Ministère de l Enseignement Supérieur et de la Recherche Scientifique

Dimension: px
Commencer à balayer dès la page:

Download "Ministère de l Enseignement Supérieur et de la Recherche Scientifique"

Transcription

1 Ministère de l Enseignement Supérieur et de la Recherche Scientifique Institut National de Formation en Informatique (I.N.I) Oued Smar Alger Direction de la Post Graduation et de la Recherche Thème : Inférence d identité dans le domaine forensique en utilisant un système de reconnaissance automatique du locuteur adapté au dialecte Algérien Mémoire présenté pour obtenir le grade de MAGISTER EN IFORMATIQUE Spécialité Informatique Industrielle (II) Par : Tounsi bilal Proposé par : Dr. Bessalah Hamid M r. Bengherabi Messaoud Jury: M r. Ait Aoudia Samy Maître de Conférence (INI) Président M r. Guessoum Abderrezak Professeur (Blida) Examinateur M r. Ait Ali Yahia Yasine Chargé de Cours (INI) Examinateur M r. Bessalah Hamid Maître de Recherche (CDTA) Directeur de Mémoire M r. Bengherabi Messaoud Chargé de Recherche (CDTA) Invité Année Universitaire : 2007/2008

2 Remerciements Je tiens à remercier tout particulièrement mes encadreurs de Mémoire, Monsieur Bessalah Hamid, Ministre de la post et des technologies des informations et de la télécommunication, et Monsieur Bengherabi Messaoud, Chargé de recherche au Centre du Développement des Technologies Avancées (CDTA), pour leurs aides et conseils qu ils m ont apportés tout au long de ce travail Je tiens également à remercier Mr Harizi Farid et Mlle Mezai Lamia pour son aide dans la correction du mémoire. Je tiens aussi à remercier les membres de mon jury pour avoir accepter de juger mon travail. Finalement, je tiens à remercier tout ceux qui ont contribué de près ou de loin à la finalisation de ce travail. ii

3 Résumé La reconnaissance automatique du locuteur est le processus qui détermine automatiquement l identité de celui qui parle en se basant sur ses caractéristiques vocales. Actuellement, ce type de système est largement utilisé dans plusieurs domaines, essentiellement, dans la sécurisation d accès à des sites protégés, pour faire des transactions bancaires, ou pour répondre aux besoins d un tribunal pour un crime ou un litige civil. Le développement fulgurant des moyens de communications vocales (Mobile, VoIP,..) a permet à un grand flux d informations de circuler à travers les différents supports de communication. Ces informations peuvent être très utiles pour résoudre des problèmes criminalistiques. En effet, on peut facilement capturer des traces vocales, qui peuvent être analysées au moyen d un système de reconnaissance automatique du locuteur, et par conséquent, aider le tribunal à prendre une décision. Le travail présenté dans ce mémoire porte essentiellement sur l identification automatique du locuteur dans le domaine criminalistique (Forensique) adapté au dialecte algérien. Malgré que cette étude concerne de plus le cas criminalistique, tous les autres types des systèmes RAL (Reconnaissance Automatique du Locuteur) ont été étudiés. La contribution majeure de ce travail se voit dans la construction d une base de données de locuteurs algériens. Cette dernière est le résultat d une collaboration entre le CDTA (Centre du Développement des Technologies Avancées) et la société espagnole AGNITIO. La base de données nous a permis d effectuer plusieurs tests d évaluation sur les différents systèmes RAL. En plus, elle peut être utilisée pour construire un modèle UBM (Universal Background Model), qui représente la distribution statistique de l espace des vecteurs acoustiques des locuteurs algériens. Les expériences réalisées montrent que le système d identification forensique du locuteur est très intéressant et peut aider énormément à résoudre des problèmes criminalistiques. En effet, nous avons eu des résultats très promoteurs dans plusieurs conditions différentes. Nous avons aussi remarqué que les conditions d enregistrement iii

4 et les supports de transmission ont une grande influence sur les performances d un système d identification forensique du locuteur. Mots clés : Reconnaissance automatique du locuteur RAL, Identification forensique, Approche Bayesienne, Modèle de mélange de gaussiennes GMM, Vecteurs acoustiques. iv

5 Sommaire Sommaire Remerciements... 1 Résumé... iii Introduction générale... 1 Contexte et Motivation... 1 L organisation du mémoire... 2 Partie I : Introduction à la reconaissance automatique du locuteur 1 Généralités sur l identification du locuteur en criminalistique L identification forensique du locuteur Les techniques utilisées dans l identification forensique du locuteur L identification auditive du locuteur L identification du locuteur par l inspection visuelle des spectrogrammes L identification automatique du locuteur en criminalistique L estimation de la puissance d une preuve par l approche Bayesienne Conclusion Etat de l art sur la reconnaissance automatique du locuteur La reconnaissance automatique du locuteur La vérification du locuteur L identification du locuteur Une comparaison entre l identification et la vérification automatique du locuteur Les paramètres acoustiques La modélisation des paramètres acoustiques Une comparaison entre l identification forensique du locuteur et la reconnaissance automatique du locuteur a) L ensemble de référence v

6 Sommaire b) L approche Bayesienne c) Contrôle des échantillons Conclusion L interprétation Bayesienne d une preuve scientifique L approche Bayesienne Les avantages de l approche Bayesienne Les inconvénients de l approche Bayesienne L approche Bayesienne appliquée aux systèmes d identification forensique du locuteur Les bases de données L évaluation d un système biométrique en science forensique L échelle verbale du rapport de vraisemblance Les méthodes d estimation de la preuve Conclusion Partie II : Mise en oeuvre d un système d identification forensique du locuteur 4 Prétraitement et extraction des paramètres acoustiques Extraction des vecteurs acoustiques Le prétraitement La préaccentuation L élimination du silence Le fenêtrage L extraction des paramètres Les paramètres calculés par la prédiction linéaire Les paramètres calculés par l analyse Mel cepstral Les dérives des paramètres acoustiques Post traitement Conclusion La modélisation des vecteurs acoustiques L estimation du modèle GMM par l algorithme EM La phase d apprentissage La phase de classification ou de décision L estimation du modèle GMM par l algorithme MAP Conclusion vi

7 Sommaire Partie III : Tests d évaluation et conclusions 6 Tests et résultats d évaluation La base de données L outil d évaluation Les résultats des tests d évaluation L évaluation du système d identification du locuteur L évaluation du système de vérification du locuteur L évaluation du système d identification criminalistique du locuteur Conclusions et perspectives Perspectives Références Site web vii

