrice de covariance de B. L observation est modélisée par le processus Z : Ω [, 1] IR, et le signal transmis par le processus S : Ω [, 1] IR. B, Z et S sont des processus définis sur Ω, A, P ), un espace de probabilité qui a été enrichi d une filtration notée A = {A t A, t [, 1]}. La particularité de l approche est qu on ne peut pas supposer, pour A, que les conditions habituelles sont satisfaites. 1 En généralisant un résultat classique de filtrage stochastique donné par Mémin 1974) pour le mouvement brownien standard, on peut montrer que E [S, t) σ t Z)] = ŜZ, ), t) P p.s. est l estimateur de S, t) au sens des moindres carrés et qu il satisfait une équation différentielle stochastique qui n est pas de type Itô, Z, t) = Σ B dx) Ŝ Z, ), u) + BZ, t), P p.s. 1) car Ŝ dépend du passé. Cette équation est appelée équation de filtrage, BZ, t) étant un processus d innovation. C est l existence d un tel processus qui fait l objet de l étude de l équation de filtrage. Dans la section suivante on montre qu une condition suffisante pour qu un tel processus existe est l existence de la fonction de vraisemblance entre la mesure induite par le signal reçu et celle induite par le bruit. A partir de ce résultat, on donne une procédure de construction d une approximation en moyenne quadratique pour Ŝ, en utilisant le lien entre la mesure gaussienne et les polynômes de Hermite. 2 La fondation analytique G désigne l ensemble des trajectoires des processus B et Z qui est soit C[, 1], le produit d une famille dénombrable de copies de C[, 1], muni de la distance min { 1, sup t [,1] c i 1t) c i 2t) } δc 1, c 2 ) =, i=1 2 i soit C [, 1]; l 2 ), l ensemble des fonctions continues c : [, 1] l 2 muni de la distance c 1, c 2 ) = sup t [,1] c 1 t) c 2 t) l2. G désigne l ensemble des boréliens de G. Soit H, H), 1 Les raisons sont analogues à celles invoquées par Von Weizsäker et G. Winkler 199) car les résultats à obtenir ici sont basés sur l obtention de vraisemblances. De plus, sur les espaces de trajectoires, les tribus naturelles ne sont pas, a priori, continues à droite. 2

3 l espace mesurable associé, selon le cas, soit à H = IR IN, soit à H = l 2. On note d H la distance naturelle de H. ev t : G H est l évaluation définie par ev t g) = g t) H. Si P X est la loi sur G induite par un processus X, on obtient, par rapport à cette loi, un processus { ev X t, t [, 1] }, à partir de la relation, valable pour des boréliens H i H, 1 i n Définition P X g G : ev X t i g) H i, 1 i n ) = P ω Ω : X ω, t i ) H i, 1 i n). Une solution faible de l équation 1) est un couple P W, W ) tel que P W soit une probabilité sur G, G), et W soit un mouvement brownien généralisé relativement à G, G, G, P W ), de variance Σ B, qui ait la propriété que, presque sûrement, relativement à P W, On définit ev P W g, t) = Σ B dx) f g, x) + W g, t). L 2 [ β ] = { f = f 1, f 2,...) : [, 1] IR, n=1 1 } fnx)β 2 n dx) <. Soit N PB G) la famille des ensembles de G qui sont négligeables relativement à P B. G P B t désigne alors la tribu engendrée par G t et N PB G). On dispose alors du lemme suivant. Lemme La filtration G P B est continue à droite. Démonstration: G est la filtration naturelle du processus d évaluation ev. Par rapport à P B, ce processus est un mouvement brownien, et donc fortement markovien, d après Von Weizsäker et G. Winkler 199). La continuité à droite de la filtration augmentée G P B est une conséquence de la proprieté de Markov. Proposition Soit Z un processus à trajectoires dans G, défini sur la base Ω, A, A, P ), tel que P Z et P B soient équivalentes. Il existe alors un processus progressivement mesurable Ŝ, défini sur la base ) G, G P B, G P B, P Z, et un mouvement brownien généralisé W Z, défini sur la base Ω, σ 1 Z), σ Z), P ), de covariance Σ B, tels que l on ait, presque sûrement, relativement à P, et Z, t) = Σ B dx) Ŝ Z, ), x) + W Z, t), 2) P B g G : Ŝ g, ) 2 L 2[ β ] < ) = P Z g G : Ŝ g, ) 2 L 2[ β ] < ) = 1. 3

4 Démonstration: La filtration G PB étant continue à droite, la martingale E PB [ dpz dp B ] G P B t a une modification M t continue à droite d après Von Weizsäker et G. Winkler 199). Le théorème de représentation des martingales d une filtration brownienne dans la version obtenue par l auteur 1999) assure alors que M g, t) = 1 + où h est un processus prévisible pour G P B, tel que h g, x), ev B g, dx), P B g G : h g, ) 2 L 2[β] < ) = 1. La notation, désigne l intégrale stochastique par rapport à une infinité de mouvements browniens généralisés. Cette représentation entraîne que M est un processus continu à droite, et presque sûrement continu, relativement à P B. Soit T g) = inf {t [, 1] : {M g, t) = } ou {M g, t ) = }}. M a, presque sûrement, relativement à P B des trajectoires sur [T, 1] qui sont nulles. Mais, à cause de l hypothèse d équivalence, M 1 >, presque sûrement, relativement à P B. On a donc que P B g G : inft [,1] M g, t) > ) = 1. L expression ln [M t ] a ainsi un sens, presque sûrement, relativement à P B. Une version adéquate de la formule d Itô permet alors d écrire soit On définit alors et on a que ln [M t ] = h g, x) M g, x), evp B g, dx) 1 2 I h g, ) 2 [,t], M g, ) L 2[β] h g, x) M g, t) = exp M g, x), evp B g, dx) I h g, ) [,t] M g, ). L 2[β] Ŝ g, ) 2 L 2[ β ] = i=1 1 Ŝ g, t) = h g, t) M g, t) h 2 ) i g, x) M 2 g, x) dβ ix) 1/ inf M 2 g, t) h g, ) 2 t [,1] L 2[ β ]. 4

5 On obtient ainsi l égalité P B g G : f g, ) 2 L 2[β] < ) = 1, et dans cette dernière relation, on peut remplacer P B par P Z, puisque ces mesures sont équivalentes. Cette propriété de P Z, et le fait d avoir E PB [M, 1)] = 1, assurent conformément à un résultat de la thèse 1999), qu il existe une solution faible unique de l équation Z, t) = On pose alors, sur la base G, G P B, G P B, P B ), Σ B dx) Ŝ Z, ), x) + B, t). P W dg) = M g, 1) P B dg), W g, x) = Σ B dx) Ŝ g, x) + evb g, t). Le théorème de Girsanov dit que W est, relativement à P W, un mouvement brownien généralisé, de covariance Σ B. M, 1) étant une version de la dérivée dp Z /dp B, P W = P Z. La démonstration est complète si l on pose W Z = W Z. Note: On peut montrer que si l hypothèse P Z P B est satisfaite, alors il existe un processus Ŝ et un mouvement brownien W Z verifiant l equation 2) et tel que P Z g G : Ŝ g, ) 2 L 2[β] < ) = 1. 3 Une approximation en moyenne quadratique Soit Q un sous ensemble dénombrable et dense de [, 1] qui contient s =. On désigne par Q l = {s = < s 1 < s 2 <... s l } le sous ensemble de Q contenant les premiers l +1 éléments et par F l la tribu engendrée par la famille {B n s i ) B n s j ), i, j = 1, 2,..., l, n IN }. Soit L 2 [F l, P ] l ensemble des processus F l -mesurables et de carré P-intégrable. Le théorème suivant donne une procédure de construction d une approximation en moyenne quadratique pour Ŝ, l estimateur du signal transmis. C est un algorithme d extraction du signal par un filtre non linéaire. On introduit la famille des polynômes de Hermite définis par où k IN, t [, T ] et z IR. Théorème H k t, z) = 1 ) ) z 2 k z 2 k! t)k exp 2t z exp, k 2t Sous les hypothèses de la Proposition précédente, le processus Ŝ est la limite en moyenne quadratique d une suite des processus Ŝl L 2 [F l, P ] définis par Ŝ l ω, t) = h ) lω, t) h 1 Mω, t) = l ω, t) Mω, t), h2 l ω, t) Mω, t),..., hn l ω, t) Mω, t),... 5

6 où pour t [s j 1, s j ) avec h n l ω, t) = a k,l φ n k,jω, t), k=k 1,k 2,...,k l ):maxi k i >)=j) φ n k,jω, t) = G n k,jh kj,n 1 β n t) β n s j 1 ), B n ω, t) B n ω, s j 1 )) i n H kj,i β i t) β i s j 1 ), B n ω, t) B n ω, s j 1 )), G n k,j étant des variables aléatoires définies par G n k,j = j 1 q=1 et a k,l des scalaires obtenus par H kq,n β n s q ) β n s q 1 ), B n, s q ) B n, s q 1 )) [ ] l l a k,l = E M, t) 1) H ki,n β n s i ) β n s i 1 ), B n, s i ) B n, s i 1 )). n=1 i=1 Démonstration: Par la Proposition précédente il suffit de montrer que la suite X l, t) = 1 + h l, u), B, du) converge en moyenne quadratique vers M, t) quand l. Cela découle du fait que pour l IN et s i [, 1], i = 1, 2,..., l fixés, la famille des variables aléatoires { l } l H ki,n β n s i ) β n s i 1 ), B n, s i ) B n, s i 1 )), k = k i ) 1 i l IN l n=1 i=1 forme un système orthogonal complet dans l espace L 2 [F l, P ]. Bibliographie [1] Climescu-Haulica, A. 1999) Calcul stochastique appliqué aux problèmes de détection des signaux aléatoires, thèse, Ecole Polytechnique Fédérale de Lausanne [2] Mémin, J. 1974) Sur quelques problèmes fondamentaux de la théorie du filtrage, thèse, Université de Rennes [3] Von Weizsäker, H. et Winkler, G. 199) Stochastic Integrals, Vieweg, Wiesbaden 6

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

Le modèle de Black et Scholes

Le modèle de Black et Scholes Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton

Modèles structurels. Chapitre 4. 4.1 Modèle de Merton Chapitre 4 Modèles structurels 4.1 Modèle de Merton L idée principale de modèles structurels est basée sur l article fondateur de Merton [?], où un défaut est provoqué quand une entreprise n arrive pas

Plus en détail

Remise à niveau en processus stochastiques

Remise à niveau en processus stochastiques M2IR Université Claude Bernard Lyon 1 Année universitaire 212-213 Remise à niveau en processus stochastiques F. Bienvenüe-Duheille Le but de ce poly est de vous mettre à niveau sur les processus stochastiques

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Introduction à la modélisation financière en temps continue & Calcul Stochastique

Introduction à la modélisation financière en temps continue & Calcul Stochastique Introduction à la modélisation financière en temps continue & Calcul Stochastique Mireille Bossy INRIA pour le MASTER IMAFA à Polytech Nice Sophia Antipolis 16 novembre 213 2 Cours de maths financières

Plus en détail

Équation de Langevin avec petites perturbations browniennes ou

Équation de Langevin avec petites perturbations browniennes ou Équation de Langevin avec petites perturbations browniennes ou alpha-stables Richard Eon sous la direction de Mihai Gradinaru Institut de Recherche Mathématique de Rennes Journées de probabilités 215,

Plus en détail

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Résumé des communications des Intervenants

Résumé des communications des Intervenants Enseignements de la 1ere semaine (du 01 au 07 décembre 2014) I. Titre du cours : Introduction au calcul stochastique pour la finance Intervenante : Prof. M hamed EDDAHBI Dans le calcul différentiel dit

Plus en détail

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013 Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010

Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale. 15 novembre 2010 Théorie du chaos multiplicatif et application à l étude de la mesure MRM lognormale 15 novembre 2010 Table des matières 1 Rappel sur les Processus Gaussiens 2 Théorie du chaos multiplicatif gaussien de

Plus en détail

Cahier de textes Page 1 sur 9. Cahier de textes

Cahier de textes Page 1 sur 9. Cahier de textes Cahier de textes Page 1 sur 9 Cahier de textes Jeudi 04/09/2014 9h-12h et 13h30-16h30 : Cours sur la logique : - Conjonction, disjonction, implication, équivalence - Quelques formules. - Quantificateurs

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous

StatEnAction 2009/10/30 11:26 page 111 #127 CHAPITRE 10. Machines à sous StatEnAction 2009/0/30 :26 page #27 CHAPITRE 0 Machines à sous Résumé. On étudie un problème lié aux jeux de hasard. Il concerne les machines à sous et est appelé problème de prédiction de bandits à deux

Plus en détail

Mouvement brownien et calcul stochastique

Mouvement brownien et calcul stochastique Université Pierre et Marie Curie 27-28 Master de Mathématiques Spécialité: Probabilités et Applications Mouvement brownien et calcul stochastique Jean Jacod Chapitre 1 Le mouvement brownien 1.1 Processus

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

3.8 Introduction aux files d attente

3.8 Introduction aux files d attente 3.8 Introduction aux files d attente 70 3.8 Introduction aux files d attente On va étudier un modèle très général de problème de gestion : stocks, temps de service, travail partagé...pour cela on considère

Plus en détail

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration

Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Quelques modèles financiers utilisant les EDSR et EDSPR avec grossissement de filtration Anne EYRAUD-LOISEL ISFA, Université Lyon 1 Séminaire Lyon - Le Mans 3 Mai 2012, Le Mans 1 / 40 Outline 1 Problèmes

Plus en détail

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement

Estimation consistante des paramètres d un. modèle non linéaire pour des données. fonctionnelles discrétisées aléatoirement Estimation consistante des paramètres d un modèle non linéaire pour des données fonctionnelles discrétisées aléatoirement Consistent estimation of parameters in a nonlinear model for functional data with

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein

1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein 1 Examen 1.1 Prime d une option d achat dans le modèle de Cox, Ross et Rubinstein On considère une option à 90 jours sur un actif ne distribuant pas de dividende de nominal 100 francs, et dont le prix

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Éléments spectraux d une fonction cyclostationnaire

Éléments spectraux d une fonction cyclostationnaire Éléments spectraux d une fonction cyclostationnaire Alain BOUDOU 1 & Sylvie VIGUIR-PLA 1 & 2 1 quipe de Stat. et Proba., Institut de Mathématiques, UMR5219 Université Paul Sabatier, 118 Route de Narbonne,

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Une caractérisation des lois de Wishart en dimension finie ou infinie

Une caractérisation des lois de Wishart en dimension finie ou infinie Une caractérisation des lois de Wishart en dimension finie ou infinie Gabriel Fraisse et Sylvie Viguier-Pla Université de Perpignan, IUT, Domaine d Auriac, Carcassonne Laboratoire de Statistique et Probabilités,

Plus en détail

Méthodes avancées en décision

Méthodes avancées en décision Méthodes avancées en décision Support vector machines - Chapitre 2 - Principes MRE et MRS Principe MRE. Il s agit de minimiser la fonctionnelle de risque 1 P e (d) = y d(x;w, b) p(x, y) dxdy. 2 La densité

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE

PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE PROJET DE SPÉCIALITÉ DU MASTER DE MATHÉMATIQUES. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Porteurs du projet Marc Arnaudon, professeur des universités, responsable des relations avec les entreprises.

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Scientifique (ECS) Discipline : Mathématiques- Informatique Seconde année Ministère de l enseignement

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

PROCESSUS ALEATOIRES :

PROCESSUS ALEATOIRES : EcoledesMinesdeSaint Etienne PROCESSUSALEATOIRES: MARTINGALES,MOUVEMENTBROWNIEN,CALCULSTOCHASTIQUE Exercices Janvier2009 OlivierRoustant Processusaléatoires,calculstochastique:exercicesENSM SE2009 MOUVEMENTBROWNIEN

Plus en détail

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012 De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des

Plus en détail

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2.

Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Master Modélisation Aléatoire Paris VII, Cours Méthodes de Monte Carlo en nance et C++, TP n 2. Techniques de correction pour les options barrières 25 janvier 2007 Exercice à rendre individuellement lors

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Simulations de Monte Carlo

Simulations de Monte Carlo Simulations de Monte Carlo 2 février 261 CNAM GFN 26 Gestion d actifs et des risques Gréory Taillard GFN 26 Gestion d actifs et des risques 2 Biblioraphie Hayat, Sere, Patrice Poncet et Roland Portait,

Plus en détail

Probabilités III Introduction à l évaluation d options

Probabilités III Introduction à l évaluation d options Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I

ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON MATHEMATIQUES I CHAMBRE DE COMMERCE ET D INDUSTRIE DE PARIS DIRECTION DE L ENSEIGNEMENT Direction des Admissions et concours ECOLE DES HAUTES ETUDES COMMERCIALES E.S.C.P.-E.A.P. ECOLE SUPERIEURE DE COMMERCE DE LYON CONCOURS

Plus en détail

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1 1. a. On considère un modèle de marché (B, S) à une étape. On suppose que S = 5 C et qu à la date t = 1 on a (S u 1 = 51, S d 1 = 48).

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

Introduction au modèle linéaire général

Introduction au modèle linéaire général Résumé Introductions au modèle linéaire général Retour au plan du cours Travaux pratiques 1 Introduction L objet de ce chapitre est d introduire le cadre théorique global permettant de regrouper tous les

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

THÉORIE DE LA MESURE ET INTÉGRATION

THÉORIE DE LA MESURE ET INTÉGRATION Université Pierre et Marie Curie Licence de Mathématiques Années 2004-2005-2006 LM 363 THÉORIE DE LA MESURE ET INTÉGRATION Cours de P. MAZET Edition 2004-2005-2006 Table des matières Table des matières

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2. Cours de filière MAM, ISTIL deuxième année. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2. Cours de filière MAM, ISTIL deuxième année. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR 2 Cours de filière MAM, ISTIL deuxième année Ionel Sorin CIUPERCA Le but de ce cours est d introduire un outil très utilisé dans la modélisation mathématique

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Examen d accès - 28 Septembre 2012

Examen d accès - 28 Septembre 2012 Examen d accès - 28 Septembre 2012 Aucun document autorisé - Calculatrice fournie par le centre d examen Cet examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses

Plus en détail

Approximation polynomiale de la densité de probabilité

Approximation polynomiale de la densité de probabilité Approximation polynomiale de la densité de probabilité Applications en assurance P.O. Goffard Axa France - Institut de Mathématiques de Marseille I2M Aix-Marseille Université Soutenance de thèse de doctorat

Plus en détail

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65

Sommaire. Chapitre 1 Variables et vecteurs aléatoires... 5. Chapitre 2 Variables aléatoires à densité... 65 Sommaire Chapitre 1 Variables et vecteurs aléatoires............... 5 A. Généralités sur les variables aléatoires réelles.................... 6 B. Séries doubles..................................... 9

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

1 Introduction, but du cours, rappels

1 Introduction, but du cours, rappels DEA 2-21 Calcul stochastique II, applications aux finances Université Paul Sabatier 1 Introduction, but du cours, rappels Les applications en finance sont dans ce cours, une valorisation et une justification

Plus en détail

L3 Maths : Cours d Intégration (partie I)

L3 Maths : Cours d Intégration (partie I) L3 Maths : Cours d Intégration (partie I) Noureddine Igbida 1 2012-2013 1. Institut de recherche XLIM, UMR-CNRS 6172, Faculté des Sciences et Techniques, Université de Limoges 123, Avenue Albert Thomas

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

MASTER DE MATHÉMATIQUES DE POITIERS. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE. Responsables

MASTER DE MATHÉMATIQUES DE POITIERS. MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE. Responsables ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ MASTER DE MATHÉMATIQUES DE POITIERS. SPÉCIALITÉ : MODÉLISATION MATHÉMATIQUE & ANALYSE STATISTIQUE Responsables Marc Arnaudon, professeur des

Plus en détail

Programme de Première

Programme de Première BAC TECHNO STAV 66 I. Algèbre Programme de Première Objectif 1 - Effectuer de manière autonome des calculs numériques ou algébriques, résoudre des équations ou inéquations en vue de résoudre des problèmes

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Introduction aux modèles financiers

Introduction aux modèles financiers Notes pour le module spécifique Introduction aux modèles financiers Ecole Centrale de Lyon Option Mathématiques 1 2 Introduction Quelques références Pour comprendre les marchés financiers, avoir un apreçu

Plus en détail

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07

Axe MSA Bilan scientifique et perspectives. ENSM.SE L. Carraro - 17 décembre 07 Axe MSA Bilan scientifique et perspectives ENSM.SE L. Carraro - 17 décembre 07 17 décembre 07 2 Plan Compétences acquises domaines scientifiques compétences transverses Domaines ou activités accessibles

Plus en détail

1 Formalisme de la Mécanique Quantique

1 Formalisme de la Mécanique Quantique Théorie Spectrale et Mécanique Quantique Christian Gérard Département de Mathématiques, Bât. 425 UMR 8628 du CNRS Université de Paris-Sud F-91405 Orsay Cédex FRANCE email : Christian.Gerard@math.u-psud.fr

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Technologie, physique, chimie (TPC) Discipline : Mathématiques Seconde année Classe préparatoire TPC deuxième année

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

Les changements de numéraire dans la tarification de produits financiers

Les changements de numéraire dans la tarification de produits financiers INMA 2990 - Travail de fin d études Les changements de numéraire dans la tarification de produits financiers Pajot Benjamin Promoteur Devolder Pierre Juin 2010 Table des matières Introduction 1 1 Mesures

Plus en détail

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA

COURS METHODES MATHEMATIQUES POUR L INGENIEUR. MAM 3, Polytech Lyon. Ionel Sorin CIUPERCA COURS METHODES MATHEMATIQUES POUR L INGENIEUR MAM 3, Polytech Lyon Ionel Sorin CIUPERCA Le cours s adresse en principal à des élèves des écoles d ingénieurs, filière modélisation mathématique. Une partie

Plus en détail

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA

Travaux dirigés. Résolution numérique des équations diérentielles ordinaires. Département MIDO année 2013/2014 Master MMDMA Université Paris-Dauphine Méthodes numériques Département MIDO année 03/04 Master MMDMA Travaux dirigés Résolution numérique des équations diérentielles ordinaires Exercice. Pour α > 0, on considère le

Plus en détail

Méthodes numériques pour les options Américaines

Méthodes numériques pour les options Américaines Méthodes numériques pour les options Américaines Jérôme Lelong Année 2009-2010 J. LELONG (MÉTHODES NUMÉRIQUES AVANCÉES) ANNÉE 2009-2010 1 / 43 1 Introduction Le modèle de marché Options Bermuda Définition

Plus en détail

Estimation améliorée explicite d un degré de confiance conditionnel

Estimation améliorée explicite d un degré de confiance conditionnel Estimation améliorée explicite d un degré de confiance conditionnel Dominique Fourdrinier & Patrice Lepelletier UMR CNRS 6085, Université de Rouen, Site Colbert, 76 821 Mont-Saint-Aignan cedex, France

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Cours de Probabilités

Cours de Probabilités Université Paris-Daupine Année 2013/2014 DMI2 Cours de Probabilités Joseph Lehec Table des matières 1 Théorie de la mesure 2 1.1 Définitions......................................... 2 1.2 La mesure de

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor

Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Paramètre de longue mémoire d une série temporelle : le cas non linéaire Travail en collaboration avec F.Roueff M.S.Taqqu C.Tudor Notion de longue mémoire Les valeurs d une série temporelle X = (X l )

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail