TS - Maths - D.S.3 - CORRECTION

Dimension: px
Commencer à balayer dès la page:

Download "TS - Maths - D.S.3 - CORRECTION"

Transcription

1 TS - Maths - DS3 - CORRECTION Samedi 4 Novembre 20-2h Exercice Les parties A et B sont indépendantes Un site internet propose des jeux en ligne On donnera une valeur approchée à 0 2 près des résultats Partie A : Pour un premier jeu : si l internaute gagne une partie, la probabilité qu il gagne la partie suivante est égale à 2 si l internaute perd une partie, la probabilité qu il perde la partie suivante est égale à 4 Pour tout entier naturel non nul n, on désigne par G n l événement «l internaute gagne la n-ième partie» et on note p n la probabilité de l événement G n L internaute gagne toujours la première partie et donc p = Recopier et compléter l arbre pondéré suivant : 2 G n+ p n G n 3 G n+ G n+ pn G n 4 G n+ 2 Montrer que, pour tout n entier naturel non nul, p n+ = p n + G n et G n+ forme une partition de l univers, d après la formule des probabilités totales, on a p n+ = p(g n+ ) = p(g n G n+ ) + p(g n G n+ ) = p(g n ) p Gn (G n+ ) + p(g n ) p Gn (G n+ ) = p n 2 + ( p n) p n+ = p n + 3 Pour tout n entier naturel non nul, on pose u n = p n 4 (a) Montrer que (u n ) n N est une suite géométrique de raison et de premier terme u à préciser TS - DS3 - Correction - Page /

2 u n+ = p n+ par définition 4 = p n + d après la question précédente 4 = p n 20 = ( p n ) 4 = u n La suite (u n ) est donc la suite de raison et de premier terme u = p 4 = 4 = 3 4 (b) Exprimer u n en fonction de n, puis en déduire l expression de p n en fonction de n Comme (u n ) est la suite géométrique de raison et de premier terme u = 3 4, on a pour tout ( ) n n N, u n = 3 4 Comme, pour tout entier n N, u n = p n 4, on a p n = u n + 4 = 3 4 Donc, pour tout entier naturel n non nul, on a p n = 3 ( ) n (c) Déterminer la limite de p n Comme < <, on a lim n + ( On en déduit par opérations que ) n = 0 lim n + p n = 4 ( ) n + 4 Partie B : Dans un second jeu, le joueur doit effectuer 0 parties On suppose que toutes les parties sont indépendantes La probabilité de gagner chaque partie est égale à 4 Soit X la variable aléatoire égale au nombre de parties gagnées par le joueur (a) Quelle est la loi de probabilité suivie par la variable aléatoire X? Justifier Soit l expérience aléatoire «jouer une partie» On considère un succès S :«la partie est gagnée» de probabilité p = 4 et un échec S :«la partie est perdue» de probabilité p = 3 4 On répète cette expérience 0 fois de manière identique et indépendante La variable aléatoire X donnant le nombre de parties gagnées par le joueur à la fin des parties suit alors la loi binomiale de paramètres n = 0 et p = 4 (b) Quelle est la probabilité que le joueur gagne au moins une partie? Le résultat sera arrondi à 0 2 près P(X ) = P(X = 0) = 0,4 (c) Déterminer l espérance de X Comme X suit la loi binomiale de paramètres n = 0 et p = 4, on a E(X ) = n p = 0 4 = 2, 2 Le joueur doit payer 30 AC pour jouer les 0 parties Chaque partie gagnée lui rapporte 8 AC (a) Expliquer pourquoi ce jeu est désavantageux pour le joueur D après la question précédente, le joueur peut espérer gagner 2, parties soit remporter 2, 8 = 20AC Or, d après l énoncé il doit payer 30AC pour jouer les 0 parties Donc il peut espérer gagner = 0AC, c est-à-dire perdre 0AC Ce jeu est donc désavantageux pour le joueur TS - DS3 - Correction - Page 2/

3 (b) Dans cette question, toute trace de recherche sera prise en compte dans la notation Calculer la probabilité pour un joueur de réaliser un bénéfice supérieur à 40 AC Le résultat sera arrondi à 0 près Pour que le joueur réalise un bénéfice supérieur à 40AC, le joueur doit gagner 70AC lors des 0 parties Comme une partie gagnée rapporte 8AC, pour remporter 70AC, il doit gagner ( 70 = 8,7) au moins 8 parties On calcule alors la probabilité P(X ) = P(X 8) = 0,00003 à 0 près La probabilité de réaliser un bénéfice supérieur à 40AC est environ égale à 0,00003 Exercice 2 On considère la suite numérique (v n ) définie pour tout entier naturel n par v 0 = v n+ = Partie A On souhaite écrire un algorithme affichant, pour un entier naturel n donnée, tous les termes de la suite, du rang 0 au rang n Parmi les trois algorithmes suivants, un seul convient Préciser lequel en justifiant la réponse Algorithme N o Algorithme N o 2 Algorithme N o 3 Variables : Variables : Variables : v est un réel v est un réel v est un réel i et n sont des entiers naturels i et n sont des entiers naturels i et n sont des entiers naturels Début de l algorithme : Début de l algorithme : Début de l algorithme : Lire n Lire n Lire n Pour i variant de à n faire Pour i variant de à n faire Pour i variant de à n faire Fin pour Fin pour Fin pour Fin algorithme Fin algorithme Fin algorithme Le premier algorithme ne convient pas car il n affiche que la dernière valeur de la suite v Le second n est pas celui recherché car il n affiche que des Finalement, l algorithme 3 est celui qui convient pour afficher toutes les valeurs voulues de la suite 2 Pour n = 0 on obtient l affichage suivant :,800 2,43 2,333 2,4 2,38 2,600 2,647 2,684 2,74 Pour n = 00, les derniers termes affichés sont : 2,67 2,68 2,68 2,68 2,6 2,6 2,6 2,70 2,70 2,70 Quelles conjectures peut-on émettre concernant la suite (v n )? On peut conjecturer que la suite (v n ) est croissante et que lim v n = 3 n + 3 (a) Démontrer par récurrence que, pour tout entier naturel n, 0 < v n < 3 Montrons que la proposition P n :«0 < v n < 3» est vraie pour tout entier naturel n Initialisation Montrons que P 0 est vraie TS - DS3 - Correction - Page 3/

4 On a v 0 = Or 0 < < 3 donc P 0 est vraie Hérédité On suppose qu il existe un rang k N tel que P k soit vraie, càd 0 < v k < 3 Montrons sous cette hypothèse que P k+ est vraie, càd 0 < v k+ < 3 Par hypothèse de récurrence 0 < v k < 3 0 > v k > 3 6 > k > 3 6 < < k 3 par stricte décroissance de x sur R+ x 6 < v k+ < 3 = < v k+ < 3 Donc P k+ est vraie On a montré par récurrence que pour tout entier naturel n, on a 0 < v n < 3 (b) Démontrer que, pour tout entier naturel n, v n+ v n = (3 v n) 2 v n+ v n = v n = v n( ) = 6v n + v 2 n = (3 v n) 2 La suite (v n ) est-elle monotone? D après la question précédente, pour tout entier naturel n, on a 0 < v n < 3, donc > 0 Ainsi, pour tout entier naturel n, v n+ v n > 0 La suite (v n ) est donc croissante (c) Démontrer que la suite (v n ) est convergente Comme la suite (v n ) est croissante et majorée par 3, elle est convergente Partie B Recherche de la limite de la suite (v n ) On considère la suite (w n ) définie pour tout n entier naturel par w n = v n 3 Démontrer que (w n ) est une suite arithmétique de raison 3 w n+ = v n+ 3 = 6 v n 3 = = +3v n 6 v n 3v n = 3 v n + 3 3v n = 3 v n 3(3 v n ) + 3 3(v n 3) = 3 + w n La suite (w n ) est donc la suite arithmétique de raison 3 et de premier terme w 0 = v 0 3 = 3 = 2 2 En déduire l expression de (w n ), puis celle de (v n ) en fonction de n Comme (w n ) est la suite arithmétique de raison 3 et de premier terme w 0 = 2, on a pour tout entier naturel n, w n = 2 3 n Comme pour tout entier naturel n, w n = v n 3, on a v n = + 3 = w n n 3 Déterminer la limite de la suite (v n ) lim n = + Par opérations, on a lim n + n ( ) n = Donc par inverse lim n n = 0 On en déduit par somme que lim v n = 3 n + Exercice 3 TS - DS3 - Correction - Page 4/

5 On considère la fonction f par (2x + ) f (x) = x + Déterminer en justifiant, l ensemble de définition de la fonction f La fonction f étant définie par un quotient, elle est définie sur l ensemble où le dénominateur x + ne s annule pas Donc f est définie partout sauf en x = On a donc D f =] ; [ ] ;+ [ 2 On admet à cette question que f est définie sur I =] ; [ ] ;+ [ (a) Montrer que la fonction f est une primitive sur I de la fonction g définie sur I par g (x) = (2x + )4 (8x + ) (x + ) 2 La fonction f est dérivable sur I comme quotient de deux fonction dérivables sur I avec x + 0 On a f (x) = 2 (2x + )4 (x + ) (2x + ) (x + ) 2 = (2x + )4 (0(x + ) (2x + )) (x + ) 2 = (2x + )4 (8x + ) (x + ) 2 = g (x) Comme pour tout x de I, f (x) = g (x), on peut en conclure que la fonction f est une primitive de la fonction g sur I (b) En déduire le tableau de variation de la fonction f Etudions le signe de f (x) = g (x) sur I Pour tout x de I, on a (2x + ) 4 > 0 Pour tout x de I, on a (x + ) 2 > 0 8x + 0 x 8 On obtient alors le tableau de variations suivant : x f (x) f (x) On a f ( ( ( ) ) ) 2 ( ) 8 = 8 + ( 8 + ) = 4 = TS - DS3 - Correction - Page /

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

TS - Maths - Bac blanc - Correction Spécialité SVT-Physique

TS - Maths - Bac blanc - Correction Spécialité SVT-Physique TS - Maths - Bac blanc - Correction Spécialité SVT-hysique Exercice 1 5 points Des probabilités Commun à tous les candidats Dans un laboratoire, se trouve un atelier nommé «L école des souris». Dès leur

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 3 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

Sujet C p315 livre Centres étrangers juin Nouvelle Calédonie Novembre points annales 50p190

Sujet C p315 livre Centres étrangers juin Nouvelle Calédonie Novembre points annales 50p190 Antilles septembre 20 Les parties A et B sont indépendantes Un site internet propose des jeux en ligne. Partie A Pour un premier jeu : * si l internaute gagne une partie, la probabilité qu il gagne la

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015 Lycée Marlioz - Aix les Bains Bac Blanc 205 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 2 avril 205 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Exercices supplémentaires : Suites

Exercices supplémentaires : Suites Exercices supplémentaires : Suites Partie A : Calculs de termes et représentation graphique Exercice On considère la suite définie par 4 pour tout N. Calculer,, et Exercice On considère la suite définie

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

/1 point n, c est-à-dire que

/1 point n, c est-à-dire que Externat Notre Dame Devoir n Tle S) Samedi 5 octobre 204 Proposition de corrigé Exercice : / point Restitution organisée de connaissances Dans cet exercice n désigne un entier naturel. On définit une suite

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

2(xex ) = 2 0 = 0 ( croissances comparées ) x x lim. f 3

2(xex ) = 2 0 = 0 ( croissances comparées ) x x lim. f 3 Corrigé - Baccalauréat blanc TS - 03 EX : (4poi nt s Commun à tous les candidats ( 6 points Partie A - Étude d une fonction. On considère la fonction f définie sur R par f (x = (x + e x.. Déterminer la

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats Eercice sur 5 points Cet eercice est commun à tous les candidats Soit f une fonction définie sur ]0 ; + [. On note C f sa courbe représentative dans un repère orthonormal représentée en annee. - La courbe

Plus en détail

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé

Exercice 1. Exercice 2. Exercice 3. Compléments sur les suites - Récurrence Exercices - Corrigé Compléments sur les suites - Récurrence Exercices - Corrigé Exercice Pour n N nn + ), on pose Hn) : k := + + 3 + + n =. k= Pour n =, les deux membres de l égalité valent et donc H) est vraie. Soit ensuite

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014

TES/TL spé maths Eléments de correction du Bac Blanc n 1 Jeudi 18 décembre 2014 TES/TL spé maths Eléments de correction du Bac Blanc n Jeudi 8 décembre 4 Calculatrice autorisée - Aucun document n'est autorisé. Exercice. (5 points) Le barème est noté sur points. Partie : Fonctions

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Session janvier 2015

Session janvier 2015 BACCALAUREAT BLANC Session janvier 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures MATERIEL AUTORISE OU NON AUTORISE :

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé du baccalauréat S Antilles-Guyane juin 15 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 POINTS 1. Pour toutes les courbes, on a g a (1)= a. Donc on a de bas en haut les courbes Γ,5, Γ,1,

Plus en détail

Mathématique ECS 1 03 Sept Devoir surveillé 1.

Mathématique ECS 1 03 Sept Devoir surveillé 1. Mathématique ECS 0 Sept. 06 Devoir surveillé. Veillez à bien justifier vos réponses : un exercice bien traité rapporte des points, un exercice traité de façon non rigoureuse ne rapporte pas de points.

Plus en détail

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire.

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire. DS 9 Correction EXERCICE On considère la fonction déterminée sur 0, par : ln On se propose dans cet exercice d'étudier la fonction et de la représenter relativement à un repère orthonormal,,, l'unité choisie

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Baccalauréat S Asie 16 juin 2015 Corrigé

Baccalauréat S Asie 16 juin 2015 Corrigé Baccalauréat S Asie 16 juin 015 Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats Partie A Un concurrent participe à un concours de tir à l arc, sur une cible circulaire. À chaque

Plus en détail

Proposition de corrigé

Proposition de corrigé Externat Notre Dame Bac Blanc n 2 (Tle S) Lundi 27 Avril 2015 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices

Plus en détail

Bac blanc février 2013

Bac blanc février 2013 Lycée Louise MICHEL Terminales S MATHEMATIQUES Année 0/0 Bac blanc février 0 (Durée : 4 heures.) Les calculatrices sont autorisées, mais l échange de tout matériel est interdit. Les brouillons ne sont

Plus en détail

T ES/L DEVOIR SURVEILLE 5 12 AVRIL 2013

T ES/L DEVOIR SURVEILLE 5 12 AVRIL 2013 T ES/L DEVOIR SURVEILLE 5 12 AVRIL 2013 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

étude de fonctions suites

étude de fonctions suites Corrigé DS Terminale S étude de fonctions suites Exercice Une image numérique en noir et blanc est composée de petits carrés appelés pixels donc la couleur va du blanc au noir en passant par toutes les

Plus en détail

BACCALAUREAT BLANC 2016 LYCEE DAGUIN

BACCALAUREAT BLANC 2016 LYCEE DAGUIN BACCALAUREAT BLANC 2016 LYCEE DAGUIN MATHEMATIQUES SERIE S Durée de l épreuve : 4 heures Indiquer sur la copie «Spécialité Maths» ou «Non spécialité Maths» Le sujet comporte 6 pages numérotées de 1 à 6.

Plus en détail

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013 Corrigé du bac S blanc Lycée Français de Valence avril EXERCICE 5 points VRAI ou FAUX? Pour chacun des énoncés suivants, indiquer si la proposition correspondante est vraie ou fausse et proposer une justification

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3.

On peut représenter la situation par un arbre : On a donc p(b 1 B 2)= p(b 1) p (B ) = 3 4 = 3. Exercice n 1 : Une urne contient au départ 0 boules blanches et 10 boules noires indiscernables au toucher. On tire au hasard une boule de l urne : Si la boule est blanche, on la remet dans l urne et on

Plus en détail

Externat Notre Dame Devoir n 3 (Terminale S) Samedi 6 mars Nom Prénom :

Externat Notre Dame Devoir n 3 (Terminale S) Samedi 6 mars Nom Prénom : Externat Notre Dame Devoir n 3 (Terminale S) Samedi 6 mars 2015 durée : 4 heures calculatrice autorisée Nom Prénom : Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans

Plus en détail

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m

TS Rappels sur les suites Cours. Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m 1 TS Rappels sur les suites Cours I. Définitions Une suite est une fonction définie sur l ensemble des entiers naturels ou sur privé des premiers entiers 0, 1, 2,, m L image u(n) de l entier n est notée

Plus en détail

[ Baccalauréat ES Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat ES Nouvelle-Calédonie \ 19 novembre 2015 [ Baccalauréat ES Nouvelle-Calédonie \ 19 novembre 2015 A. P. M. E. P. EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte un point Une réponse fausse,

Plus en détail

Mathématiques. préparation à la Terminale ES

Mathématiques. préparation à la Terminale ES Mathématiques préparation à la Terminale ES Le programme de Terminale ES est chargé et est la continuité de celui de 1 ère ère ES. Les nouvelles notions sont nombreuses et le rythme de progression est

Plus en détail

Calcul intégral et suite numérique Intégration Exercices corrigés

Calcul intégral et suite numérique Intégration Exercices corrigés Calcul intégral et suite numérique Intégration Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : étudier le sens de variation d une suite

Plus en détail

Baccalauréat S Algorithmes Index des exercices contenant un algorithme de juin 2012 à novembre 2013

Baccalauréat S Algorithmes Index des exercices contenant un algorithme de juin 2012 à novembre 2013 Baccalauréat S Algorithmes Index des exercices contenant un algorithme de juin 2012 à novembre 2013 Tapuscrit : DENIS VERGÈS N o Lieu et date 1 Polynésie juin 2012 2 Métropole juin 2012 3 Centres étrangers

Plus en détail

Mathématiques. préparation à la Terminale S

Mathématiques. préparation à la Terminale S Mathématiques préparation à la Terminale S Le programme de Terminale S est chargé et est la continuité de celui de 1 ère ère S. Les nouvelles notions sont nombreuses et le rythme de progression est rapide.

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h.

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h. Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIERSITAIRE 206 Samedi 20 février 206 MATHÉMATIQUES durée de l épreuve : 3 h A. P. M. E. P. Les calculatrices sont autorisées. Problème La partie A est

Plus en détail

TS Corrigé du bac blanc n 2 du 23 avril Ex 1 :

TS Corrigé du bac blanc n 2 du 23 avril Ex 1 : TS Corrigé du bac blanc n 2 du 23 avril 2014 Ex 1 : Ex 2 : t Ex 3 : Partie A : 1. lim (x +1=+ et lim e x =+, d'où par produit : x + x + Pour tout x réel, f (x=xe x +e x. Or, lim xe x =0 (croissances comparées

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES.

RAPPELS CHAPITRE 4 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. 1 : SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES. I) RAPPELS DE COURS : Caractérisation par une relation de récurrence Caractérisation par une formule explicite Représentation graphique sur un axe Suites

Plus en détail

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l'indice

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

1. On désigne par A et B deux évènements indépendants d un univers muni d une loi de probabilité p.

1. On désigne par A et B deux évènements indépendants d un univers muni d une loi de probabilité p. 2011 Pondichéry ex 3 (5 pts) Un jeu consiste à lancer des fléchettes sur une cible. La cible est partagée en quatre secteurs, comme indiqué sur la figure ci-dessous. On suppose que les lancers sont indépendants

Plus en détail

Correction Bacalauréat S Centres Etrangers Juin 2007

Correction Bacalauréat S Centres Etrangers Juin 2007 Correction Bacalauréat S Centres Etrangers Juin 00 Exercice. Modélisation de l expérience aléatoire : l univers Ω est l ensemble des combinaisons (choix non ordonnés et sans répétition de trois éléments

Plus en détail

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en +. 2. Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a.

Plus en détail

Corrigé de l examen de mathématiques

Corrigé de l examen de mathématiques Collège notre Dame de Jamhour Juin 2014 Classe de première S Corrigé de l examen de mathématiques Exercice 1 1. a. admet pour vecteur directeur ; admet pour vecteur directeur Alors et sont orthogonales.

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm).

BAC BLANC. Bac Blanc wicky-math.fr.nf Février Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : 2 cm). Bac Blanc wicky-math.fr.nf Février 0 BAC BLANC Exercice. Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) (unité graphique : cm). Partie A On considère l équation : (E) : z + 6z +

Plus en détail

Les trois parties de cet exercice peuvent être traitées de façon indépendante.

Les trois parties de cet exercice peuvent être traitées de façon indépendante. EXERCICE 3 Commun à tous les candidats 7 points Une société produit des bactéries pour l'industrie. En laboratoire, il a été mesuré que, dans un milieu nutritif approprié, la masse de ces bactéries, mesurée

Plus en détail

ou = La solution à retenir étant bien évidemment celle qui est positive.ainsi = 1+ 5

ou = La solution à retenir étant bien évidemment celle qui est positive.ainsi = 1+ 5 Terminale S Correction du Devoir Surveillé n 5 Exercice 1 : Partie A : Le Nombre d Or 1. =1+ 1+1+ 1+ =1+φ. On obtient l équation du second degré φ 1=0 Le discriminant est = 4=1 4 1 1=5 Il y a donc deux

Plus en détail

1L spé math -1ES Corrigé du D.S. de Mathématiques n 5 Vendredi 24 avril 2015

1L spé math -1ES Corrigé du D.S. de Mathématiques n 5 Vendredi 24 avril 2015 1L spé math -1ES Corrigé du D.S. de Mathématiques n 5 Vendredi 24 avril 2015 Calculatrice autorisée Durée : 1h45 Le barème est donné sur 35 points à titre indicatif. EXERCICE 1. (12 points) Pierre a deux

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

c. Démontrer que la probabilité de l événement G est d. Calculer la probabilité qu une personne qui a gagné soit un tricheur.

c. Démontrer que la probabilité de l événement G est d. Calculer la probabilité qu une personne qui a gagné soit un tricheur. Exercice 1 : Dans un village de montagne deux familles A et B disposent de cinq circuits balisés de promenades c 1, c 2, c 3, c 4 et c 5 A Chaque matin, chacune des familles tire au hasard, indépendamment

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012

BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Lycée Albert CAMUS 28 mars 2012 BAC BLANC DE MATHÉMATIQUES SÉRIE S ANNÉE 2011/2012 Durée de l épreuve : 4H - Coefficient : 9 (Spécialité) Les calculatrices sont AUTORISÉES Le candidat doit traiter les

Plus en détail

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017 Mathématiques Pascal CHAUVIN T le ES 8 janvier 2017 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

Exercices supplémentaires : Probabilités

Exercices supplémentaires : Probabilités Exercices supplémentaires : Probabilités Partie A : Probabilités simples et variables aléatoires On lance trois dés : un rouge, un bleu et un vert. On écrit un nombre de trois chiffres : le chiffre des

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

Correction Devoir à la maison commun Saint-Charles La Cadenelle

Correction Devoir à la maison commun Saint-Charles La Cadenelle Correction Devoir à la maison commun Saint-Charles La Cadenelle Exercice On considère les matrices 0 5 0 0 5 0 0 0 0 0 0 4 ; 0 2 ; 0 2 0 ; 0 0 4 0 4 0 0 2 0 0 2 0 0 0 ) Soit la matrice 4 0 4 2 a) Prouver

Plus en détail

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H)

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H) Année scolaire 202-20 0 octobre 202 Terminales S 704/705/706) Correction du devoir de Mathématiques commun aux terminales S n /2H) Question de cours : points) Rappeler la définition de deux événements

Plus en détail

Suites Raisonnement par récurrence Exercices corrigés

Suites Raisonnement par récurrence Exercices corrigés Suites Raisonnement par récurrence Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : expression du terme général d une suite Exercice 2 : majoration

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0

0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 EXERCICE 1 - POUR TOUS LES CANDIDATS 7 points Partie A Voici deux courbes C 1 et C 2 qui donnent pour deux personnes P 1 et P 2 de corpulences différentes la concentration C d alcool dans le sang taux

Plus en détail

Correction du TD n o 2 Partie commune

Correction du TD n o 2 Partie commune Université de Nice Sophia-Antipolis Année Universitaire 00/0 L MI Statistique TD de Statistique Correction du TD n o Partie commune Exercice :. N est une variable aléatoire dénombrable tel que N(Ω) N et

Plus en détail

Un corrigé du baccalauréat blanc

Un corrigé du baccalauréat blanc Un corrigé du baccalauréat blanc XRCIC 1 (5 points). Pour les candidats de la série S Une entreprise fabrique chaque jour des objets. Cette production ne peut dépasser 700 objets par jour. On modélise

Plus en détail

Corrigé du baccalauréat ES/L Amérique du Sud 25 novembre 2015

Corrigé du baccalauréat ES/L Amérique du Sud 25 novembre 2015 orrigé du baccalauréat ES/L Amérique du Sud 25 novembre 2015 EXERIE 1 ommun à tous les candidats 5 points Une étude est menée par une association de lutte contre la violence routière. Des observateurs,

Plus en détail

Correction du bac blanc N 1

Correction du bac blanc N 1 Exercice I : QCM. ( 4 points ) Correction du bac blanc N 1 Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 0,5 point. Pour chacune des questions posées, une seule des quatre

Plus en détail

Livret de vacances. Thème 1 : Pourcentages. Exercice 1 : Taux d évolution et coefficient multiplicateur. Compléter le tableau suivant.

Livret de vacances. Thème 1 : Pourcentages. Exercice 1 : Taux d évolution et coefficient multiplicateur. Compléter le tableau suivant. Livret de vacances A faire par vos soins et non par vos parents, frères et sœurs ou autres Ce livret est un moyen de garder vos automatismes et vos acquis de première pour ainsi attaquer de façon sereine

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : septembre 2005 fredericdemoulin@voilafr Tableau récapitulatif des exercices indique que cette

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Avec les fonctions de référence Dans chacun des cas, comparer et sans utiliser la calculatrice ) =,40 et =,4 ) = 7 et = 4 ) = 0,5 et = 4) =,4 et

Plus en détail

Mathématiques classe de T ale ES/L .2015

Mathématiques classe de T ale ES/L .2015 Mathématiques classe de T ale ES/L DST du 19.05.2015.2015 Durée 3 h Calculatrice autorisée Encadrer les résultats Rendre le sujet Rendre l exercice de spécialité s sur une copie séparée. Prénom et NOM

Plus en détail

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1 TES BAC BLANC 2013 durée 3h Exercice 1 ( 4,5 points ) Cet exercice est un questionnaire à choix multiples. Pour chacune des trois questions, trois réponses sont proposées ; une seule de ces réponses convient.

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 7 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité)

lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S (obligatoire + spécialité) Décembre 2015 lycée Franco Australien de Canberra Narrabundah College Baccalauréat blanc n 1 MATHEMATIQUES Terminale S obligatoire + spécialité) * * * * * * * DUREE DE L EPREUVE = 4 h 00 * * * * * * *

Plus en détail

Exercice 1. On sait que. Donc. Ce qui donne. On a. ( ) lim. Donc. lim. Posons. La suite ( ) est évidemment croissante puisque

Exercice 1. On sait que. Donc. Ce qui donne. On a. ( ) lim. Donc. lim. Posons. La suite ( ) est évidemment croissante puisque Correction Exercices sur les variables aléatoires Exercice 1 Soit une variable aléatoire suivant la loi géométrique de paramètre (1/). a. Rappeler les valeurs de son espérance et de sa variance ; en déduire

Plus en détail

Exercice 1. Probabilités

Exercice 1. Probabilités TS Eléments de correction de l évaluation n 1 du Mercredi 4 Novembre 015 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction de votre

Plus en détail

Corrigé du bac blanc du 19 mars 2013

Corrigé du bac blanc du 19 mars 2013 Corrigé du bac blanc du 9 mars 203 Eercice (4 points) Pour chaque question, deu propositions sont énoncées. Il s agit de dire, sans le justifier, si chacune d elles est vraie ou fausse. Le candidat indiquera

Plus en détail

Corrigé du baccalauréat ES Polynésie 10 juin 2016

Corrigé du baccalauréat ES Polynésie 10 juin 2016 Corrigé du baccalauréat ES Polynésie juin 6 EXERCICE Commun à tous les candidats 5 points On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre

Plus en détail

b) Montrer que le vecteur 2 est normal au plan (ABE).

b) Montrer que le vecteur 2 est normal au plan (ABE). Baccalauréat S Liban 3mai 206\ XRCIC (4 points Commun à tous les candidats On considère un solide ADCBF constitué de deux pyramides identiques ayant pour base commune le carré ABCD de centre I. Une représentation

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

Baccalauréat S Liban 27 mai 2014

Baccalauréat S Liban 27 mai 2014 EXERCICE 1 Baccalauréat S Liban 27 mai 2014 Les trois parties A, B et C peuvent être traitées de façon indépendante. Les probabilités seront arrondies au dix millième. Un élève doit se rendre à son lycée

Plus en détail

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation.

Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Externat Notre Dame Bac Blanc n Tle S) janvier 206 durée : 4 h calculatrice autorisée Dans tout ce devoir, la qualité de la rédaction et le soin seront pris en compte dans la notation. Les exercices pourront

Plus en détail

Corrigé du baccalauréat S Pondichéry 17 avril 2015

Corrigé du baccalauréat S Pondichéry 17 avril 2015 Corrigé du baccalauréat S Pondichéry 17 avril 015 EXERCICE 1 Commun à tous les candidats Partie A points C 1 j - -1 O ı a 1 1 On sait que e x > 0 quel que soit le réel x, donc 1+e x > 1>0 Le dénominateur

Plus en détail

Baccalauréat S Asie 16 juin 2015

Baccalauréat S Asie 16 juin 2015 Exercice 1 Baccalauréat S Asie 16 juin 15 A. P. M. E. P. Les trois parties de cet exercice sont indépendantes. Les probabilités seront arrondies au millième. Partie A Un concurrent participe à un concours

Plus en détail