SECTIONS AGRANDISSEMENT REDUCTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "SECTIONS AGRANDISSEMENT REDUCTION"

Transcription

1 ECTION AGRANDIEMENT REDUCTION * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * A - ECTION D'UN PAVE DROIT PAR UN PLAN La section d'un pavé droit par un plan (P) parallèle à une face est un rectangle. La section d'un pavé droit par un plan (P) parallèle à une arête est un rectangle. B - ECTION D'UN CYLINDRE PAR UN PLAN La section d'un cylindre de rayon R par un plan (P) perpendiculaire à l'axe est un disque de rayon R dont le centre appartient à l'axe. La section d'un cylindre par un plan (P) parallèle à l'axe est un rectangle. C - ECTION D'UNE PYRAMIDE ET D'UN CONE La section d'une pyramide par un plan parallèle à la base est un polygone qui est une réduction du polygone de base. La section d'un cône de révolution par un plan parallèle à la base est un disque qui est une réduction du disque de base. D - AGRANDIEMENT - REDUCTION i, au cours d un agrandissement ou d une réduction, les dimensions d une figure sont toutes multipliées par un même nombre k, alors : - les aires sont multipliées par k 2 - les volumes sont multipliés par k E COMMENT REDIGER Enoncé : On réalise la section d un cône de hauteur O = 6 cm par un plan parallèle à la base tel que O = 2 cm.on donne le volume du grand cône : V = 4,2 cm Et l aire de la base A = 2,6 cm².. Quelle est la nature de la section? 2. Calculer le volume V du petit cône et l aire A de sa base. O O O

2 olution :. La section obtenue est un disque de centre O. En effet, la section d un cône de révolution par un plan parallèle à la base est un disque qui est une réduction du disque de base. 2. Le cône de sommet et de hauteur O est une réduction du cône de sommet et de hauteur O. O Le coefficient de réduction est : k = ' O = 2 6 = Le petit cône étant une réduction du grand cône dans le rapport, donc : V ' = V = 4,2 =, 6 27 Le volume du petit cône est,6 cm. 2 A ' = A = 2,6 = 24 9 L aire du petit cône est 2,4 cm². * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Exercices d entraînement Exercice n : Brevet Juin 2005: Groupe Nord Exercice n ur la figure ci-contre, no a un cône de révolution tel que A = 2 cm. Un plan parallèle à la base coupe ce cône tel que A = cm ( la figure ci-contre n est pas à l échelle).. Le rayon du disque de base du grand cône est de 7 cm. Calculer la valeur exacte du volume du grand cône. 2. Quel est le coefficient de réduction qui permet de passer du grand cône au petit cône?. Calculer la valeur exacte du volume de ce petit cône, puis en donner la valeur arrondie au cm. Exercice n 2 : Brevet eptembre 2004: Groupe Est Exercice n H E A O' F B La figure ci-contre représente une pyramide P de sommet. a base est un carré ABCD tel que AB = 6 cm ; sa hauteur [A] est telle que A = 9 cm.. Calculer le volume de cette pyramide P. 2. E est un point de [A] défini par E = 6 cm ; EFGH est la section de la pyramide P par un plan parallèle à sa base ; la pyramide P des sommet et de base EFGH est donc une réduction de la pyramide P ; calculer le coefficient k de cette réduction.. Calculer le volume de la pyramide P. D A C B O Exercice n : Brevet Groupe sud 2007:Exercice n 2 D C

3 Pour la pyramide ABCD ci-contre : La base est le rectangle ABCD de centre O ; AB = cm et BD = 5 cm ; La hauteur [O] mesure 6 cm.. Montrer que AD = 4 cm. 2. Calculer le volume de la pyramide ABCD en cm.. oit O le milieu de [O]. On coupe la pyramide par un plan passant par O et parallèle à sa base. a. Quelles est la nature de la section A B C D obtenue? b. La pyramide A B C D est une réduction de la pyramide ABCD. Donner le rapport de cette réduction. c. Calculer le volume de la pyramide A B C D. Exercice n 4 : Brevet Amérique du nord Juin 2007:Exercice n 2 ABCD est une pyramide à base rectangulaire ABCD, de hauteur [A]. On donne A = 5 cm, AB = 8 cm et BC = cm.. Calculer le volume V de la pyramide ABCD. 2. Démontrer que B = 7 cm.. On note E le point de [A] tel que H E = 2 cm et F le point de [B] tel que F =,6 cm. G Montrer que les droites (EF) et (AB) sont parallèles. E 4. On coupe cette pyramide par le plan passant par E F et parallèle à la base de la pyramide. La pyramide D C EFGH, ainsi obtenue, est une réduction de la pyramide ABCD. a. Quel est le coefficient de cette réduction? A B b. En déduire le volume V 2 de la pyramide EFGH en fonction de V. Exercice n 5 : Brevet Centres Etrangers ( Bordeaux ) Juin 2005 :Exercice n 2 ur la figure ci contre, ABCD est une pyramide à base rectangulaire, de hauteur [H], où H est le centre du rectangle ABCD. On donne : AB = 8 cm, BC = 6 cm et H = 2 cm.. Calculer AC ; en déduire AH. 2. Calculer le volume de la pyramide ABCD. D' C'. Démontrer que A = cm. A' On note A le point de [A] tel que A =,25. B' On coupe la pyramide par le plan parallèle à la base et passant par A. On obtient une petite pyramide A B C D. C 4. a. Calculer le coefficient de réduction de A B C D par rapport à ABCD. D b. En déduire les longueurs A B et B C puis le volume de A B C D. H 5. Où aurait-il fallu placer A pour obtenir une A B pyramide dont le volume est huit fois plus petit que celui de la pyramide ABCD? Justifier. Exercice n 6 : Brevet Centres Etrangers ( Bordeaux ) Juin 2004 :Exercice n

4 m Un bassin a la forme d un cône qui a pour base un disque de m de rayon, et pour hauteur 6 m..a. Montrer que le volume exact V, en m, est égal à 8π, en donner l arrondi au m. b. Ce volume représente-t-il plus ou moins litres? 6 m 2. a. Combien de temps faudrait-il à une pompe débitant 5 litres par seconde pour remplir complètement ce bassin? Donner le résultat arrondi à la seconde. 4 m b. Cette durée est-elle inférieure à heure?. On remplit ce bassin avec de l eau sur une hauteur de 4 m. On admet que l eau occupe un cône qui est une réduction du bassin. a. Quel est le coefficient de la réduction? b. En déduire le volume d eau exacte V contenu dans le bassin. CORRIGE Exercice n :. Calcul du volume du grand cône oit V le volume du grand cône, on a : V = π r π 7² 96π ² A = 2 = Conclusion : La valeur exacte du volume du grand cône est 96π cm 2. Calcul du coefficient de réduction oit k le coefficient de réduction, on a : A' k = = A 2 = 4 Conclusion : Le coefficient de réduction est 4.. Calcul du volume du petit cône oit V le volume du petit cône. Le petit cône est une réduction du grand cône dans le rapport 4, donc : V ' = V = 96π = π = π Conclusion : La valeur exacte du petit cône est 49 π cm et sa valeur approchée est environ 0 cm 6 Exercice n 2 :. Calcul du volume de la pyramide P.

5 oit V le volume de la pyramide, on a : V = AB² A = 6² 9 = 08 Conclusion : Le volume de la pyramide P est 08 cm 2. Calcul du coefficient de réduction oit k le coefficient de réduction, on a : E 6 2 k = = = A 9 Conclusion : Le coefficient de réduction est 2.. Calcul du volume de la pyramide P oit V le volume de cette pyramide. La pyramide P est une réduction de la pyramide P dans le rapport 2, donc : 2 8 V ' = V = 08 = 2 27 Conclusion : Le volume de la pyramide P est 2 cm Exercice n.. Calcul de AD Comme le quadrilatère ABCD est un rectangle, le triangle ABD est rectangle en A. D après le théorème de Pythagore, on a : DB ² = AD ² + AB ² 5 ² = AD ² + ² 25 = AD ² + 9 AD ² = 25 9 AD ² = 6 AD = 6 AD = 4 Conclusion: AD = 4 cm 2. Calcul du volume de la pyramide ABCD oit V le volume de la pyramide, on a : V = aire de la base hauteur V = AB AD O = 4 6 = 24 Conclusion : Le volume de la pyramide est 24 cm. a. Nature de la section A B C D La section d'une pyramide par un plan parallèle à la base est un polygone qui est une réduction du polygone de base. Donc A B C D est un rectangle. b. Calcul du rapport de réduction O' oit k le rapport de réduction, on a : k = = = O 6 2 oit V le volume de la pyramide A B C D, on a : V = V ' = k V = 24 = 24 = 2 8 Conclusion : Le volume de la pyramide A B C D est cm Exercice n 4.. Calcul du volume de la pyramide ABCD

6 oit V le volume de la pyramide, on a : V = aire de la base hauteur V = AB BC A = 8 5 = 440 Conclusion : Le volume de la pyramide est 440 cm 2. Calcul de B Dans le triangle AB rectangle en A, d après le théorème de Pythagore, on a : B ² = A ² + AB ² B ² = 5 ² + 8 ² B ² = B ² = 289 B = 289 B = 7 Conclusion: B = 7 cm E 2 F,6. On a = = 0,8 et = = 0, 8 A 5 B 7 achant que les droites (EA) et (FB) sont sécantes en, les points,e,a et les points, F, B sont alignés dans E F le même ordre, comme = = 0, 8, alors d après la réciproque du théroèe de Thalès, les droites (EF) et A B (AB) sont parallèles. 4. a) Calcul du coefficient de réduction oit k le coefficient de réduction, on a : Conclusion : Le coefficient de réduction est 5 4. E 2 k = = = A b) Calcul du volume V 2 de la pyramide oit V 2 le volume de cette pyramide V 2 = V = = 440 = 225, Conclusion : Le volume de la pyramide est 225,28 cm Exercice n 5.. Calcul de AC Comme le quadrilatère ABCD est un rectangle, le triangle ABC est rectangle en B. D après le théorème de Pythagore, on a : AC ² = AB ² + BC ² AC ² = 8 ² + 6 ² AC ² = AC ² = 00 AC = 00 AC = 0 Conclusion: AC = 0 cm Calcul de AH Comme dans un rectangle les diagonales se coupent en leur milieu et ont la même longueur, alors :

7 AH = AC = 0 = Conclusion: AH = 5 cm 2. Calcul du volume de la pyramide ABCD oit V le volume de la pyramide, on a : V = aire de la base hauteur V = AB BC H = = 92 Conclusion : Le volume de la pyramide est 92 cm. Calcul de A Dans le triangle HA rectangle en H, d après le théorème de Pythagore, on a : A ² = AH ² + H ² A ² = 5 ² + 2 ² A ² = A ² = 69 A = 69 A = Conclusion: A = cm 4. a) Calcul du coefficient de réduction A',25 oit k le coefficient de réduction, on a : k = = = 0, 25 A Conclusion : Le coefficient de réduction est 0,25. b) Calcul de A B et B C On a : A B = AB 0,25 = 8 0,25 = 2 Conclusion: A B = 2 cm On a : B C = BC 0,25 = 6 0,25 =,5 Conclusion: B C =,5 cm Calcul du volume de la pyramide A B C D oit V le volume de cette pyramide. La pyramide A B C D est une réduction de la pyramide ABCD dans le rapport 0,25, donc : V ' = ( 0,25) V = ( 0,25) 92 = Conclusion : Le volume de la pyramide est cm 5. cherchons le nombre par lequel il faut multiplier l arête latérale de la pyramide pour que son volume soit divisé par 8 : On a =. Il faut donc multiplier par 0,5 8 2 A doit être donc placer à la moitié du segment [A] Exercice n 6.

8 . a) Calcul du volume du cône oit V le volume du cône, on a : V = aire de la base hauteur V = π ² 6 = 8π Conclusion : Le volume exacte du cône est 8 π cm Le volume arrondi au cm près est 57 m b) L = dm L = dm L = 0 m Le volume représente plus de L. 2. a) On a : 57 m = L et : 5 = 800 Il faudra environ 800 secondes pour remplir le bassin. b) Comme h = 600 s, La durée est donc supérieure à heure.. a) Calcul du coefficient de réduction oit k le coefficient de réduction, on a : 4 k = = 6 2 Conclusion : Le coefficient de réduction est 2. b) Calcul du volume d eau exacte V contenu dans le bassin. oit V le volume du cône réduis π 6 V ' = V = 2π = = π Conclusion : Le volume d eau est π m

Exercice n 2 : Brevet Centres Etrangers ( Bordeaux ) Juin 2004 :

Exercice n 2 : Brevet Centres Etrangers ( Bordeaux ) Juin 2004 : Entraînement brevet : S E F H A B Exercice n : Brevet Septembre 2004: Groupe Est La figure ci-contre représente une pyramide P de sommet S. Sa base est un carré ABCD tel que AB = 6 cm ; sa hauteur [SA]

Plus en détail

La boîte P ne peut pas paver la boîte Q car par exemple 200 n'est multiple ni de 36, ni de 48, ni de 54.

La boîte P ne peut pas paver la boîte Q car par exemple 200 n'est multiple ni de 36, ni de 48, ni de 54. Corrigé Exercice 1 1 point On prolonge le côté de 11cm jusqu'à 17 cm. On trace un angle droit. On trace la diagonale et on complète le rectangle. "Lors de l'agrandissement d'une figure, les angles restent

Plus en détail

Exercice 1 : (Brevet National 2009) L'unité de longueur est le centimètre. ABC est un triangle tel que : AB = 16 cm, AC = 14 cm et BC = 8 cm.

Exercice 1 : (Brevet National 2009) L'unité de longueur est le centimètre. ABC est un triangle tel que : AB = 16 cm, AC = 14 cm et BC = 8 cm. Exercice : (Brevet National 009) L'unité de longueur est le centimètre. ABC est un triangle tel que : AB = 6 cm, AC = 4 cm et BC = cm. ) a) Tracer en vraie grandeur le triangle ABC sur la copie. b) Le

Plus en détail

Chapitre 5 : agrandissement, réduction ; sections de solides

Chapitre 5 : agrandissement, réduction ; sections de solides Chapitre 5 : agrandissement, réduction ; sections de solides I. Rappels et sections de solides 1/ Parallélépipède rectangle Description/Figure Un parallélépipède ou un pavé droit est solide de l'espace

Plus en détail

PYRAMIDE ET CONE AGRANDISSEMENT ET REDUCTION

PYRAMIDE ET CONE AGRANDISSEMENT ET REDUCTION THEME : PYRAMIDE ET CONE AGRANDISSEMENT ET REDUCTION Exercice : Brevet - Rouen - 997 L objet ci-contre est constitué d'un cylindre et d'un cône de révolution ayant une base commune dont le rayon mesure

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

1 Les solides de 6e et de 5e.

1 Les solides de 6e et de 5e. 1 Les solides de 6e et de 5e. 1.1 Le pavé droit et le cube Le pavé droit a six faces rectangulaires, 8 sommets et 12 arêtes (3 dimensions d arêtes). Vue en perspective cavalière : Patron : Aire : l aire

Plus en détail

Sections planes de solides

Sections planes de solides Sections planes de solides C H A P I T R E 8 Énigme du chapitre. On dipose d un cylindre dont le cercle de base fait 4 cm de rayon et d une pyramide regulière de hauteur 10 cm et dont la base est un carré

Plus en détail

PYRAMIDE ET CONE AGRANDISSEMENT ET REDUCTION

PYRAMIDE ET CONE AGRANDISSEMENT ET REDUCTION THEME : PYRAMIDE ET CONE AGRANDISSEMENT ET REDUCTION SAVOIR CALCULER UN VOLUME : Exercice 1 : Un silo à grain est formé d'un cylindre de révolution de rayon 4,5 m et de hauteur 10 m surmonté d'un cône

Plus en détail

Collège Jean-Pierre VERNANT, TOULOUSE Jeudi 27 Février 2014 BREVET BLANC MATHÉMATIQUES

Collège Jean-Pierre VERNANT, TOULOUSE Jeudi 27 Février 2014 BREVET BLANC MATHÉMATIQUES Collège Jean-Pierre VERNNT, TOULOUSE Jeudi 27 Février 2014 BREVET BLNC MTHÉMTIQUES Durée de l épreuve : 2 heures Le sujet est composé de 4 pages et d une annexe (Page 5), qui devra être rendue avec la

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Pyramide et Cône de révolution

Pyramide et Cône de révolution Pyramide et Cône de révolution I ) Pyramide 1 ) Présentation : a) Une pyramide est un solide constitué d un polygone appelé base dont les sommets sont reliés à un point, n appartenant pas au plan de base,

Plus en détail

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet

4 ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : Note : ème C IE5 triangles : milieux, parallèles sujet NOM : Prénom : ABC est un triangle rectangle en A. Le point I est le milieu du segment [BC]. Le point J est le milieu du segment [AB]. Démontrer que les droites (IJ) et (AB) sont perpendiculaires. Note

Plus en détail

Partie numérique ( 3 ) 2

Partie numérique ( 3 ) 2 Brevet blanc Janvier 07. La calculatrice est autorisée, mais les détails des calculs sont exigés. La clarté et la qualité de la rédaction prendront une part importante dans la notation. Partie numérique

Plus en détail

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I) Activités numériques

I) Activités numériques Brevet 1994 : Bordeaux I) Activités numériques Exercice 1 : Écrire sous la forme a b (où a et b sont des entiers) le nombre : E 75 + 3 1 4 3. Calculer : 3(3 3) ; G ( 5 + )( 5 ). Exercice : Résoudre les

Plus en détail

Théorèmes et réciproques de Pythagore et Thales

Théorèmes et réciproques de Pythagore et Thales Théorèmes et réciproques de Pythagore et Thales I) Théorème de Pythagore : Soit ABC un triangle rectangle en B : Théorème de Pythagore : Si ABC est un triangle rectangle en B alors AC² = AB² + BC² Exemple

Plus en détail

Pyramides et cônes. A) Pyramides. 1. Premières définitions.

Pyramides et cônes. A) Pyramides. 1. Premières définitions. Pyramides et cônes A) Pyramides.. Premières définitions. Une pyramide est un solide dont : une face est un polygone (c est la base de la pyramide), les autres faces sont des triangles qui ont un sommet

Plus en détail

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique

1. Tracer un triangle ABC et placer le point M milieu de [AB]. Soit le point N symétrique 4 ème D DS4 triangles : milieux, parallèles sujet 1 2009-2010 Agrandissement - réduction NOM : Prénom : Note : 20 Objectif Acquis En cours Non Acquis d acquisition Connaître et utiliser les théorèmes relatifs

Plus en détail

Le théorème de Thalès

Le théorème de Thalès Le théorème de Thalès Programmes : 4 e : - Triangles, milieux et parallèles : théorèmes relatifs aux milieux de deux côtés d un triangle - Triangles déterminés par 2 droites parallèles coupant deux demi-droites

Plus en détail

SECTIONS PLANES DE SOLIDES DE L ESPACE

SECTIONS PLANES DE SOLIDES DE L ESPACE ECTION PLNE DE OLIDE DE L EPCE I) ctivité : 1) Visionnage de la vidéo 2) Questions a) quelle condition deux plans sont-ils parallèles? b) quelle condition une droite est perpendiculaire à un plan? c) quelle

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I - Prismes Prisme droit : Un prisme droit est un solide composé : De deux bases polygonales parallèles et superposables, De faces latérales rectangulaires perpendiculaires aux

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc mars 2012 Partie I : Activités numériques (12 points) Exercice 1 ( points) Voici un programme de calcul : - Prendre un nombre et calculer le produit de ce nombre par 2,5 ; -

Plus en détail

I - La sphère et la boule

I - La sphère et la boule I - La sphère et la boule - éfinitions éfinitions La sphère de centre et de rayon r (r 0) est l'ensemble des points tels que = r. La boule de centre et de rayon r (r 0) est l'ensemble des points tels que

Plus en détail

Première partie : Travaux Numériques

Première partie : Travaux Numériques L épreuve comporte trois parties obligatoires, indépendantes, notées chacune sur 12 points. Il sera tenu compte de la rédaction et du soin apporté à la présentation (4 points). L épreuve comporte 7 pages

Plus en détail

1. La base d une pyramide ABCD de sommet A est un triangle rectangle isocèle en D. M est un point de l arête [AB].

1. La base d une pyramide ABCD de sommet A est un triangle rectangle isocèle en D. M est un point de l arête [AB]. EXERCICE 1 : Trouver la nature d une section d un solide et d un plan. La section d un solide et d un plan.est l ensemble des points qui appartiennent à la fois au solide et au plan. Dans chaque cas, trouve

Plus en détail

SECTIONS PLANES DE SOLIDES DE L ESPACE

SECTIONS PLANES DE SOLIDES DE L ESPACE SECTIONS PLANES DE SOLIDES DE L ESPACE I) Activité : 1) Visionnage de la vidéo 2) Questions a) A quelle condition deux plans sont-ils parallèles? b) A quelle condition une droite est perpendiculaire à

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007

DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-07-correction.php#c... DIPLÔME NATIONAL DU BREVET MÉTROPOLE - LA RÉUNION - MAYOTTE SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction

Plus en détail

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin.

Collège Blanche de Castille. Les calculatrices sont autorisées (il est interdit de se les échanger) ainsi que les instruments usuels de dessin. 3 ème A - B C Composition 2 de MATHÉMATIQUES Date : 03/03/2010 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 0 Présentation : / Les calculatrices sont autorisées (il est interdit de se

Plus en détail

Repérage et section :

Repérage et section : 3 e Repérage et section : ESPACE ET GEOMETRIE ABCDEFGH est un pavé droit tel que AB = 10 cm, AD = 8 cm et AE = 4 cm. On repère des points dans ce pavé droit à l aide de leur abscisse, de leur ordonnée

Plus en détail

C h`a p i tˇr`e 14 : A`gˇr`a n`d i sfi sfi`e m`e n tṡ `eˇt r`é d u`cˇtˇi`o n s. Compétences évaluées dans ce chapitre

C h`a p i tˇr`e 14 : A`gˇr`a n`d i sfi sfi`e m`e n tṡ `eˇt r`é d u`cˇtˇi`o n s. Compétences évaluées dans ce chapitre C h`a p i tˇr`e 14 : A`gˇr`a n`d i sfi sfi`e m`e n tṡ `eˇt r`é d u`cˇtˇi`o n s Compétences évaluées dans ce chapitre Intitulé des compétences G20 G28 G63 Agrandir ou réduire une figure. Comprendre l effet

Plus en détail

Étude de solides Sections Agrandissements réductions

Étude de solides Sections Agrandissements réductions 3g4 C Étude de solides Sections Agrandissements réductions 1 Section d'un parallélépipède rectangle par un plan Lorsqu'on coupe un solide par un plan, la surface plane obtenue s'appelle la section du solide

Plus en détail

S13. Autour des théorèmes de PYTHAGORE et THALES

S13. Autour des théorèmes de PYTHAGORE et THALES CRPE S1. Autour des théorèmes de PYTHAGORE et THALES Mise en route A. Dans chaque exercice, une configuration à reconnaître une propriété à connaitre une démonstration à rédiger 1. ARC est un triangle

Plus en détail

Chaque face d un tétraèdre peut être une base.

Chaque face d un tétraèdre peut être une base. Chapitre 6 : Ô I ) Pyramides : 1 ) Définition : On appelle pyramide tout solide qui a pour base un polygone et pour faces latérales des triangles ayant un sommet en commun : c est le sommet de la pyramide.

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007

Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 Diplôme National du Brevet Métropole - La Réunion - Mayotte Session 2007 L emploi de la calculatrice est autorisé. La rédaction et la présentation seront notées sur 4 points. Coefficient : 2 Activités

Plus en détail

PYRAMIDE. Pour nommer une pyramide on écrit le nom de son sommet, suivi du nom de sa base. La pyramide ci-dessus se nomme SABCDE

PYRAMIDE. Pour nommer une pyramide on écrit le nom de son sommet, suivi du nom de sa base. La pyramide ci-dessus se nomme SABCDE PYRAMIDE I- Vue en perspective et définitions: Soit un polygone (ici le pentagone ABCDE) et S un point n'appartenant pas au plan de ce polygone. En joignant S à chacun des sommets du polygone on obtient

Plus en détail

Volume d une boule = 4 3 π r3

Volume d une boule = 4 3 π r3 Page 1 sur 5 Figure : Calcul d aires : exemple Parallélogramme Rectangle... Base hauteur Triangles base hauteur 2 Aire du parallélogramme ABCD = DC AE pour repérer la hauteur et la base, j ai repassé l

Plus en détail

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre C h`a p i tˇr`e 16 : Eṡfi p`a`c e Compétences évaluées dans ce chapitre Intitulé des compétences G60 G61 M13 Reconnaître et construire des solides. Utiliser et construire des représentations de solides.

Plus en détail

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures. Exercice 1 : (/4) COLLÈGE NAZARETH BREVET BLANC N 1-007- MATHÉMATIQUES Durée : heures. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin. Présentation, orthographe et rédaction

Plus en détail

Exercice (4 points) Deux bateaux et sont au large d une île et souhaitent la rejoindre pour y passer la nuit. Ils constatent qu ils sont séparés de 80

Exercice (4 points) Deux bateaux et sont au large d une île et souhaitent la rejoindre pour y passer la nuit. Ils constatent qu ils sont séparés de 80 Les exercices présentés sont soit des 0 02 0 04 05 exercices DST DE MATHEMATIQUES de brevet, soit extraits d ouvrages Mardi Mars 205 Nom : Prénom ( : Nathan et Hatier je crois ). Classe :. Le copyright

Plus en détail

Sujets de brevet sur les sections, agrandissement, réduction

Sujets de brevet sur les sections, agrandissement, réduction Sujets de brevet sur les sections, agrandissement, réduction Exercice 1 : Dans cet exercice, la figure ci-contre n est pas en vraie grandeur et ne reflète pas la réalité. Soit un cube ABCDEFGH de 6 cm

Plus en détail

Géométrie dans l espace: Exercices corrigés

Géométrie dans l espace: Exercices corrigés éométrie dans l espace: xercices corrigés åò ÓäÒ ê xercice 1 est un cube de 4 m de côté. I et J sont les milieux respectifs des segments [] et []. /space/exo-016/texte J I 1. Que peut-on dire des droites

Plus en détail

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse.

COURS. Dans un triangle rectangle, le côté opposé à l angle droit est appelé hypoténuse. EC 4A : ELEMENTS DE MATHEMATIQUES THEOREMES DE PYTHAGORE ET DE THALES COURS Objectifs du chapitre : Déterminer des longueurs dans un triangle en utilisant le théorème de Pythagore ou de Thalès. Démontrer

Plus en détail

D après des exemples tirés des manuels Cap Maths, sauf mention contraire

D après des exemples tirés des manuels Cap Maths, sauf mention contraire 1 / 6 Exemples d'activités géométriques D après des exemples tirés des manuels Cap Maths, sauf mention contraire Reproduction de figures Activité 1 : Avec la règle, sans mesurer... On a commencé à reproduire

Plus en détail

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie)

MATHÉMATIQUES 3e. 3 e - Contrôle d acquisitions. DURÉE 1h 50. Devoir n 6 - ALGEBRE. h(t) 1/7. Devoirs n 6 (Algèbre) et n 7 (géométrie) e - Contrôle d acquisitions er Trimestre Novembre 200 MATHÉMATIQUES e Devoirs n 6 (Algèbre) et n 7 (géométrie) Les deux devoirs sont à faire sur des copies différentes. On mettra les copies l une dans

Plus en détail

Contrôle n 4 3 ème 1 2heures.

Contrôle n 4 3 ème 1 2heures. Contrôle n 4 ème 1 2heures. Calculatrices autorisées. Partie numérique: 21 points Exercice 1: 4 points Les rennes et les lutins du père Noël ont décidé de partager leur dernier repas avant la grande tournée

Plus en détail

Classe : 3 éme Chapitre : G3 Titre : SPHERES et SECTIONS

Classe : 3 éme Chapitre : G3 Titre : SPHERES et SECTIONS lasse : 3 éme hapitre : 3 Titre : P et TIN 1) phères de l espace 1.1) éfinition n géométrie dans l espace, on ne parle pas de figures mais de solides. (objets en 3) Une sphère de centre et de rayon r est

Plus en détail

2. La base d'une pyramide a x côtés. Exprimer en fonction de x le nombre de faces, de sommets et d'arêtes de la pyramide.

2. La base d'une pyramide a x côtés. Exprimer en fonction de x le nombre de faces, de sommets et d'arêtes de la pyramide. Énoncés Exercice 1 1. Pour chaque pyramide ci-contre, colorier : en bleu, son sommet ; en vert, ses arêtes latérales ; en rouge, sa hauteur ; en jaune, le polygone représentant sa base. P 1 P P. Compléter

Plus en détail

I) Activités numériques

I) Activités numériques Brevet 1996 : Bordeaux I) Activités numériques Exercice 1 : Dans cet exercice, on utilisera le programme de calcul ci-après : Programme de calcul : choisir un nombre x ; retrancher au double de x ; élever

Plus en détail

BREVET BLANC DE MATHEMATIQUES 2013

BREVET BLANC DE MATHEMATIQUES 2013 BREVET BLANC DE MATHEMATIQUES 2013 L usage de la calculatrice est autorisée. Toutes les réponses doivent être justifiées sauf si une indication contraire est donnée. L épreuve est notée sur 40 points dont

Plus en détail

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires

Chapitre 12 : Aires et volumes. Module 1 : Calculs d aires Module 1 : Calculs d aires Tous les calculs d aires s appuient sur ce formulaire : Exemples : Exemple 1 : L aire du carré représenté ci-contre est : A 9 81 cm Exemple : L aire du rectangle représenté ci-contre

Plus en détail

CHAPITRE 16 : GEOMETRIE DANS L ESPACE

CHAPITRE 16 : GEOMETRIE DANS L ESPACE CHAPITRE 16 : GEOMETRIE DANS L ESPACE Ce chapitre rappelle les notions de base pour connaitre le vocabulaire et les propriétés attachées aux solides, pour savoir lire les représentations planes de ces

Plus en détail

I La perspective cavalière :

I La perspective cavalière : Mathématiques Année 2012 201 Module n 4 : Géométrie dans l espace 1 ( solides usuels ) 2 nde I La perspective cavalière : Pour représenter un objet en trois dimensions par une figure plane ( feuille de

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui compose ce polygone

Plus en détail

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 :

Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Corrections des exercices sur les pyramides et cônes de révolution Exercice 1 : Bien que sa base soit un polygone régulier ( un carré), la pyramide 1 n est pas régulière car sa hauteur ne passe pas par

Plus en détail

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire. - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x 4 2 2 A = b

Plus en détail

Corrigé du Brevet Blanc n 1 Activités Numériques (11 points)

Corrigé du Brevet Blanc n 1 Activités Numériques (11 points) Activités Numériques (11 points) Exercice 1 ( 6 points) : Pour toutes les questions, écrire les différentes étapes du calcul. 1) Calculer et donner une écriture scientifique du résultat, puis une écriture

Plus en détail

Correction du Brevet blanc n 1.

Correction du Brevet blanc n 1. Correction du Brevet blanc n 1. Exercice 1 : Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque question, quatre réponses sont proposées : une seule d entre elles est exacte. Pour chaque

Plus en détail

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1

Solides et patrons. Table des matières. Paul Milan. Professeurs des écoles le 29 septembre 2009 TABLE DES MATIÈRES 1 TABLE DES MATIÈRES 1 Solides et patrons. Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Les polyedres 2 1.1 Définition.................................. 2 1.2 Représentation

Plus en détail

Le théorème de Thalès et agrandissement/réduction

Le théorème de Thalès et agrandissement/réduction Le théorème de Thalès et agrandissement/réduction A) Le théorème de Thalès. 1. Enoncé du théorème. Théorème : Si ACE et ABD sont deux triangles tels que : B est un point de [AC). D est un point de [AE).

Plus en détail

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES

3 ème : ENTRAINEMENT AU BREVET DES COLLEGES 3 ème : ENTRAINEMENT AU BREVET DES COLLEGES Janvier 2012 Epreuve de : MATHEMATIQUES Durée : 2 heures L emploi de la calculatrice est autorisé. En plus des 36 points prévus pour les 3 parties de l épreuve,

Plus en détail

Brevet Juin France métropolitaine - Série Collège - Sujet

Brevet Juin France métropolitaine - Série Collège - Sujet Exercice 1 Activités numériques On donne un programme de calcul: Choisir un nombre. Multiplier ce nombre par 3. Ajouter le carré du nombre choisi. Multiplier par 2. Ecrire le résultat. 1 - Montrer que,

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

Triangle rectangle, cercle et médiane

Triangle rectangle, cercle et médiane Triangle rectangle, cercle et médiane A) Activités préparatoires. 1. Parallèles et milieux. Exercice n 1 : Recopier et compléter les chaînons suivants : 1 er cas : (AB) est parallèle à (CD). (MN) est parallèle

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 TABLE DES MATIÈRES CALCUL LITTÉRAL... 5 DÉVELOPPER UNE EXPRESSION LITTÉRALE... 5 FACTORISER UNE EXPRESSION LITTÉRALE... 6 SUPPRESSION DE PARENTHÈSES DEVANT DES SOMMES ALGÉBRIQUES... 6 RÉDUCTION

Plus en détail

Exercice : Espagne 00 tableau thématique La figure ci-dessous, donnée à titre indicatif, n est pas en vraie grandeur.

Exercice : Espagne 00 tableau thématique La figure ci-dessous, donnée à titre indicatif, n est pas en vraie grandeur. cadémies et années Trigonométrie : calcul Thèmes abordés ngle Longueur Pythagore Cercle Thalès ngle insc. espace ordeaux 00 x x Espagne 00 x x x Grenoble 00 x x x Nancy 00 x x x Paris 00 x Grenoble 01

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1 AIRE D UN PARALLELLOGRAMME Si le parallélogramme au chocolat pèse 40 grammes, alors le rectangle au chocolat pèse. On peut découper le parallélogramme pour obtenir le rectangle. Comparer les aires du parallélogramme

Plus en détail

3 ème BREVET : théorème de Thalès

3 ème BREVET : théorème de Thalès Exercice 1 1 Tracer en triangle ABC rectangle en A tel que : AB = 5 cm et AC = 3 cm. Placer le point D sur [AB] tel que BD = 4 cm. Tracer la perpendiculaire à (AB) passant par D, elle coupe [BC] en E.

Plus en détail

LA PYRAMIDE ET LE CÔ NE.

LA PYRAMIDE ET LE CÔ NE. LASSE DE 4EME ATIVITES GEOMETRIQUES LA PYRAMIDE ET LE Ô NE. Rappels du programme de 5 ème. 1. Le prisme droit. 1.1 Description. Un prisme droit est un solide dont les faces sont des rectangles. Il possède

Plus en détail

Aide : Vecteurs distance - colinéarité

Aide : Vecteurs distance - colinéarité Exercice : calculs de distances en repère orthonormal On donne les points A(- ;) B( ;) et C( ;-). Placer ces points dans un repère. ) Calculer les longueurs AB, BC et CA. En déduire la nature du triangle

Plus en détail

OPERATIONS AVEC NOMBRES RELATIFS

OPERATIONS AVEC NOMBRES RELATIFS 1 OPERATIONS AVEC NOMBRES RELATIFS 1) Addition et soustraction de nombres relatifs : a) Pour additionner deux nombres relatifs de même signe, le résultat prend le signe des deux nombres et pour distance

Plus en détail

Brevet Juin 2008 Métropole Réunion Corrige Page 1 sur 7

Brevet Juin 2008 Métropole Réunion Corrige Page 1 sur 7 Brevet Juin 008 Métropole Réunion Corrige Page sur 7 Exercice : TIVITES NUMERIQUES ( points) ) Si on choisit le nombre : 0 a) Multiplier ce nombre par : 0 = 0 b) Ajouter le carré du nombre choisi : 0 +

Plus en détail

) I à 1 près. Correction : 1) = 3

) I à 1 près. Correction : 1) = 3 Exercice : (Limoges 995 (5 points SABCD est une pyramide régulière dont la base est le carré ABCD de côté 5 cm et de centre I. La hauteur [SI] de la pyramide a pour longueur SI cm. Calculer le volume de

Plus en détail

CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, septembre V Exercice 1 : V Exercice 2 :

CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, septembre V Exercice 1 : V Exercice 2 : Mathématiques CORRECTION DU BREVET (DNB) MÉTROPOLE, RÉUNION, MAYOTTE, septembre 200 Correction proposée par Mr MORICEAU Saint Denis (RÉUNION), le 20 octobre 200 1 partie : Activités numériques V Exercice

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Cercles et polygones

Cercles et polygones Cercles et polygones I) Le cercle : a) Soit O un point donné et R un nombre décimal positif. On appelle cercle C de centre O et de rayon R, l ensemble des points M situés à la distance R du point O. On

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Mercredi 28 janvier Collège La Charme

Mercredi 28 janvier Collège La Charme BREVET BLANC ÉPREUVE DE MATHÉMATIQUES Mercredi 28 janvier 2009 Collège La Charme Durée : 2 heures L emploi des calculatrices est autorisé En plus des point prévus pour chacune des trois parties de l épreuve,

Plus en détail

Chapitre 5 : agrandissement, réduction ; sections de solides

Chapitre 5 : agrandissement, réduction ; sections de solides Chapitre 5 : agrandissement, réduction ; sections de solides I. Rappels et sections de solides 1/ Parallélépipède rectangle Description/Figure Un parallélépipède rectangle ou un pavé droit est une figure

Plus en détail

Ch.G5 : Pyramides et cônes

Ch.G5 : Pyramides et cônes 4 e A - programme 2011 mathématiques ch.g5 cahier élève Page 1 sur 8 Ch.G5 : Pyramides et cônes Activité n 1 page 20 De l'ancien vers le nouveau On a représenté, ci-dessous, des solides en perspective

Plus en détail

Calculs dans l espace

Calculs dans l espace 10 - L espace T econde 10.0.1 alculs dans l espace X 1 Une pièce métallique (en traits pleins) est découpée dans un cube. onstruire, en perspective cavalière : la pièce restante du cube la face restant

Plus en détail

Je fais le point sur mes objectifs

Je fais le point sur mes objectifs Je fais le point sur mon cours 1 Quelle figure représente un prisme droit en perspective cavalière? 2 Quelle figure représente un patron de prisme droit à base triangulaire? Quelle figure représente un

Plus en détail

SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE. DURÉE DE L ÉPREUVE : 2 h 00. Notée sur 40. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4.

SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE. DURÉE DE L ÉPREUVE : 2 h 00. Notée sur 40. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. BREVET BLANC n 1 SESSION 2013 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Notée sur 40. Ce sujet comporte 4 pages numérotées de 1/4 à 4/4. Dès qu il vous est remis, assurez-vous qu il est complet.

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures.

COLLÈGE NAZARETH BREVET BLANC N MATHÉMATIQUES Durée : 2 heures. COLLÈGE NAZARETH BREVET BLANC N 2-2009- MATHÉMATIQUES Durée : 2 heures. Les calculatrices sont autorisées ainsi que les instruments usuels de dessin. Présentation, orthographe et rédaction : 4 points.

Plus en détail

Chapitre 10 : GÉOMÉTRIE DANS L'ESPACE

Chapitre 10 : GÉOMÉTRIE DANS L'ESPACE Chapitre 10 : GÉOMÉTRIE DANS L'ESPACE 6 cm I) Sphère et Boule : 1) Définition : Sphère Une sphère de centre O est un ensemble de points de l'espace situé à une même distance du point O. La sphère de centre

Plus en détail

QCM :(9 points : 0,75 point par bonne réponse, aucun point n est enlevé par mauvaise réponse.)

QCM :(9 points : 0,75 point par bonne réponse, aucun point n est enlevé par mauvaise réponse.) nde Eléments de correction de l évaluation n 1 du 13/10/014 Durée : h Calculatrice autorisée. Le barème est donné à titre indicatif sur 40 Le recto de cette feuille et le repère au verso sont à faire sur

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A) Positions relatives dans l espace. Tous les résultats de géométrie plane s appliquent à chaque plan de l espace. 1. Détermination d un plan. Définition : Un plan est déterminé

Plus en détail

Géométrie dans l espace

Géométrie dans l espace 3e Table des matières I. Volumes 1 I. Volumes 2 3 4 5 a. Parallélépipède rectangle Volume d un parallélépipède rectangle V = L l h. b. Cylindre de révolution Volume d un cylindre V = π R 2 h. c. Pyramide

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

Calcul mental-minitest: triangles et quadrilatères

Calcul mental-minitest: triangles et quadrilatères Calcul mental-minitest: triangles et quadrilatères triangles et quadrilatères Lycée Français de Barcelone sixième (LFB - sixième) Calcul mental-minitest: triangles et quadrilatères sixième 1 / 21 Question

Plus en détail

Corrigé brevet Maths 2005 Série Collèges

Corrigé brevet Maths 2005 Série Collèges Corrigé brevet Maths 2005 Série Collèges Activités algébriques Exercice 1 1) Calcul de l expression 2) Expression scientifique de 3) Ecriture sous la forme le nombre Page 1 sur 10 4) Développons et simplifions

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Décembre 0 ÉPREUVE DE MATHÉMATIQUES classe de e Durée : heures Présentation et orthographe : points Les calculatrices sont autorisées, ainsi que les instruments usuels

Plus en détail

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES

DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé.

Plus en détail

1 LA SPHÈRE ET LA BOULE

1 LA SPHÈRE ET LA BOULE 1 L SPHÈRE ET L ULE 1.1 éfinitions ÉFINITIN 1 e - programme 01 mathématiques ch.g cahier élève Page 1 sur 14 h.g : Géométrie dans l espace La sphère de centre et de rayon r (r > 0) est l'ensemble des points

Plus en détail

Exercice. [ points ] Pour chaque question, écrire sur la copie la lettre ( A, B ou C ) correspondant à la bonne réponse. Aucune justification n est de

Exercice. [ points ] Pour chaque question, écrire sur la copie la lettre ( A, B ou C ) correspondant à la bonne réponse. Aucune justification n est de Mathématiques BREVET BLANC Classes de 01//// Mardi 1 Janvier 01 Durée h Calculatrice autorisée Total sur 0 points dont points réservés à la rédaction. Vous pouvez traiter les exercices dans le désordre.

Plus en détail

pour démarrer 4 1. À l aide d un quadrillage, représenter le cube ci-dessous À l aide d un quadrillage, représenter la pyramide ci-dessous.

pour démarrer 4 1. À l aide d un quadrillage, représenter le cube ci-dessous À l aide d un quadrillage, représenter la pyramide ci-dessous. pour démarrer ection de solides 1 n a représenté cicontre la section du cylindre d axe () par un plan parallèle à cet axe. Par laquelle des trois figures, cette section peut être représentée dans son plan?

Plus en détail