8 Liste des figures Figures Fig 1.1 : Exemple d un spectrogramme Fig 1.2 : Courbes de mesure de confiance Fig 2.1: Schéma d un système de vérification du locuteur Fig 2.2 : Schéma d un système d identification du locuteur Fig 2.3 : La quantification vectorielle [data] Fig 2.4 : Un modèle de Markov caché [wiki] Fig 2.5 : Exemple d un réseau de neurone à deux entrées et une sortie [wiki] Fig 2.6 : Exemple d un mélange de gaussiennes monodimensionnelle [wiki] Fig 3.1 : Exemple d un graphique de type TipetPlot Fig 3.2 : La méthode directe [ANIL, 05] Fig 3.3 : La méthode des scores [ANIL, 05] Fig 4.1 : Les étapes principales pour l extraction des paramètres Fig 4.2 : Les étapes de prétraitement Fig 4.3 : Le filtre de la préaccentuation Fig 4.4: Les étapes principales pour éliminer le silence du deuxième algorithme Fig 4.5 : Les différentes mesures utilisées pour éliminer le silence Fig 4.6 : Du signal s ( ) avec silence au signal x ( ) sans silence en utilisant la 1 n 1 n fonction VAD (n) Fig 4.7: Les étapes du fenêtrage Fig 4.8 : Le découpage en trames Fig 4.9: Un modèle du conduit vocal Fig 4.10: Les étapes de la prédiction linéaire Fig 4.11: Le modèle de production de parole avec les tubes acoustiques Fig 4.12 : Les étapes à suivre pour créer un cepstral réel viii

9 Liste des figures Fig 4.13 : La transformation du Hz en Mel Fig 4.14 : La répartition des filtres triangulaires sur les échelles Fréquentielle et Mel Fig 4.15 : Les étapes pour le calcul des MFCC Fig 4.16 : les étapes de post traitement Fig 5.1 : Illustration de nuages acoustiques représentants l identité d un locuteur Fig 5.2 : Illustration des classes acoustiques d un locuteur dans un espace à 2 dimensions Fig 5.3 : Approximation de la distribution d un paramètre acoustique par une combinaison de gaussiennes Fig 5.4 : Schéma de fonctionnement de l algorithme LBG Fig 5.5: L adaptation par le technique MAP Fig 6.1 : L organisation de la base de données Fig 6.2 : L outil d évaluation Fig 6.3 : Un exemple de représentation graphique donnée par l outil d évaluation Fig 6.4 : L évaluation du système d identification du locuteur Fig 6.5 : Courbe ROC Fixe Vs Fixe Fig 6.6 : Courbe ROC Microphone Vs Microphone Fig 6.7 : Courbe ROC Mobile Vs Mobile Fig 6.8 : Tippet plots Fixe Vs Fixe Fig 6.9 : Tippet plots Microphone Vs Microphone Fig 6.10 : Tippet plots Mobile Vs Mobile ix

10 Liste des tableaux Tableaux Tab 3.1 : Quelques descriptions verbales du rapport de vraisemblance [ROSE, 02] Tab 6.1 : L ensemble de tests d évaluation qui peuvent être effectués sur la base de données de dialecte Algérien Tab 6.2 : Tests effectués sur le système de vérification du locuteur Tab 6.3 : EER des différentes courbes ROC Tab 6.4: Les rapports de vraisemblance des hypothèses H 0 et H x

11 Liste des abréviations Abréviations DCT: Discret Cosine Transform. DTW: Dynamic Time Warping EER: Equal Error Rate. EM: Expectation Maximization. FA: False Acceptance. FBI: Federal Bureau of Investigations. FFT: Fast Fourrier Transform. FR: False Rejection. GMM: Gaussian Mixtures Models. HMM: Hidden Markov Model. LAR: Log Area Ratio. LBG: Linde, Buzo et Gray. LPCC: Linear Prediction Cepstral Coefficients. MAP: Maximum à posteriori. MFCC: Mel Frequencies Cepstral Coefficients. RC : Reflection Coefficients. RAL: Reconnaissance Automatique du Locuteur. ROC: Receiver Operating Characteristic UBM: Universal Background model. xi

12 Introduction générale Introduction générale 1. Contexte et Motivation Le besoin de faire identifier des locuteurs anonymes par leur voix a connu un grand développement au cours de ces dernières années. Plusieurs techniques ont été proposées pour faire cette tâche. Ces dernières peuvent être classées selon trois approches: l approche auditive, l approche semi automatique, et l approche automatique basée sur une interprétation bayesienne de la preuve. Le problème avec les deux premières approches réside dans le fait qu elles nécessitent toujours des interventions humaines pour identifier une personne. Cette intervention n est pas toujours facile à faire, en effet, nous avons des problèmes qui dépendent de la langue du discours, du nombre de locuteurs à identifier, et du temps nécessaire pour faire l identification d un locuteur. Heureusement, avec le développement de l informatique, des systèmes de reconnaissance automatique du locuteur sont apparus, et ont simplifié énormément la tâche de la reconnaissance du locuteur. L avantage des systèmes RAL est qu ils sont indépendants du texte, Indépendants de la langue du discours, et la reconnaissance du locuteur est totalement automatisée et ne nécessite aucune intervention humaine. L objectif principal de ce travail est d étudier et d évaluer un système d identification automatique du locuteur en criminalistique, en utilisant le modèle GMM (Gaussian Mixture Model), adapté au dialecte Algérien. Ce système est basé principalement sur l approche bayesienne. Cette approche nécessite la création de plusieurs bases de données pour permettre l estimation et l évaluation des modèles statistiques des locuteurs. Pour atteindre cet objectif, une base de données de 40 locuteurs a été construite au sein du CDTA (Centre de Développement des Technologies Avancées) et en coopération avec la société espagnole Agnitio, qui est un leader dans la Speech Technology et principalement dans la reconnaissance automatique du locuteur. Cette base de données a été utilisée pour construire un 1

13 Introduction générale modèle UBM (Universal Backgroud Model), qui est très intéressant pour la bonne estimation des modèles statistiques des locuteurs Algériens. 2. L organisation du mémoire Ce mémoire se compose de sept chapitres, organisés comme suit : Le Chapitre 1 présente des généralités sur l identification du locuteur en criminalistique. Le Chapitre 2 contient une présentation des différents systèmes de reconnaissance automatique du locuteur. Une comparaison entre les systèmes de vérification et d identification du locuteur d une part et le système d identification forensique du locuteur d une autre part, a été aussi présentée. Le Chapitre 3 décrit en détails l approche Bayesienne utilisée dans les systèmes d identification de n import qu elle discipline forensique. Dans le Chapitre 4, nous avons mentionné un ensemble de paramètres acoustiques utilisés dans les systèmes RAL. Le Chapitre 5 présente le modèle statistique le plus utilisé dans les systèmes de reconnaissance automatique du locuteur en mode indépendant du texte, à savoir, le modèle GMM (Gaussian Mixture Model). Le Chapitre 6 contient l ensemble des tests effectués et les résultats que nous avons obtenus. Le dernier chapitre conclue ce travail et met l accent sur quelques problèmes qui peuvent être traités par des futurs travaux. 2

14 Inférence d identité dans le domaine forensique en utilisant un système de reconnaissance automatique du locuteur adapté au dialecte Algérien Partie I : La reconaissance automatique du locuteur en criminalistique

15 Chapitre1 Généralités sur l identification du locuteur en criminalistique Généralités sur l identification du locuteur en criminalistique La science forensique est l utilisation des outils scientifiques pour répondre aux besoins d un tribunal pour un crime ou un litige civil [wiki]. Les principaux domaines utilisés dans la science forensique sont : la biologie, la chimie, et la médecine. Malgré la dominance de ces dernières, il est a mentionné qu il existe d autres disciplines utilisées telles que : la physique, l informatique, la géologie, et la psychologie [answers]. Par exemple, les paramètres biométriques traditionnels, tels que l ADN et l empreinte digitale, sont souvent utilisés dans plusieurs cas forensiques. La nature de preuve, trouvée dans la scène du crime ou collectée à partir d opérations d investigation, impose les méthodes ou les disciplines scientifiques nécessaires pour faire son étude. Dans ce mémoire, nous nous intéressons aux méthodes d identification d un enregistrement vocale. L analyse de la voix est utilisée, pour la première fois, durant la deuxième guère mondiale pour des buts d espionnage militaire. Son utilisation pour des investigations forensique remonte aux années 60s, elle repose sur le fait que chaque personne peut être identifiée à partir d un échantillon de sa voix. Un suspect peut laisser des enregistrements de sa voix sur le téléphone, le Voic , un répondeur ou dans un enregistreur caché, et par la suite, il peut être utilisé comme preuve [enotes]. Un système forensique - 3 -

16 Chapitre1 Généralités sur l identification du locuteur en criminalistique d identification du locuteur est basé, principalement, sur un système de reconnaissance du locuteur, avec la prise en compte de certaines conditions et contraintes qui dépendent de la nature de cette application. Les approches les plus utilisées dans la reconnaissance du locuteur sont l approche auditive, l approche auditive instrumentale et l approche automatique. L approche auditive est basée principalement sur l écoute d un enregistrement audio par des phonéticiens expérimentés. Les différences perçues dans les paroles sont utilisées pour estimer la mesure de similarité entre les voix. Bien que cette approche ne soit pas adéquate pour la reconnaissance du locuteur, elle est très utile pour déterminer son profil. En plus de ces différences, les locuteurs se différent entre eux par leurs rythme de paroles, par leurs intonations, et par leurs articulations. L approche auditive a plusieurs limites. Dans l analyse phonétique traditionnelle, elle est utilisée pour extraire quelques paramètres d intérêt qui sont par la suite utilisés par l approche auditive instrumentale [ANIL, 05]. L approche auditive instrumentale implique le mesurage acoustique de plusieurs paramètres tels que : La fréquence fondamentale, le taux d articulation, l énergie spectrale, les formants, etc. Les moyennes et les variances de ces paramètres sont comparées pour faire l identification d un locuteur. L utilisation des spectrogrammes, pour la reconnaissance du locuteur, peut être considérée comme une autre méthode de cette approche [Bolt et al, 73] [ANIL, 05]. Le développement fulgurant de l informatique a donné une grande contribution à la reconnaissance automatique du locuteur et a permit de faire des traitements très complexes. En effet, la grande capacité de calcul des ordinateurs a contribué à l apparition de ce type de systèmes. Dans un système de reconnaissance automatique du locuteur, les modèles statistiques des paramètres acoustiques de la voix du locuteur sont comparés avec les paramètres acoustiques extraits de l enregistrement audio en question

17 Chapitre1 Généralités sur l identification du locuteur en criminalistique Le degré de similarité entre les paramètres acoustiques extraits de l enregistrement en question (ou la trace), et ceux extrait d un enregistrement du suspect, représenté par son modèle statistique, est calculé pour évaluer la preuve [Dryg et al, 03]. Dans les systèmes forensiques de reconnaissance automatique du locuteur, la puissance d une telle preuve est donnée par la probabilité d observer les paramètres de la trace dans le modèle statistique de la voix du locuteur suspect et dans les modèles des voix d une population potentielle [ANIL, 05]. Les systèmes de reconnaissance automatique du locuteur ont connu un grand succès durant ces dernières années. Cela est dû aux types des paramètres acoustiques utilisés qui donnent une présentation meilleure et plus complète du conduit vocal par rapport aux paramètres traditionnels. Malheureusement, l utilisation d un tel système dans le domaine forensique reste très limitée. Ce déphasage peut être expliqué par le fait, de la difficulté d expliquer au jury la signification des paramètres acoustiques, par exemple : les coefficients cepstraux, d une part, et par le manque d une interprétation qui relie ces coefficients (coefficients cepstraux) aux propriétés linguistiques, auditives, ou articulatoires des voix traitées, d une autre part [Rose, 02]. 1.1 L identification forensique du locuteur L identification ou la reconnaissance forensique (criminalistique) du locuteur est une tâche très complexe et nécessite la compréhension de plusieurs disciplines scientifiques y compris, les linguistiques, l acoustique, le traitement de signal et les statistiques. Avec le développement fulgurant de la téléphonie et l utilisation de la voix humaine pour commettre des crimes, l identification des personnes par leur voix est devenue un domaine populaire et objet d étude de plusieurs centres de recherche dans le monde. D après [ROSE, 02], la définition de l identification forensique d un locuteur est comme suit : - 5 -

18 Chapitre1 Généralités sur l identification du locuteur en criminalistique «C est l avis des experts dans un processus légal pour répondre à la question suivante : est ce que un ou plusieurs enregistrements vocaux sont générés par le même locuteur ou non?» Il existe plusieurs techniques utilisées dans le domaine de la reconnaissance forensique du locuteur. Dans ce que suit, nous présentons ces différentes techniques. 1.2 Les techniques utilisées dans l identification forensique du locuteur Dans les dernières années, plusieurs études ont été faites sur l évolution historique de l identification forensique du locuteur. Plusieurs auteurs ont publié des livres qui couvrent quelques techniques utilisées par des phonéticiens, des linguistes et des experts de la voix. Les techniques utilisées dans l identification forensique du locuteur peuvent être résumées en trois classes : 1) l identification auditive, 2) l identification par la visualisation des spectrogrammes, et 3) l identification automatique du locuteur. Dans ce qui suit, nous donnons une brève description à chaque technique L identification auditive du locuteur L identification auditive est faite par l écoute d un ou de plusieurs enregistrements vocaux afin de pouvoir identifier la résultats sont possibles : source de ces voix. Dans cette technique, trois L auditeur n est pas familiarisé avec la voix traitée, dans ce cas la source de la voix est inconnue. La voix est reconnue par l auditeur, mais ce dernier, ne peut pas l associée à un locuteur. La voix est reconnue par l auditeur qui l associée à un locuteur

19 Chapitre1 Généralités sur l identification du locuteur en criminalistique L application de cette technique dans le domaine forensique est faite selon deux variantes, la reconnaissance naïve et la reconnaissance technique. L identification naïve est faite par des personnes non expertes, sans l utilisation d aucune technique. Dans le cas usuel, cette tâche est faite par des victimes ou par des témoins. Bien que ce type de reconnaissance puisse être d une valeur significative au tribunal, dans le cas où on ne dispose pas d un enregistrement vocal, la fiabilité et la performance de cette méthode dépend de plusieurs paramètres, y compris, le temps écoulé depuis que le crime soit commis, la duré dans laquelle la victime a entendu la voix du criminel, etc [NOLA, 97]. En plus, la capacité de reconnaître une personne par sa voix varie largement selon les conditions de l écoute, le nombre d expériences, le nombre des voix inconnues, etc. L autre variante de l identification auditive, à savoir, la reconnaissance technique, est faite par des experts phonétiques ou linguistiques. L analyse de la voix est faite par l utilisation des méthodes scientifiques qui permet, non seulement, d expliquer l avis de l expert, mais aussi de pouvoir analyser cet avis par d autres experts. Malgré que l opinion des experts est acceptée par des tribunaux de plusieurs payés, l identification forensique du locuteur basée uniquement sur «l approche auditive» n est pas acceptée par plusieurs experts dans ce domaine [MEHR, 06] L identification du locuteur par l inspection visuelle des spectrogrammes Dans cette technique, l examinateur commence le processus de comparaison en plaçant des pairs de spectrogrammes correspondants à la même phrase et les compare mot par mot. D après [TOSI, 79], les paramètres les plus utilisés dans ce type de comparaison sont, les moyennes des fréquences, les pentes des formants, les interformants, et la densité de la puissance nasale. L analyse spectrographique a été largement utilisée et acceptée dans les Etats Unies, des payés de l Europe, et d autre payés pendant les années 1960s et 1970s. Cependant, cette technique a été abandonnée dans quelques - 7 -

20 Chapitre1 Généralités sur l identification du locuteur en criminalistique payés tel que l Allemagne et les Etats Unies pour plusieurs raisons. Parmi ces raisons, nous pouvons citer : La supposition principale dans l analyse spectrographique est que les variabilités inter locuteur d un modèle spectrographique, pour des mêmes paroles, sont très grandes de celles d intra locuteur. Cette supposition n était pas évidente après l analyse spectrographique de plusieurs paroles des mêmes et des différents locuteurs [FREN, 94]. Il n est pas clair de signaler légalement une similarité ou une différence significative entre des spectrogrammes. En plus, la décision dépend principalement des compétences de l examinateur [KUNZ, 95]. L analyse spectrographique a donnée des performances moins que celles de l analyse auditive [KUNZ, 95] [NOLA, 83]. Pour ces raisons, plusieurs chercheurs ont pensé que le nom «empreinte vocale» est une appellation impropre en le comparant par «l empreinte digitale». La différence la plus significative est la rigidité de l empreinte digitale par rapport à la flexibilité des échantillons vocaux. De plus, la plus part des chercheurs pensent que l utilisation de l analyse spectrographique n est qu une transformation d une comparaison auditive en une comparaison visuelle. En résumé, l interprétation des spectrogrammes n est pas une technique adéquate pour un système d identification forensique du locuteur [MEHR, 06] L identification automatique du locuteur en criminalistique Deux méthodes ont été utilisées pour faire une identification automatique du locuteur en criminalistique, la première est basée sur une approche bayesienne, tandis que la deuxième est basée sur l utilisation d intervalle de confiance. Dans la section suivante, nous donnons une brève description des deux approches

21 Chapitre1 Généralités sur l identification du locuteur en criminalistique Fig 1.1 : Exemple d un spectrogramme. L identification forensique du locuteur par l approche Bayesienne Le théorème de Bayes est parmi les facteurs les plus importants dans l évolution historique des systèmes d identification forensique du locuteur. L utilisation des rapports de vraisemblances a aidé les experts à quantifier et interpréter la puissance d une preuve scientifique dans le domaine forensique. Comme il a été mentionné par [AITK, 95], dans la science forensique, l identité de la source d une preuve ne peut pas être connue avec certitude, et par conséquent, elle doit être inférée ou déduite. Le processus d inférence dans un contexte forensique, peut être vu comme étant un processus de réduction d une population initiale à un groupe restreint ou éventuellement à une seule personne [MEUW, 01]. Dans l approche bayesienne, le rapport de vraisemblance est le rapport entre deux probabilités conditionnelles, sous deux hypothèses concurrentes, d une même preuve. Les deux hypothèses sont les suivantes [ANIL, 07] : H 0 : Le suspect est la source de l enregistrement vocal. H 1 : L origine de l enregistrement vocal n est pas le locuteur suspect

22 Chapitre1 Généralités sur l identification du locuteur en criminalistique Il est à mentionner que le rapport de vraisemblance n est pas un test d une hypothèse sur un ensemble de données, mais plutôt, un moyen de comparaison de deux hypothèses compétitives. Par exemple, si nous avons un rapport de vraisemblance de 10, alors il est dix fois possible d avoir la preuve sous l hypothèse H 0 que sous l hypothèse H 1 [EVET, 95]. Parmi les raisons pour lesquelles l approche Bayesienne est adéquate pour l évaluation et l interprétation d une preuve forensique, [ROSE, 02] a cité: C est une théorie logique démontrée et ne contient aucun doute. Elle dirige le tribunal, les jurés et principalement les experts à considérer la probabilité conditionnelle de la preuve sous deux hypothèses concurrentes [AITK, 95]. Elle clarifie et sépare les rôles du juge et des experts forensiques. Elle assiste les experts dans l évaluation de la valeur d une preuve scientifique et la présenter sous forme d une vraisemblance. C est une très bonne méthode pour combiner des nouvelles preuves. Pour ces raisons, nous avons choisi cette approche pour être l objet d étude de ce mémoire. Elle sera étudiée en détails dans le troisième chapitre. L identification forensique du locuteur par intervalle de confiance Dans cette technique, une mesure de confiance est calculée pour supporter une des hypothèses H0 ou H1 définies plus haut. Les mesures de confiance sont utilisées pour décider de rejeter ou d accepter une hypothèse de reconnaissance. La prise de décision s appuie sur un test du rapport de vraisemblance. Cette technique est développée au sein du FBI (Federal Bureau of Investigation) par Nakazone en 2002 [NAKA, 01]

23 Chapitre1 Généralités sur l identification du locuteur en criminalistique Elle est très semblable à la première méthode car elles sont, toutes les deux, basées sur l utilisation des rapports de vraisemblances Les scores 0.04 Probabilité 0.02 Faux Score Vrai Score Test Score Probabilité de mesure de confiance P(Ht x) Courbe de confiance Test Score Valeur de confiance GMM Scores Fig 1.2 : Courbes de mesure de confiance 1.3 L estimation de la puissance d une preuve par l approche Bayesienne Identifier une personne par l analyse de sa voix est une tâche très difficile. Cela est dû à la variabilité des caractéristiques vocales, non seulement pour des locuteurs différents, mais aussi pour le locuteur à identifier. Dans la réalité, les caractéristiques vocales d un locuteur montrent des variations moins importantes pour le même locuteur par apport à une population potentielle, en comparant les mêmes caractéristiques vocales. Dans les systèmes forensique d identification automatique du locuteur, le problème principal réside dans la difficulté de trouver une formule de vraisemblance qui prend en

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite): Paramétrisation. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite): Paramétrisation Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale Paramétrisation Distances

Plus en détail

Un code-barre sur la tête?

Un code-barre sur la tête? Un code-barre sur la tête? Les nouvelles tendances des technologies de biométrie. Nouvelles technologies GISIC 2010 Photo Steven Puetzer Prof. Jean Hennebert Université de Fribourg HES-SO Jean Hennebert

Plus en détail

Un code-barre sur la tête?

Un code-barre sur la tête? Un code-barre sur la tête? Les nouvelles tendances des technologies d'identification, de la biométrie à l'internet des objets. Présentation au Groupement Industriel Fribourgeois, Décembre 08 Photo Steven

Plus en détail

Reconnaissance vocale

Reconnaissance vocale Reconnaissance vocale Définition : La reconnaissance vocale ou (Automatic Speech Recognition ASR) est une technologie de transcription d'un système «phonatoire organique»exploitable par une machine. La

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Chapitre 3 : INFERENCE

Chapitre 3 : INFERENCE Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage

Plus en détail

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008

Master IAD Module PS. IV. Reconnaissance de la parole. Gaël RICHARD Février 2008 Master IAD Module PS IV. Reconnaissance de la parole Gaël RICHARD Février 2008 1 Contenu Introduction aux technologies vocales Production et Perception de la parole Modélisation articulatoire Synthèse

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

CONCLUSIONS. Par rapport aux résultats obtenus, on peut conclure les idées suivantes :

CONCLUSIONS. Par rapport aux résultats obtenus, on peut conclure les idées suivantes : CONCLUSIONS L application de la PNL à l entreprise est confrontée aux besoins des leaders d équipe, tels que: la gestion de son propre développement, du stress, la résolution des problèmes tels que les

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

Validité prédictive des questionnaires Cebir. Etude 1 : validité critérielle dans le secteur du gardiennage

Validité prédictive des questionnaires Cebir. Etude 1 : validité critérielle dans le secteur du gardiennage Validité prédictive des questionnaires Cebir Introduction Dans le domaine de la sélection, il est particulièrement intéressant de déterminer la validité prédictive d un test. Malheureusement, les occasions

Plus en détail

Coup de Projecteur sur les Réseaux de Neurones

Coup de Projecteur sur les Réseaux de Neurones Coup de Projecteur sur les Réseaux de Neurones Les réseaux de neurones peuvent être utilisés pour des problèmes de prévision ou de classification. La représentation la plus populaire est le réseau multicouche

Plus en détail

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006

Jean-François Bonastre. jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L authentification biométrique vocale Jean-François Bonastre jean-francois.bonastre@lia.univ-avignon.fr www.lia.univ-avignon.fr 08 Février 2006 L identification vocale dans le milieu judiciaire Une motivation

Plus en détail

Clermont Ferrand - Janvier 2003

Clermont Ferrand - Janvier 2003 DISDAMIN: Algorithmes de Data Mining Distribués Valerie FIOLET (1,2) - Bernard TOURSEL (1) 1 Equipe PALOMA - LIFL - USTL - LILLE (FRANCE) 2 Service Informatique - UMH - MONS (BELGIUM) Clermont Ferrand

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

5. Validité de la méta-analyse

5. Validité de la méta-analyse 5. Validité de la méta-analyse 5.1. Poids de la preuve d une méta-analyse Le poids de la preuve d un résultat scientifique quantifie le degré avec lequel ce résultat s approche de la réalité. Il ne s agit

Plus en détail

Mesure agnostique de la qualité des images.

Mesure agnostique de la qualité des images. Mesure agnostique de la qualité des images. Application en biométrie Christophe Charrier Université de Caen Basse-Normandie GREYC, UMR CNRS 6072 Caen, France 8 avril, 2013 C. Charrier NR-IQA 1 / 34 Sommaire

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

I n t r o d u c t i o n Les étapes de la recherche à l a r e c h e r c h e

I n t r o d u c t i o n Les étapes de la recherche à l a r e c h e r c h e I n t r o d u c t i o n Les étapes de la recherche à l a r e c h e r c h e Les objectifs pédagogiques Savoir délimiter les trois phases distinctes de la recherche Savoir identifier, pour chacune des trois

Plus en détail

Document d orientation sur les allégations issues d essais de non-infériorité

Document d orientation sur les allégations issues d essais de non-infériorité Document d orientation sur les allégations issues d essais de non-infériorité Février 2013 1 Liste de contrôle des essais de non-infériorité N o Liste de contrôle (les clients peuvent se servir de cette

Plus en détail

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier

Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration

Plus en détail

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique.

Dans ce chapitre nous allons étudier une méthode pratique d anti-phishing, ce qui consiste à un système de classification automatique. I INTRODUCTION Les pages de phishing sont l un des problèmes majeurs de sécurité sur internet. La majorité des attaques utilisent des méthodes sophistiquées comme les fausses pages pour tromper les utilisateurs

Plus en détail

23. Interprétation clinique des mesures de l effet traitement

23. Interprétation clinique des mesures de l effet traitement 23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d

Plus en détail

GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE Préalable(s) : Aucun PLAN DE COURS SESSION AUTOMNE 2013

GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE Préalable(s) : Aucun PLAN DE COURS SESSION AUTOMNE 2013 École de technologie supérieure Département de génie de la production automatisée Responsable(s) du cours : Crédits : Richard Lepage, ing., Ph.D. GPA759 RÉSEAUX DE NEURONES ET INTELLIGENCE ARTIFICIELLE

Plus en détail

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole

Références. Compter les mots. Le langage comme donnée. Communication Langagière Ingénierie des langues et de la parole Communication Langagière Ingénierie des langues et de la parole 1. Introduction générale 2. Ingénierie des langues 2.1 Représentation et codage des textes 2.2 Théorie de l information et probabilités 2.3

Plus en détail

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION

LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION LE RÔLE DE LA STATISTIQUE DANS UN PROCESSUS DE PRISE DE DÉCISION Sylvie Gervais Service des enseignements généraux École de technologie supérieure (sylvie.gervais@etsmtl.ca) Le laboratoire des condensateurs

Plus en détail

SCI03 - Analyse de données expérimentales

SCI03 - Analyse de données expérimentales SCI03 - Analyse de données expérimentales Introduction à la statistique Thierry Denœux 1 1 Université de Technologie de Compiègne tél : 44 96 tdenoeux@hds.utc.fr Automne 2014 Qu est ce que la statistique?

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

CRÉER UN COURS EN LIGNE

CRÉER UN COURS EN LIGNE Anne DELABY CRÉER UN COURS EN LIGNE Deuxième édition, 2006, 2008 ISBN : 978-2-212-54153-3 2 Que recouvre le concept d interactivité? Dans une perspective de cours en ligne, une activité interactive est

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité

CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité 1 CNAM 2002-2003 2léments de cours Bonus-malus et Crédibilité Une situation fréquente en pratique est de disposer non pas d un résultat mais de plusieurs. Le cas se présente en assurance, par exemple :

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs.

Préparation à l agrégation 2012/2013. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Mots clés : Graphes. Vecteur propre ; matrices stochastiques ; matrices à coefficients positifs. Le jury n exige pas une compréhension exhaustive du texte. Vous êtes laissé(e) libre d organiser votre discussion

Plus en détail

MORPHO CRIMINAL JUSTICE SUITE

MORPHO CRIMINAL JUSTICE SUITE MORPHO CRIMINAL JUSTICE SUITE UNE GAMME COMPLÈTE DÉDIÉE AUX MISSIONS DE LA POLICE JUDICIAIRE 2 1 3 Morpho offre aux forces de l ordre une gamme complète de produits pour les assister dans les recherches

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Calculatrice vocale basée sur les SVM

Calculatrice vocale basée sur les SVM Calculatrice vocale basée sur les SVM Zaïz Fouzi *, Djeffal Abdelhamid *, Babahenini MohamedChaouki*, Taleb Ahmed Abdelmalik**, * Laboratoire LESIA, Département d Informatique, Université Mohamed Kheider

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Alignement temporel et Programmation dynamique Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance

Plus en détail

Apprentissage Automatique

Apprentissage Automatique Apprentissage Automatique Introduction-I jean-francois.bonastre@univ-avignon.fr www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs

Plus en détail

Evaluation d un test diagnostique - Concordance

Evaluation d un test diagnostique - Concordance Evaluation d un test diagnostique - Concordance Michaël Genin Université de Lille 2 EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michaelgenin@univ-lille2fr Plan 1 Introduction 2 Evaluation

Plus en détail

GIND5439 Systèmes Intelligents. Septembre 2004

GIND5439 Systèmes Intelligents. Septembre 2004 GIND5439 Systèmes Intelligents Septembre 2004 Contenu du cours Introduction aux systèmes experts Intelligence artificielle Représentation des connaissances Acquisition de connaissances Systèmes à base

Plus en détail

ADAPTER LA METHODE AUX OBJECTIFS DE L ENQUETE

ADAPTER LA METHODE AUX OBJECTIFS DE L ENQUETE Déchets : outils et exemples pour agir Fiche méthode n 1 www.optigede.ademe.fr ADAPTER LA METHODE AUX OBJECTIFS DE L ENQUETE Origine et objectif de la fiche : Les retours d expérience des collectivités

Plus en détail

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe

Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Reconnaissance de la parole par distance DTW Exemple d application pour la reconnaissance de chiffres isolés dans la langue arabe Abderrahmane BENDAHMANE Laboratoire SIMPA Département d informatique Université

Plus en détail

Étapes du développement et de l utilisation d un modèle de simulation

Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Étapes du développement et de l utilisation d un modèle de simulation Formulation du problème Cueillette et analyse de données Conception

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

L essentiel sur les tests statistiques

L essentiel sur les tests statistiques L essentiel sur les tests statistiques 21 septembre 2014 2 Chapitre 1 Tests statistiques Nous considérerons deux exemples au long de ce chapitre. Abondance en C, G : On considère une séquence d ADN et

Plus en détail

Interprétation d une analyse de variance avec mesures répétées

Interprétation d une analyse de variance avec mesures répétées Approche quantitative Interprétation d une analyse de variance avec mesures répétées «Les faits sont têtus. Il est plus facile de s arranger avec les statistiques.» Mark Twain L objectif de ce document

Plus en détail

Discrétisation et génération de hiérarchies de concepts

Discrétisation et génération de hiérarchies de concepts Prétraitement des données 1 Pourquoi prétraiter les données? Nettoyage des données Intégration et transformation Réduction des données Discrétisation et génération de hiérarchies de g concepts Pourquoi

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

SONDAGE DES MEMBRES DE L APIGQ RÉSULTATS ET ANALYSE

SONDAGE DES MEMBRES DE L APIGQ RÉSULTATS ET ANALYSE SONDAGE DES MEMBRES DE L APIGQ RÉSULTATS ET ANALYSE SEPTEMBRE 2008 TABLE DES MATIÈRES INTRODUCTION... 3 SONDAGE ET ÉCHANTILLONNAGE... 3 SONDAGE... 3 ÉCHANTILLONNAGE... 4 COMPILATION DES RÉSULTATS... 4

Plus en détail

Sélection- validation de modèles

Sélection- validation de modèles Sélection- validation de modèles L. Rouvière laurent.rouviere@univ-rennes2.fr JANVIER 2015 L. Rouvière (Rennes 2) 1 / 77 1 Quelques jeux de données 2 Sélection-choix de modèles Critères de choix de modèles

Plus en détail

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING

CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING CALCUL D UN SCORE ( SCORING) Application de techniques de discrimination LES OBJECTIFS DU SCORING SÉLECTION DES RISQUES PRÉVISION DES DÉFAUTS SUIVI ET CONTRÔLE Pierre-Louis GONZALEZ Différents types de

Plus en détail

Introduction au cours STA 102 Analyse des données : Méthodes explicatives

Introduction au cours STA 102 Analyse des données : Méthodes explicatives Analyse des données - Méthodes explicatives (STA102) Introduction au cours STA 102 Analyse des données : Méthodes explicatives Giorgio Russolillo giorgio.russolillo@cnam.fr Infos et support du cours Slide

Plus en détail

UTFPR. Nada Benlahbib. [DATA MINING] Fertility Data Set

UTFPR. Nada Benlahbib. [DATA MINING] Fertility Data Set UTFPR [DATA MINING] Fertility Data Set Sommaire Introduction... 2 1. Description de la base de données... 3 1.1. Origine de la base... 3 1.2. Description des attributs... 3 1.3. Exploration des données...

Plus en détail

Facteurs liés au rendement des élèves au Test de mathématiques, 9 e année, de l OQRE

Facteurs liés au rendement des élèves au Test de mathématiques, 9 e année, de l OQRE n Quelles sont les différences et les similarités, d après certaines caractéristiques du milieu familial et les réponses au questionnaire, entre les élèves de 9 e année inscrits au cours théorique et au

Plus en détail

Il y a trois types principaux d analyse des résultats : l analyse descriptive, l analyse explicative et l analyse compréhensive.

Il y a trois types principaux d analyse des résultats : l analyse descriptive, l analyse explicative et l analyse compréhensive. L ANALYSE ET L INTERPRÉTATION DES RÉSULTATS Une fois les résultats d une investigation recueillis, on doit les mettre en perspective en les reliant au problème étudié et à l hypothèse formulée au départ:

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Informatique visuelle - Vision par ordinateur. Pré-traitement d images

Informatique visuelle - Vision par ordinateur. Pré-traitement d images Informatique visuelle - Vision par ordinateur Pré-traitement d images Elise Arnaud elise.arnaud@imag.fr cours inspiré par X. Descombes, J. Ros, A. Boucher, A. Manzanera, E. Boyer, M Black, V. Gouet-Brunet

Plus en détail

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE Paul Pașcu, Assist Prof, PhD, Ștefan cel Mare University of Suceava Abstract: This article aims to present a number

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites

La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Types de REA produites dans le cadre de la séquence pédagogique

Types de REA produites dans le cadre de la séquence pédagogique Scénario pédagogique APPRENDRE À ENSEIGNER AUTREMENT Description générale du scénario Titre Les bases de données relationnelles Résumé Dans le cadre d'un cours à distance, la visioconférence est une REA

Plus en détail

Introduction aux épreuves de logique des concours ACCÈS et SESAME

Introduction aux épreuves de logique des concours ACCÈS et SESAME Introduction aux épreuves de logique des concours ACCÈS et SESAME «La chance aide parfois, le travail toujours» Vous vous apprêtez à vous lancer dans cette course contre la montre qu est l admission en

Plus en détail

Processus : les outils d optimisation de la performance

Processus : les outils d optimisation de la performance Yvon Mougin Processus : les outils d optimisation de la performance Préface de Pierre MAILLARD Directeur Général de L Institut de Recherche et de Développement de la Qualité, 2004 ISBN : 2-7081-3022-6

Plus en détail

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations.

DOSSIER N 01. Exemples simples de problèmes de dénombrement dans différentes situations. DOSSIER N 01 Question : Présenter un choix d exercices sur le thème suivant : Exemples simples de problèmes de dénombrement dans différentes situations. Consignes de l épreuve : Pendant votre préparation

Plus en détail

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL

La régression logistique. Par Sonia NEJI et Anne-Hélène JIGOREL La régression logistique Par Sonia NEJI et Anne-Hélène JIGOREL Introduction La régression logistique s applique au cas où: Y est qualitative à 2 modalités Xk qualitatives ou quantitatives Le plus souvent

Plus en détail

Analyse des bruits de clavier d ordinateur

Analyse des bruits de clavier d ordinateur Analyse des bruits de clavier d ordinateur Introduction 1 Enregistrement des bruits de clavier 2 Analyse des bruits de clavier 3 Analyse du niveau de pression acoustique vs. temps 4 Sonie vs. temps 4 Acuité

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

Avant-propos. 1. Institut national de recherche en informatique et en automatique.

Avant-propos. 1. Institut national de recherche en informatique et en automatique. Avant-propos J ai découvert, un jour de 1986, l ouvrage de G. Fishman [FIS 73] sur la simulation au centre de documentation de l INRIA 1 à Rocquencourt. J ai été aussitôt attiré par ce procédé numérique

Plus en détail

Master 1 Informatique Éléments de statistique inférentielle

Master 1 Informatique Éléments de statistique inférentielle Master 1 Informatique Éléments de statistique inférentielle Faicel Chamroukhi Maître de Conférences UTLN, LSIS UMR CNRS 7296 email: chamroukhi@univ-tln.fr web: chamroukhi.univ-tln.fr 2014/2015 Faicel Chamroukhi

Plus en détail

partie a Introduction à la statistique 1

partie a Introduction à la statistique 1 table des matières F AVANT-PROPOS À L ÉDITION AMÉRICAINE Abréviations viii xiv partie a Introduction à la statistique 1 1. Statistique et probabilité ne sont pas intuitives 3 Nous avons tendance à passer

Plus en détail

Rapport de Stage. Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees. (15 janvier - 15juillet 2006

Rapport de Stage. Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees. (15 janvier - 15juillet 2006 Rapport de Stage Habillage procédural et rendu en temps réel de vastes terrains texturés par GPU-quadtrees (15 janvier - 15juillet 2006 15 avril - 15 juillet 2007) Effectué au sein du laboratoire MAP-ARIA

Plus en détail

OFFRE D EMPLOI. 2.1 La définition du poste

OFFRE D EMPLOI. 2.1 La définition du poste OFFRE D EMPLOI 1 Introduction Définir une offre d emploi type n est pas un processus anodin à sous-estimer. En effet, l offre que l entreprise va communiquer représente la proposition d emploi vacant.

Plus en détail

SY09 Rapport TP4 : Analyse discriminante, régression logistique

SY09 Rapport TP4 : Analyse discriminante, régression logistique UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante

Plus en détail

Un processus se décline par un ensemble d activités liées les unes aux autres selon une méthodologie décrivant leur cadre et leur mode opératoire.

Un processus se décline par un ensemble d activités liées les unes aux autres selon une méthodologie décrivant leur cadre et leur mode opératoire. ARTICLE STATISTIQUE N 2 LES INDICATEURS Un processus se décline par un ensemble d activités liées les unes aux autres selon une méthodologie décrivant leur cadre et leur mode opératoire. Ainsi l on distingue

Plus en détail

Conférence des États parties à la Convention des Nations Unies contre la corruption

Conférence des États parties à la Convention des Nations Unies contre la corruption Nations Unies CAC/COSP/IRG/2015/2 Conférence des États parties à la Convention des Nations Unies contre la corruption Distr. générale 24 mars 2015 Français Original: anglais Groupe d examen de l application

Plus en détail

Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif

Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif 1 Introduction à l'analyse de contenu qualitative : Voyage au pays du qualitatif Narration pour présentation Prezi (http://prezi.com/5tjog4mzpuhh/analyse-de-donneestextuelles-analyse-de-contenu-qualitative/)

Plus en détail

pratiques. Nous avons abondamment illustré l'application correcte et efficace des nombreuses pratiques en assurance qualité par des cas pratiques.

pratiques. Nous avons abondamment illustré l'application correcte et efficace des nombreuses pratiques en assurance qualité par des cas pratiques. Cet ouvrage s inscrit dans le cadre d une problématique globale portant sur l amélioration de la qualité du logiciel pour des organismes qui ont atteint un certain niveau de maturité. Il cherche à rapprocher

Plus en détail

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés

Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés Synthèse théorique des méthodes de transmission binaires sur les canaux vocodés I Introduction On cherche à moduler des données binaires dans le but de les transmettre sur des canaux vocodés. Afin de transmettre

Plus en détail

Analyse dialectométrique des parlers berbères de Kabylie

Analyse dialectométrique des parlers berbères de Kabylie Saïd GUERRAB Analyse dialectométrique des parlers berbères de Kabylie Résumé de la thèse (pour affichage) Il est difficile de parler du berbère sans parler de la variation. Il y a d abord une variation

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Collège Choiseul Amboise Véronique Bourgoin (CPE) - Patricia Rat (mathématiques) «Enquête du CESC»

Collège Choiseul Amboise Véronique Bourgoin (CPE) - Patricia Rat (mathématiques) «Enquête du CESC» Collège Choiseul Amboise Véronique Bourgoin (CPE) - Patricia Rat (mathématiques) «Enquête du CESC» I Caractéristiques de l activité Disciplines impliquées : Mathématiques et vie scolaire Niveau de classe

Plus en détail

6GEI500 Signaux et systèmes. Laboratoire #2

6GEI500 Signaux et systèmes. Laboratoire #2 6GEI500 Signaux et systèmes Laboratoire #2 Analyse en fréquences avec MATLAB Automne 2009. Objectifs Se familiariser avec l analyse en fréquences avec MATLAB Explorer le phénomène de Gibbs Faire une analyse

Plus en détail

Apprentissage statistique Stratégie du Data-Mining

Apprentissage statistique Stratégie du Data-Mining Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Rapport : Base de données. Anthony Larcher 1

Rapport : Base de données. Anthony Larcher 1 Rapport : Base de données Anthony Larcher 1 1 : Laboratoire d Informatique d Avignon - Université d Avignon Tél : +33 (0) 4 90 84 35 55 - Fax : + 33 (0) 4 90 84 35 01 anthony.larcher@univ-avignon.fr 14

Plus en détail

Se réécouter, améliorer sa prononciation, Refaire (statut de l erreur ) S entendre parler. S entendre parler

Se réécouter, améliorer sa prononciation, Refaire (statut de l erreur ) S entendre parler. S entendre parler Enregistrer un élève, un groupe d élèves Faire s exprimer l enfant Améliorer la prononciation Favoriser l acquisition des sons Dire avec une bonne prononciation Evaluer les difficultés de langage S exprimer,

Plus en détail

Heidi WECHTLER. Octobre 2005

Heidi WECHTLER. Octobre 2005 Heidi WECHTLER Le support aux analyses de données Séminaire GREGOR Octobre 2005 Support aux analyse de données du GREGOR Le poste Chargée d étude statistiques au GREGOR, bureau B126 (wechtler.iae@univ-paris1.fr)

Plus en détail

Méthodes de DM pour la GRC dans les banques

Méthodes de DM pour la GRC dans les banques Techniques de DM pour la GRC dans les banques Page 21 III.1 Introduction Avant de chercher des techniques à appliquer dans la gestion des relations avec les clients. Il faut étudier les données des clients

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail