Chapitre 1 Le Second Degré

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1 Le Second Degré"

Transcription

1 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Chpitre 1 Le Second Degré A) Résolution de l'éqution du second degré 1) Définitions On ppelle polynôme de second degré l expression x² x c (vec non nul). On ppelle éqution du second degré une éqution de l forme x² x c = 0, où, et c sont trois réels donnés, vec différent de 0. Résoudre l'éqution, c'est trouver toutes les vleurs de x telles qui rendent cette églité vrie. Ces nomres sont ppelés "solutions de l'éqution ou "rcines du polynôme" (on peut ussi dire pr us de lngge rcines de l'éqution). ) Cs prticuliers (rppel de seconde) ) Si c = 0 On peut mettre x en fcteur, d'où x ( x ) = 0, ce qui donne x = 0 ou x = 0, soit: x = 0 ou x = - / ) Si = 0 On lors x² c = 0, soit x² = - c, d'où on en déduit que x² = - c / cr on vu que 0. Il y lors deux cs : - Si - c / < 0, lors il n'y ps de solution (un crré ne peut ps être négtif) - Si - c / > 0, on deux solutions x = c c ou x =. c) Exemples Résoudre : x² -3x = 0 x² 4 = 0 x² 7 = 0 5x² 3 = 0 3) Cs générl Soit l'éqution x² x c = 0, vec non nul. On clcule Δ = ² 4c. Δ s'ppelle le discriminnt de l'éqution. Si Δ < 0, il n'y ps de solution., qu'on ppelle "rcine doule". Δ Δ et x = Si Δ > 0, il y deux solutions distinctes x 1 = Si Δ = 0, il y une solution unique x 1 = Démonstrtion : Le ut est de se rmener à une éqution de l forme X² = A où X = p x q et A,p et q des constntes. pge 1 sur 9

2 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré ( ( Or on pr l'identité remrqule : On donc en posnt Δ = ² 4 c : ² c x x c= = 4 ² [( ) ) = x² ². 4 ² ] [( ) ] ] [( ) ) ( ) c = x² On peut donc écrire puisque 0 : x² c = x² ² 4c = 4 ² Δ 4 On voit lors que l'églité x² x c = 0 ne peut être vrie que si Δ >= 0 (cr 4 ² >0). Dns ce cs on peut utiliser l'identité remrqule ² ² = ( )( ) et en déduire que : Δ Δ Δ Δ x² c = [( )( x )] = ( x )( x ). Comme un produit est nul si et seulement si l'un de ses termes est nul, on voit que l'éqution est vérifiée lorsque x prend une des deux vleurs ci-dessus, qui sont égles si Δ = 0... CQFD. Remrques :. On ussi démontré, lorsque Δ > 0, que le polynôme x² x c peut s'écrire (x x1)(x x) où x1 et x sont les deux rcines vues ci-dessus. (. De même, si Δ = 0, x² x c peut s'écrire x. l'expression [( ) ² 4c 4 ] ) est l FORME CANONIQUE de x² x c. 3) Exemples Résoudre les équtions suivntes : ) x² 9x 8 = 0 (x = 1 ou x = 8) ) x² 3x 1 = 0 (x = -1 ou x = -0,5) c) x² 8x = 0 ( x= 4 3 ou x= 4 3 ) 4) Compléments ) Équtions incomplètes (=0 ou c=0) Dns ces cs il est inutile et même mldroit (à cuse du risque d'erreur) de clculer Δ et d utiliser les formules ci-dessus. On utiliser lors : d ' où x= 7 ou 7. Si = 0 : Exemple x² 7 = 0 donc x² = 7 Si c = 0 : Exemple x² x = 0 donc x (x -) = 0 d ' où x=0 ou x=. ) Somme et produit des rcines x1 x = et x1 x = c (vérifiez le vous-mêmes à prtir des formules!) pge sur 9

3 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Conséquences : - Lorsqu'on connît déjà une rcine, on peut fcilement trouver l deuxième grâce à l somme ou u produit ci-dessus! - L'éqution x² x c = 0 est équivlente à l'éqution x² Sx P = 0, où S et P sont respectivement l somme et le produit des rcines (ttention, ces deux polynômes ne sont ps égux pour utnt). - Trouver l'utre rcine de P(x) = x² 7x 6 (1 est rcine évidente). - Trouver x et y schnt que x y = 15 et x y = 14. c) Signe de Δ Lorsque et c sont des signes contrires, c < O donc on Δ > O et on est sûr de trouver deux rcines distinctes. d) Voculire - On ppelle ussi "trinôme" un polynôme du second degré. B) Signe du trinôme 1) Fctoristion Comme on l' vu en A), si f(x) = x² x c : si Δ > 0, on ur deux rcines x1 et x, et l'identité Si Δ = 0, on ur une rcine doule x1 et Si Δ < 0, on n ps de rcines réelles et f x = x x1 x x. f x = x x1 ². Δ. f ( x )= ( x ) 4 ² [ ] ) Signe du trinôme Si Δ < 0, f(x) est toujours du signe de. Si Δ = 0, f(x) est du signe de suf lorsque x =, qui donne f(x) = 0 Si Δ > 0, f(x) ser du signe de en dehors des rcines, et du signe contrire entre les rcines. Démonstrtion - Si Δ > 0, on peut fctoriser donc fire un tleu de signes : Tleu de signes x - x1 x (x - x1) - (x - x) - - (x x1) (x - x) - f(x) Signe de Signe de Signe de pge 3 sur 9

4 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré - Si Δ < 0, on - Δ > 0 donc ( x >= 0 ) Δ > 0 et f(x) toujours du signe de. 4 ² >0 - Si Δ = 0, f x = x x1 ² donc f(x) du signe de, suf pour x = x1 uquel cs f(x) = 0. 3) Appliction Lorsqu'on une inéqution du second degré, donc du type x² x c < 0 ou x² x c > 0, il suffit de clculer Δ et d'en déduire le signe de f(x) en fonction du signe de et de l position de x pr rpport ux rcines (lorsqu'il y en ). Résoudre les inéqutions : ) x² 3x 1 > 0 ) 5x² x 4 < 0 c) -4x² 1 > 0 d) 3x² -x -1 < 0 C) Coure représenttive de l fonction polynôme f(x) = x² x c 1) Forme générle Ces coures s'ppellent des proles comme l coure de f(x) = x². Selon les vleurs de, et c, l prole ser déclée et déformée. ) Position du sommet et à l'ordonnée f (α)= 4 c. Le sommet de l prole correspond à l'scisse α= 4 Vérifiez cette vleur en remplçnt x pr α dns l forme cnonique du trinôme. 3) Orienttion et forme Selon le signe de, l prole ses rnches vers le hut ( > 0) ou vers le s ( < 0). Selon l vleur solue de, l prole ser plus étroite ( grnd) ou plus lrge ( petit). 4) Intersections vec l'xe des scisses Si le discriminnt est négtif, ps d'intersection. S'il est positif, deux intersections et s'il est nul, seul le sommet ser sur l'xe des scisses. En effet, ces points correspondent ux scisses pour lesquelles le trinôme s'nnule, qui sont les rcines du polynôme. pge 4 sur 9

5 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré 5) Exemples de coures D) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme n xn, où n est un réel non nul et n est un entier nturel (n >= 0). Un polynôme est une somme de monômes, soit P(x) = n xn n-1 xn -1 1 x 0. On ppelle degré de P le degré de son monôme de plus hut degré (ici, c'est n). On ppelle coefficient de rng i le coefficient de xi dns le polynôme (noté i). Exemples P1 = x - 3x 3 x 4x 3x 5 P = x5 x3 x4 x x5 1 On ppelle fonction polynôme correspondnt à P l fonction qui à tout x fit correspondre l vleur P(x) prise pr P qund on remplce x pr s vleur dns l expression de P. On ppelle polynôme réduit un polynôme où l'on regroupé les monômes de même degré et où on les triés du plus grnd u plus petit degré. Exemples (réduction des deux exemples précédents) P1 = -3x 3 3x x 7 P = x5 x4 x3 x 1 pge 5 sur 9

6 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré ) Églité de deux polynômes Deux polynômes sont égux si les fonctions polynômes correspondntes sont égles : P = Q si et seulement si x, P x =Q x. Théorème (dmis) : Deux polynômes sont égux si et seulement si leurs formes réduites sont identiques. Exemple : Soit Q = P1 ci-dessus et Q= x3 x cx d : Alors, on ur = - 3, = 3, c = - 1 et d = - 7. Appliction : Soit Q = x x c. Déterminer les vleurs de, et c pour que l'on it : (x 1) Q = x3 x 6 x 3. 3 Somme lgérique, produit et quotient de polynômes L somme lgérique de deux polynômes un degré inférieur ou égl u degré le plus hut des deux polynômes. Le produit de deux polynômes comme degré l somme des degrés des deux polynômes. Le quotient de deux polynômes n'est en générl ps un polynôme. On dit lors que c'est une frction rtionnelle et l fonction correspondnte est une fonction rtionnelle. Soit P3 = -x5 7 et les P1 et P précédents : clculer P1 P, P P3 et P1 * P3. 4) Fctoristion pr x Théorème (dmis) Soit P un polynôme et un réel, si P() = 0, on peut trouver un polynôme Q(x) tel que P = (x ) Q. De plus, si P est de degré n, Q ser de degré n 1. P(x) = x3 7x x 18 : Clculer P() puis fctoriser P(x) x3 7x x 18 = (x - )( x x c) = x3 ( )x (c )x - c =1 Q(x) = 5x??? - = -7 d'où = -5 c - = 1 d'où c = -9 -c = 18 d'où c = -9 (ceci permet de vérifier qu'on ne s'est ps trompé!). Donc, P(x) = (x )(x -5x 9) (ne ps oulier de conclure insi!). Même question vec Q(x) = 5x3-4x 3x 4 en clculnt Q(1). E) Équtions de degré supérieur à Il existe des méthodes de résolution pour les équtions polynomiles de degré 3 et 4, mis il est impossile de donner une expression générle à se de rcines et d opértions simples des solutions des équtions de degré supérieur à 4 (cel été démontré en 183 pr le mthémticien pge 6 sur 9

7 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Ael). Pr contre, si on connît déjà une solution dns une éqution de degré n, on peut pour les utres se rmener à une éqution de degré n - 1 grâce u théorème vu en A4. De même les équtions "icrrées", c est à dire comprennt uniquement des termes en x4, en x² et une constnte, peuvent se rmener à une séquence de deux équtions du second degré. Résoudre les équtions suivntes : ) x4 3x² = 0 ) x4 5x² 6 = 0 c) x3 3x² 4x = 0 pge 7 sur 9

8 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Fiche de révision pge 1/ Résolution générle de l éqution du second degré x² x c = 0 : On clcule Δ = ² 4c. Δ s'ppelle le discriminnt. Si Δ < 0, il n'y ps de solutions., qu'on ppelle "rcine doule". Δ Δ et x = Si Δ > 0, il y deux solutions distinctes x 1 = Si Δ = 0, il y une solution unique x 1 = On ussi : S=x1 x = P=x 1 x = et c vec : x² Sx P = 0 Signe du trinôme Si Δ < 0, f(x) est toujours du signe de. Si Δ = 0, f(x) est du signe de suf lorsque x =, qui donne f(x) = 0 Si Δ > 0, f(x) ser du signe de en dehors des rcines, et du signe contrire entre les rcines. Forme cnonique du trinôme du second degré f(x) = x² x c : [( ) ] 4 c f(x) = ou encore : 4 Δ 4 c α= f(x) = (x α)² β vec et β=f (α)= = 4 4 Tleu de vrition du trinôme du second degré x² x c si < 0 : x - α= β= x² x c 4 c 4 si > 0 : x - α= x² x c β= 4 c 4 pge 8 sur 9

9 Cours de Mthémtiques Première STID Chpitre 1 : Le second degré Fiche de révision pge / Représenttion grphique des polynômes du second degré pge 9 sur 9

Chapitre 1 Équations et Inéquations du 2nd degré

Chapitre 1 Équations et Inéquations du 2nd degré Cours de Mthémtiques Première S Chpitre 1 : équtions et inéqutions du second degré Chpitre 1 Équtions et Inéqutions du nd degré A) Les Polynômes 1) Définitions On ppelle monôme une expression de l forme

Plus en détail

Chap.9 Les fonctions polynômes du second degré (1)

Chap.9 Les fonctions polynômes du second degré (1) Chp.9 Les fonctions polynômes du second degré () Forme développée Forme cnonique Polynôme du second degré Forme fctorisée Polynôme du second degré f x x x c ( ) Forme développée réduite 3 ) Exemples f

Plus en détail

Exemple. Les fonctions affines (non nulles) sont les fonctions polynômes de degré 1 ou 0 (fonctions constantes).

Exemple. Les fonctions affines (non nulles) sont les fonctions polynômes de degré 1 ou 0 (fonctions constantes). S Fonctions polynômes et secon egré I Fonctions polynômes Définition Une fonction f est une fonction polynôme (ou plus simplement un polynôme) si : () Elle est éfinie sur R () Elle met une écriture e l

Plus en détail

Ordre et comparaisons

Ordre et comparaisons Seconde 0 - Année 2004 2005 ORDRE ET COMPARAISONS Ordre et comprisons. ACTIVITÉ SUR L ORDRE.. nomres positifs et nomres négtifs. Les réels se représentent sur l droite réelle. Dire que x est positif(ou

Plus en détail

Identités remarquables. I - Principe : k = k + k a b a b. Aire : k (a+ b) = k a + k b. II - Développements : 1. Développement de base :

Identités remarquables. I - Principe : k = k + k a b a b. Aire : k (a+ b) = k a + k b. II - Développements : 1. Développement de base : Chp 4 Identités remrqules I - Principe : k = k + k Aire : k (+ ) = k + k II - Développements : 1. Développement de se : k( + ) = k + k Exemple : 2( x + ) =... Remrque : x x = x 2 Ex : - x ( x - 2) =...

Plus en détail

Chapitre 2 Limites et asymptotes

Chapitre 2 Limites et asymptotes Chpitre 2 Limites et symptotes A) Introduction ) Le grenier Je veux monter un toit à une pente en lissnt l plce pour une pièce (grenier) de 3 mètres de long et 2 mètres de hut. OA = 3, OC = 2, OE = x.

Plus en détail

+ + = + (Identité 1) x ax x

+ + = + (Identité 1) x ax x 1. Définition LA COMPLÉTION DU CARRÉ L complétion du crré est un procédé lgébrique qui consiste à trnsformer un polynôme de second degré écrit dns l forme stndrd dns l forme cnonique + b + c, où 0, ( h)

Plus en détail

LE CALCUL ALGEBRIQUE

LE CALCUL ALGEBRIQUE I. Clculs vec des frctions : ce fcteur : ) Rppels : LE CALCUL ALGEBRIQUE b = b = b = b Exemple : 3 x = x 3 = 3x ( b ) c = ( bc ) = bc Exemple : ( 3x ) 5 = 3 ( 5x ) = 15x 1 = 1 = b) Signe moins dns une

Plus en détail

Racines carrées 20 = 4,

Racines carrées 20 = 4, Clsse de 3ème 08/11/010 Chpitre Rcines crrées I. Activité n 1. ABCD est un crré de coté c et d ire. (1 ) Choisir des vleurs de c puis clculer. ( ) Choisir des vleurs de puis clculer c. c = 3 cm c = cm

Plus en détail

Ch.4èFONCTIONS DE RÉFÉRENCE

Ch.4èFONCTIONS DE RÉFÉRENCE LFA / première S COURS - mthémtiques Mme MAINGUY Ch.4èFONCTIONS DE RÉFÉRENCE ere S Dns tout le chpitre, le pln est muni d'un repère orthonorml ( O ; i! ;! j ) I. Rppels de Seconde Soit f une fonction définie

Plus en détail

Chapitre VII : Les polynômes

Chapitre VII : Les polynômes Chpitre VII : Les polnômes Au terme de ce chpitre, tu sers cple de : Svoir Définir monôme, polnôme et degré d un polnôme Définir inôme et trinôme Enoncer les crctéristiques d un polnôme complet, d un polnôme

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

Signe de ax + b Premières Applications

Signe de ax + b Premières Applications Signe de + Premières Applictions Ojectifs L étude des fonctions est un point centrl des progrmmes u lycée, quelque soit votre section L ojectif ser, l nnée prochine, de déterminer les vritions d une fonction

Plus en détail

Rappels sur le calcul Littéral

Rappels sur le calcul Littéral Première prtie Rppels sur le clcul Littérl I Clculer vec les frctions, les puissnces, les rdicux I.1 les frctions I.1.1 générlités Bon, il est temps que je rppelle quelques règles de bse concernnt le clcul

Plus en détail

Chapitre I : Fonctions, expressions algébriques et problèmes

Chapitre I : Fonctions, expressions algébriques et problèmes Chpitre I : Fonctions, expressions lgériques et prolèmes I Les ensemles de nomres : Déinition 1 : 0 ;1; 2;3;4 ;...;15;16;... est l ensemle des nomres entiers nturels.... ; -16; -15;...; -4; -3; -2; -1;

Plus en détail

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako

ÉQUATIONS INÉQUATIONS SYSTÈMES Site MathsTICE de Adama Traoré Lycée Technique Bamako ÉQUATIONS INÉQUATIONS SYSTÈMES Site MthsTICE de Adm Troré Lycée Technique Bmko I Équtions du second degré : Résolution pr l méthode du discriminnt : Pour résoudre l éqution du second degré b c = ( d inconnu,

Plus en détail

Comparaison de fonctions, développements limités

Comparaison de fonctions, développements limités I Comprison de fonctions Définitions Comprison de fonctions, développements limités Négligeble Définition Soient f et g deu fonctions définies sur un même ensemble D et à vleurs dns R. Soit R tel que f

Plus en détail

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1)

La proposition «Si n Æalors n et n» est vraie. Par contre, la réciproque «Si n et n alors n Æ» est fausse. (Il suffit de choisir n= 1) 0 septemre 016 ENSEMBLES DE NOMBRES nde 3 I ENSEMBLES DE NOMBRES 1 NOMBRES ENTIERS NATURELS Æ DÉFINITION L ensemle des entiers nturels, noté Æ = {0;1;;3;;...}. C est l ensemle des nomres positifs qui permettent

Plus en détail

M4. Méthodes en CALCUL et RESOLUTION ALGEBRIQUE

M4. Méthodes en CALCUL et RESOLUTION ALGEBRIQUE CRPE M4. Méthodes en CALCUL et RESOLUTION ALGEBRIQUE Nous vons vu en S6 que l mise en éqution d un prolème v permettre l mise en œuvre d une procédure de résolution lgérique. Cette résolution se fit en

Plus en détail

1. Les fonctions affines.

1. Les fonctions affines. L E S F O N C T I O N S U S U E L L E S. Les fonctions ffines.. Définition. Une fonction ffine est une fonction f définie sur R pr : f ( x) = x+ b.2 Représenttion grphique. o o Si b =, l fonction est linéire.

Plus en détail

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2

Les équations dans l ensemble des nombres complexes Le degré 1 et le degré 2 Les équtions dns l ensemle des nomres complexes Le degré et le degré Eqution du premier degré 3 Eqution du second degré : Résolution de l éqution A 4 Exemples de résolutions d équtions simples (rédction

Plus en détail

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5

Fractions. 1 Propriété des quotients égaux 1. 2 Addition, soustraction de deux fractions 3. 3 Produit de deux fractions 5 Tle des mtières Frctions 1 Propriété des quotients égux 1 Addition, soustrction de deux frctions Produit de deux frctions Comprison de deux frctions Produit en croix 10 6 Quotient de deux frctions. Inverse

Plus en détail

Chapitre I Equations et inéquations du premier degré

Chapitre I Equations et inéquations du premier degré Chpitre I Equtions et inéqutions du premier degré I Équtions du premier degré 1 Les ensemles de nomres Définition 1 On ppelle ensemle des réels, noté R, l ensemle des nomres connus en clsse de seconde.

Plus en détail

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS)

ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) Équtions différentielles du ÉQUATIONS DIFFÉRENTIELLES DU PREMIER ORDRE (COURS) TI-Nspire CAS 1. Objectifs Découvrir les équtions différentielles du premier ordre. Résoudre à l min et à l ide de l clcultrice

Plus en détail

Z - Les nombres Entiers rappels, révisions et compléments

Z - Les nombres Entiers rappels, révisions et compléments éléments de cours à découper et à coller dns le chier. Les exercices sont soit dns le document, soit dns ton livre d exercices Actimthàl infini2. Les ciseux t invitent à couper l feuille à cet endroit

Plus en détail

LES REGLES DU CALCUL LITTERAL

LES REGLES DU CALCUL LITTERAL Cours de Mr Jules v1.2 Clsse de Qutrième Contrt 6 pge 1 LES REGLES DU CALCUL LITTERAL «Les Mthémtiques sont des inventions très subtiles et qui peuvent beucoup servir, tnt à contenter les curieux qu'à

Plus en détail

CHAPITRE 3. Opérations dans R. ab a+ b R La somme de deux nombres réels est encore un nombre réel. On dit que l'addition est interne dans R.

CHAPITRE 3. Opérations dans R. ab a+ b R La somme de deux nombres réels est encore un nombre réel. On dit que l'addition est interne dans R. CHAPITRE 3 Opértions dns R. Propriétés de l'ddition dns R ( I,+ ) (, R) + R L somme de deux nomres réels est encore un nomre réel. On dit que l'ddition est interne dns R. Exemple. 3 R, π R 3+ π R. ( C,+

Plus en détail

MATHEMATIQUES CARNET DE VACANCES POUR LES ELEVES RENTRANT EN SECONDE

MATHEMATIQUES CARNET DE VACANCES POUR LES ELEVES RENTRANT EN SECONDE MATHEMATIQUES CARNET DE VACANCES POUR LES ELEVES RENTRANT EN SECONDE Rélisé pr les professeurs de mthémtiques du lycée de L Pline de Neuphle 1/20 L'objectif de ce chier est d'ider l'élève qui v rentrer

Plus en détail

Calculs de base (Rappels)

Calculs de base (Rappels) Chpitre I Clculs de bse (Rppels) I.1 Diviseurs et multiples I.1.1 Définitions On : 12=3 4. On dit que 3 et 4 sont des diviseurs de 12, ou que 12 est un multiple de 3 et de 4. DÉFINITION I.1.1 Soit et b

Plus en détail

Chapitre II - Complexes (Partie I)

Chapitre II - Complexes (Partie I) vq vq Forme lgérique d un nomre complexe Chpitre II - Complexes (Prtie I) Théorème. et définition. Il existe un ensemle noté C, ppelé ensemle des nomres complexes, tel que :. l ensemle C contient l ensemle

Plus en détail

Cours Intégrales Primitives 1 / 7 A Chevalley

Cours Intégrales Primitives 1 / 7 A Chevalley A 17 Primitives Intégrles Aleth Chevlley 1. Intégrle d une fonction continue 1.1. Définition Soit C l coure représenttive de f dns un repère orthonorml. L intégrle de à de l fonction f est l ire du domine

Plus en détail

Chapitre 0 : Mise au point sur les nombres et le calcul

Chapitre 0 : Mise au point sur les nombres et le calcul Lycée Jules Fil, Crcssonne Clsse de 2 nde Chpitre 0 : Mise u point sur les nombres et le clcul D. Zncnro C. Aupérin 2009-2010 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

I.1 Reprenez les bases de l arithmétique

I.1 Reprenez les bases de l arithmétique I Cours, svoir-fire et méthodes Avnt de vous lncer dns l résolution des premières questions, il n est ps inutile de conscrer du temps à réviser les connissnces élémentires. Bien évidemment, nous ne pouvons

Plus en détail

Fonctions affines Problèmes du premier degré

Fonctions affines Problèmes du premier degré Fonctions ffines Problèmes du premier degré 1. Reconnître et utiliser une fonction ffine (vidéo 1) Définition: On ppelle fonction ffine toute fonction f qui s'écrit sous l forme f ()= +b, où et b sont

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14.

Comparons, à la machine, 13 3 et 10 puis 20 6 et 14. CHAPITRE 6 RACINES CARREES (PARTIE 2 SUR 2) I. LES RACINES CARREES ET LES QUATRE OPERATIONS Essyons de répondre ux questions suivntes : + est-il égl à +? est-il égl à? est-il égl à? est-il égl à? A. RACINES

Plus en détail

Calcul de limites. 3) Limite d'une somme de deux fonctions. = x. 1 lim =... =... lim x =... lim x. lim 2x = x 1. lim 2x + x = lim 3x. lim

Calcul de limites. 3) Limite d'une somme de deux fonctions. = x. 1 lim =... =... lim x =... lim x. lim 2x = x 1. lim 2x + x = lim 3x. lim Clcul de ites I) Clculs de ite en et - ) Limite en ou - des fonctions de référence : Compléter les ites suivntes ( on observer les représenttions grphiques) :........................ (voir ci-dessous )...............

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Exercices sur le logarithme népérien (1)

Exercices sur le logarithme népérien (1) TS On considère l fonction f : + ln et l on note C s courbe représenttive dns le pln muni d un Eercices sur le logrithme népérien () repère O, i, j Sns clcultrice, clculer : ; B ln 5 ln 9 5 A ln 6 ln ln

Plus en détail

Chapitre XI : Lois continues

Chapitre XI : Lois continues Chpitre XI : Lois continues Extrit du progrmme : I. Lois de proilité à densité 1. Vrile létoire à densité Dns de nomreux domines, on est mené à étudier des vriles létoires pouvnt prendre, du moins théoriquement,

Plus en détail

Les équations du premier et du second degré à la règle et au compas

Les équations du premier et du second degré à la règle et au compas Les équtions du premier et du second degré à l règle et u comps Scienceinfuse - ntenne de formtion et de promotion du secteur sciences & technologies rue des Wllons 72 L6.02.01-1348 Louvin-l-Neuve Les

Plus en détail

, f(x) est l image de l élément x de E par f.

, f(x) est l image de l élément x de E par f. I- Rppels : I- 1 Déinition d une onction : Soient E et F deu intervlles de R ou une réunion d intervlles de R Déinition 1: Une onction ssocint un élément de l ensemble E (ensemble de déprt dns l ensemble

Plus en détail

Nombres rationnels. 1 Définition de Q. On définit, sur l ensemble Z Z, la relation binaire R de la façon suivante : (a, b)r(a, b ) ab = ba

Nombres rationnels. 1 Définition de Q. On définit, sur l ensemble Z Z, la relation binaire R de la façon suivante : (a, b)r(a, b ) ab = ba Nomres rtionnels Définition de Q On définit, sur l ensemle Z Z, l reltion inire R de l fçon suivnte : (, )R(, ) = Propriété. R est une reltion d équivlence. Démonstrtion : Réflexivité : Elle découle de

Plus en détail

COURS TERMINALE S LE CALCUL INTEGRAL

COURS TERMINALE S LE CALCUL INTEGRAL COURS TERMINALE S LE CALCUL INTEGRAL A. Notion d'intégrle. Aire sous l coure On définit le domine pln, qu'on ppeller ire sous l coure C représenttive d'une fonction positive f sur un intervlle [; ], l

Plus en détail

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN

CHAPITRE 10 : LA FONCTION LOGARITHME NEPERIEN L fonction logrithme népérien Cours CHAPITRE : LA FONCTION LOGARITHME NEPERIEN. Définition de l fonction logrithme népérien L fonction logrithme népérien, notée ln, est définie sur ],+ [, prend l vleur

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur

Calcul de primitives. Chapitre Calcul pratique de primitives Primitives usuelles à connaître par coeur Chpitre 21 Clcul de primitives 21.1 Clcul prtique de primitives On note f(x une primitive de l fonction f sur l intervlle I. Cette nottion désigne une fonction, à ne ps confondre vec une intégrle définie

Plus en détail

Résolution d équations numériques

Résolution d équations numériques Résolution d équtions numériques Dniel PERRIN On présente ici trois méthodes de résolution d équtions : les méthodes de Newton, d interpoltion linéire et, très rièvement, d justement linéire. Pour des

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

ENSEMBLES DE NOMBRES

ENSEMBLES DE NOMBRES Chpitre 01 Ensemles de nomres I- Les différents ensemles de nomres ENSEMBLES DE NOMBRES 1. Les entiers nturels Les entiers nturels sont les nomres 0 ; 1 ; ; ;... On note N l ensemle des entiers nturels,

Plus en détail

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 (voir réponses et correction)

INTÉGRALES. I Définition. Définition. Remarques. Exemple. Exercice 01 (voir réponses et correction) INTÉGRALES I Définition Définition Soit f une fonction continue et positive sur un intervlle [; ]. Soit (C) s coure représenttive dns un repère orthogonl (O; i, j). On ppelle intégrle de à de l fonction

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry 2 vril 2 EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deux fonctions continues sur un intervlle [ ; b] donc g f

Plus en détail

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006.

Résumé de cours : Terminale ES. Table des matières. Maths-Terminale ES. Mr Mamouni : source disponible sur: Samedi 08 Avril 2006. Résumé de cours : Terminle ES. Mths-Terminle ES. Mr Mmouni : myismil@ltern.org source disponile sur: c http://www.chez.com/myismil Smedi 08 Avril 2006. Tle des mtières Eqution du second degré. 2. Ses solutions

Plus en détail

Nombres relatifs en écriture fractionnaire

Nombres relatifs en écriture fractionnaire Nomres reltifs en écriture frctionnire Introduction Déterminons les nomres suivnts insi que leur nture. 2 n 8 n et n est un nomre. 2 d 7,2 d et d est un nomre. r 5 r et r est un nomre.. Écriture frctionnire

Plus en détail

Corrigé du baccalauréat S Pondichéry 21 avril 2010

Corrigé du baccalauréat S Pondichéry 21 avril 2010 Corrigé du bcclurét S Pondichéry vril EXERCICE Commun à tous les cndidts Prtie A : Restitution orgnisée de connissnces 6 points f et g sont deu fonctions continues sur un intervlle [ ; b] donc g f est

Plus en détail

Les nombres. C est quand on simplifie au maximum une fraction : elle est dite irréductible car on ne peut plus la simplifier plus.

Les nombres. C est quand on simplifie au maximum une fraction : elle est dite irréductible car on ne peut plus la simplifier plus. Les nomres Notes Première lecture 2016 Nomres rtionnels Nomre rtionnel : c est un nomre exprimé pr un rpport de proportion entre deux nomres entiers. Il peut être écrit sous forme de frction. étnt le numérteur

Plus en détail

LES RADICAUX D INDICE n

LES RADICAUX D INDICE n Chpitre 1 LES RADICAUX D INDICE n 1 Nomres réels et puissnces (rppels) Exercice 1 Démontrer que l ddition et l multipliction confèrent à l ensemle des réels une structure de chmps ( corps commuttif) Exercice

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Cours Terminle S Limite d une onction à l inini ) Limite inie en l inini Déinition : Soit une onction déinie sur un intervlle de l orme ] A ; + [ On dit que l onction dmet pour limite

Plus en détail

Chapitre 05 Les nombres complexes Première partie

Chapitre 05 Les nombres complexes Première partie Terminle S. Lycée Desfontines Melle Chpitre 05 Les nomres complexes Première prtie Le pln est rpporté à un repère orthonorml direct ( O;ÄOI ;ÄOJ ), ppelé pln complexe. Dns tout ce chpitre, et désignent

Plus en détail

Chapitre 8 Le calcul intégral

Chapitre 8 Le calcul intégral Cours de Mthémtiques Terminle STI Chpitre 8 : Le Clcul Intégrl Chpitre 8 Le clcul intégrl A) Intégrle d une fonction dérivle sur un intervlle 1) Définition Soit f une fonction dérivle sur un intervlle

Plus en détail

Cours de mathématiques Classe de Troisième

Cours de mathématiques Classe de Troisième Clsse de Troisième CHAPITRE CALCULS ALGEBRIQUES FACTORISATION Clculs lgébriques Pge UTILISER DES LETTRES Eercice On veut connître le nombre de cubes nécessires à l construction d'escliers. Vérifier que

Plus en détail

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2

La continuité. I Introduction 1. II Notion de continuité 1 1 Définitions Graphique Exemples et contre exemple... 2 L continuité Tle des mtières I Introduction 1 II Notion de continuité 1 1 Définitions.................................................. 1 Grphique.................................................. 1 3

Plus en détail

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 5. Suites et séries. c 2014 UNIVERSITY OF WATERLOO

Le Centre d éducation en mathématiques et en informatique. Ateliers en ligne Euclide Atelier n o 5. Suites et séries. c 2014 UNIVERSITY OF WATERLOO Le Centre d éduction en mthémtiques et en informtique Ateliers en ligne Euclide Atelier n o 5 Suites et séries c 014 UNIVERSITY OF WATERLOO L pluprt des problèmes de cette trousse font ppel à des formules

Plus en détail

! Remarque : La racine carrée d un nombre négatif n existe pas.

! Remarque : La racine carrée d un nombre négatif n existe pas. 3 ème Chpitre A 3 RACINE CARREE D UN NOMBRE POSITIF 1 I) Définition et conditions d existence de l rcine crrée d un nombre. 1) Définition. Il existe deux nombres tel que si on les multiplie pr eux même

Plus en détail

CH 1 Analyse : Continuité et limites

CH 1 Analyse : Continuité et limites CH Anlyse : Continuité et ites 4 ème Sciences Septembre 9 A. LAATAOUI I. Rppels Notion de continuité : Grphiquement, on peut reconnître une onction continue sur un intervlle I pr le it que le trcé de l

Plus en détail

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2

CALCUL INTEGRAL. Ph DEPRESLE. 29 juin Intégrale d une fonction continue et positive sur un segment 2 CALCUL INTEGRAL Ph DEPRESLE 9 juin 5 Tble des mtières Intégrle d une fonction continue et positive sur un segment Primitives d une fonction sur un intervlle. Primitives, définition...................................

Plus en détail

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité

La loi normale. Chapitre Introduction Motivation à partir de la loi binomiale Notion de variable aléatoire à densité Chpitre 4 L loi normle 4.1 Introduction Dns le chpitre précédent, les probbilités rencontrées se rmenient à lister tous les cs possibles, leur ttribuer l même probbilité, et diviser le nombre de cs fvorbles

Plus en détail

dans un EVMPS Moindres carrés

dans un EVMPS Moindres carrés Meilleure pproximtion dns un EVMPS Moindres crrés Meilleure pproximtion Définition. Soit V un EVMPS, W un sous-espce quelconque de V, et u un vecteur quelconque de V. On ppelle meilleure pproximtion de

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

Rappels et compléments sur l intégrale de Riemann

Rappels et compléments sur l intégrale de Riemann Chpitre Rppels et compléments sur l intégrle de Riemnn Commençons pr un rppel. Théorème.. (Théorème fondmentl du clcul intégrl) Soit f :[, b]! R une fonction continue. Pour tout x 2 [, b], posons F (x)

Plus en détail

Pavage d un rectangle avec des carrés

Pavage d un rectangle avec des carrés Mth en Jens 006-007 Pvge d un rectngle vec des crrés Lycée Sud-Medoc / Lycée Montigne Guillume Cmelot, Luc Drné, Antoine Crof, Budouin Auzou, Rémy Ptin, Elodie Mrtin, Hélène Mrtin, Aurélie Verdon en prtenrit

Plus en détail

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6

Intégration. 1 Intégrale d une fonction. 2.1 Définition Propriétés Ensemble des primitives d une fonction... 6 Tble des mtières Intégrle d une fonction. Définition.................................................. Propriétés................................................. 4 Notion de primitive d une fonction 5.

Plus en détail

Le raccordement parabolique

Le raccordement parabolique Le rccordement prbolique. Définition de l prbole L prbole est une courbe à une brnche dont tous les points sont équidistnts d'un point fie F et d'une droite fie (D). Le point fie est le foyer et l droite

Plus en détail

Corrigé du TD 3 : Limites

Corrigé du TD 3 : Limites Corrigé du TD 3 : Limites Eercice : Fonction réciproque. Cs f() = + L fonction f est définie sur R et à vleurs dns I = [,+ [. Elle est pire donc en prticulier pour tout réel, on f( ) = f() et en prticulier

Plus en détail

Calcul différentiel et intégral 2 (M-1.1)

Calcul différentiel et intégral 2 (M-1.1) Clcul différentiel et intégrl (M-.) Cdre : dns l suite on considère une fonction numérique f définie sur un intervlle I et un réel I I. Dérivée d'une fonction Définition du nomre dérivé : l fonction f

Plus en détail

Primitives Calcul intégral

Primitives Calcul intégral Primitives Clcul intégrl Christophe ROSSIGNOL Année scolire 2009/200 Tble des mtières Primitives 2. Définition, premières propriétés..................................... 2.2 Primitives des fonctions usuelles....................................

Plus en détail

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1

Chapitre 7 Intégrale et primitive. Table des matières. Chapitre 7 Intégrale et primitive TABLE DES MATIÈRES page -1 Chpitre 7 Intégrle et primitive TABLE DES MATIÈRES pge - Chpitre 7 Intégrle et primitive Tble des mtières I Exercices I-................................................ I- Clcul pproché d une intégrle

Plus en détail

Exercices de 5 ème Chapitre 6 Le calcul littéral Énoncés. c] 5 ( 9 + c c) d] d + d d + d

Exercices de 5 ème Chapitre 6 Le calcul littéral Énoncés. c] 5 ( 9 + c c) d] d + d d + d Exercices de 5 ème Chpitre 6 Le clcul littérl Énoncés Exercice 1 Simplifier l'écriture des expressions suivntes : ] 6 + 1 e ] 4 f c] 5 ( 9 + c c) d] 2 d 2 d 2 d 2 Exercice 2 Simplifier u mximum l'écriture

Plus en détail

LOIS DE PROBABILITE CONTINUES

LOIS DE PROBABILITE CONTINUES LOIS DE PROBABILITE CONTINUES I) LOI A DENSITE SUR UN INTERVALLE ( fire fiche '' vérifier les cquis'' ) 1) Introduction Qund l univers est un intervlle Jusqu à présent, chque expérience létoire conduisit

Plus en détail

CHAPITRE 7. Rappel sur l intégrale simple.

CHAPITRE 7. Rappel sur l intégrale simple. CHPITRE 7 Rppel sur l intégrle simple. Les prochins chpitres triteront de l intégrtion. Dns un premier temps, nous rppellerons ce qu est l intégrle simple (l intégrtion pour les fonctions d une seule vrible

Plus en détail

Chapitre 6 : Fonctions Logarithme Népérien

Chapitre 6 : Fonctions Logarithme Népérien Lycée Pul Sbtier, Cstelnudry Clsse de T`le STG Chpitre 6 : Fonctions Logrithme Népérien D. Zncnro et C. Aupérin 008-009 Téléchrger c est tuer l industrie, tuons les tous Thurston Moore Dernière modifiction

Plus en détail

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f

( ). Dans tout ce paragraphe, f et g sont des fonctions continues et positives sur un intervalle a;b. C f Chpitre 6 : Clcul intégrl I Intégrle d une fonction continue positive 1 Unité d'ire Le pln est muni d un repère orthogonl O;i!,! j!!" "!!! " " En posnt OI = i et OJ = j, l ire du rectngle OIKJ définit

Plus en détail

Langages et Automates : LA3 Partie 6 : Minimisation. Langages et Automates : LA3 Partie 6 : Minimisation 1 / 40

Langages et Automates : LA3 Partie 6 : Minimisation. Langages et Automates : LA3 Partie 6 : Minimisation 1 / 40 Lngges et Automtes : LA3 Prtie 6 : Minimistion Lngges et Automtes : LA3 Prtie 6 : Minimistion 1 / 40 Minimistion Dns ce chpitre, on v montrer l existence d un unique utomte ynt un nomre minimum d étt pour

Plus en détail

Addition, multiplication, inverse et quotient de deux nombres relatifs écrits sous forme fractionnaire Puissance d'un nombre relatif.

Addition, multiplication, inverse et quotient de deux nombres relatifs écrits sous forme fractionnaire Puissance d'un nombre relatif. Addition, multipliction, inverse et quotient de deux nombres reltifs écrits sous forme frctionnire Puissnce d'un nombre reltif Addition de deux nombres reltifs écrits sous forme frctionnire.rppel On obtient

Plus en détail

Chapitre III : nombres en écriture fractionnaire

Chapitre III : nombres en écriture fractionnaire Chpitre III : nombres en écriture frctionnire I - Églité de quotients A - Simplifiction de quotient ex 1 Si on multiplie ou si on divise le numérteur et le dénominteur d'un quotient pr un même nombre non

Plus en détail

Exemple d'introduction 1. Découverte des fonctions définies par une intégrale et premiers pas vers le théorème fondamental du calcul intégral.

Exemple d'introduction 1. Découverte des fonctions définies par une intégrale et premiers pas vers le théorème fondamental du calcul intégral. Eemple d'introduction 1. Découverte des fonctions définies pr une intégrle et premiers ps vers le théorème fondmentl du clcul intégrl. PARTIE I : Découverte de l fonction «ire sous l coure» et conjecture

Plus en détail

CALCULS NUMÉRIQUES CALCUL LITTÉRAL ARITHMÉTIQUE. ( 10 ) m p = 10 m p $ 10 n = 0,00...0!" # $# 1 avec n zéros. 10 m 10 p = 10 m+ p 10 m

CALCULS NUMÉRIQUES CALCUL LITTÉRAL ARITHMÉTIQUE. ( 10 ) m p = 10 m p $ 10 n = 0,00...0! # $# 1 avec n zéros. 10 m 10 p = 10 m+ p 10 m CLCULS NUMÉRIQUES CLCUL LITTÉRL Frctions Distributivité D + b D = + b D Puissnces D b D = b D b c d = c b d b : c d = b d c k ( + b ) = k + kb k ( - b ) = k - kb ( + b ) k = k + bk ( - b ) k = k - bk n

Plus en détail

7. Applications du théorème des

7. Applications du théorème des 67 7. Applictions du théorème des résidus. Évlution d intégrles réelles impropres Une ppliction importnte de l théorie des résidus est l évlution de certins types d intégrles définies et d intégrles impropres

Plus en détail

Voici les cinq pièces d'un puzzle. La figure que l'on doit obtenir est un carré. Cela semble très élémentaire. Mais il faut essayer.

Voici les cinq pièces d'un puzzle. La figure que l'on doit obtenir est un carré. Cela semble très élémentaire. Mais il faut essayer. Rcines crrées Découverte de l rcine crrée : Activité : Une utilistion imprévue de Voici les cinq pièces d'un puzzle. L figure que l'on doit otenir est un crré. Cel semle très élémentire. Mis il fut essyer.

Plus en détail

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts

CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION. Ch7 : Calcul intégral-ts Ch7 : Clcul intégrl-ts CALCUL INTEGRAL I. ACTIVITES D INTRODUCTION Activité n : Trcer dns un repère orthonorml l représenttion grphique de l fonction f définie pr : f(x) = 5. Hchurer l'ire du domine pln

Plus en détail

FONCTION EXPONENTIELLE ET EQUATION DIFFERENTIELLE. 1 + x n

FONCTION EXPONENTIELLE ET EQUATION DIFFERENTIELLE. 1 + x n FONCTION EXPONENTIELLE ET EQUATION DIFFERENTIELLE. I LA FONCTION EXPONENTIELLE Définition Il eiste une fonction f, dérivble sur IR, solution de l'éqution différentielle Y '= Y et telle que f(0) = que l'on

Plus en détail

I. Variable aléatoire continue

I. Variable aléatoire continue BTS Systèmes électroniques Loi proilités 06/0/203 Cmpus Sint Joseph Pierre Rouge I. Vrile létoire continue Définition : Une vrile létoire réelle à densité (ou continue) est une ppliction définie sur un

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

I - Égalité de quotients

I - Égalité de quotients I - Églité de quotients A - Simplifiction de quotient Si on multiplie ou si on divise le numérteur et le dénominteur d'un quotient pr un même nombre non nul lors on obtient un quotient égl. Pour tous nombres,

Plus en détail

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille

Les Mathématiques : du collège au lycée. Rentrée 2014 Au. LYCEE Pierre Corneille Les Mthémtiques : du collège u lycée Rentrée 2014 Au LYCEE Pierre Corneille 1 Clculer Développer Fctoriser Résoudre pour réussir u lycée. Nom de l élève :. 2 LIVRET DE REVISION 3 e / 2 nde - INTRODUCTION

Plus en détail

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C

Chapitre 2. Les nombres complexes. 2.1 Définition et propriétés de C Chpitre 2 Les nombres complexes Certines équtions polynomiles à coefficients réels n ont ps de solution dns R ; c est le cs de l éqution du second degré x 2 +1 = 0 puisque tout crré de réel est positif.

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail