LOI NORMALE ET LOIS DERIVEES

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "LOI NORMALE ET LOIS DERIVEES"

Transcription

1 Prcpes et Méthodes de la Bostatstque Chaptre 5 LOI NORMALE ET LOIS DERIVEES A-LA LOI NORMALE Présetato La dstrbuto ormale, dte ecore de Laplace-Gauss, est pour des rasos qu apparaîtrot plus lo, la plus mportate des dstrbutos de probablté. C est ue dstrbuto défe sur R, dot la desté déped des paramètres μ et σ, qu sot sa moyee et sa varace ; l expresso de cette desté, doée à ttre de smple curosté, est la suvate : f (x, μ,σ 1 ) = σ π exp ( x μ ) σ (ous auros jamas beso das la sute de cette expresso, sauf das le chaptre sur le maxmum de vrasemblace). Le graphe de la desté de la lo ormale de moyee ulle et d écart-type 1, dte lo ormale cetrée rédute ou stadard, f(x ; 0 ; 1) est représeté c-dessous ; c est la fameuse courbe e cloche ; de faço géérale, la courbe est symétrque autour de la moyee μ et d autat plus étalée vers les basses et hautes valeurs de x que la varace σ est plus grade. Desté de la lo ormale 0,45 0,4 0,35 0,3 0,5 0, 0,15 0,1 0, x Lo ormale et los dérvées 0

2 Prcpes et Méthodes de la Bostatstque U premer résultat cocerat la dstrbuto ormale est que s X est N(μ;σ ) (ce symbole se compred de lu-même), la varable Y=aX+b, où a et b sot des ombres est auss ormale, de moyee aμ+b et de varace a σ. Ce résultat, toute focto léare d ue varable ormale est elle-même ormale, est très utle, otammet pour les calculs, car l motre qu o peut toujours se rameer à la varable ormale cetrée rédute. E effet, sot X=N(μ ;σ ) et cherchos la probablté que X sot féreure ou égale à u ombre doé x 0 (c est, rappelos-le, la focto de répartto de X). Pr{X x 0 }= Pr{ X μ x 0 μ X μ }. Mas Y= a pour moyee 0 et pour varace 1, σ σ σ c est ue ormale cetrée rédute ; la probablté cherchée est doc Pr{Y<y 0 } où Y=N(0,1) et y 0 = x μ 0. σ Calculs umérques sur les los ormales O peut les effectuer sot à partr de tables umérques, sot, et de faço beaucoup plus commode, à partr de logcels. O trouvera deux tables e aexe : la premère fat correspodre la valeur u et la probablté π telles que Pr{X<u}=π. O y lt par exemple que Pr{X<1.96}=0.975 = 97.5 %, ou Pr{X<1}=84.13%, etc. O a be sûr, Pr{X> u}=1-π=α; o a coutume de désger par le symbole z α la valeur telle que Pr{X>z α }=α. As, z 0.05 =1.645, z 0.05 =1.96, etc A cause de la symétre de la desté de X autour de 0, la table e cosdère que des z postfs. Supposos que ous cherchos le z correspodat à α=80%. De Pr{X>z 0.8 }=0.8, o tre Pr{X<z 0.8 }=0. et o vot que z 0.8 =-z 0. = De faço géérale, z α =-z 1 α. La deuxème table, qu se dédut de la précédete, assoce les valeurs ε et α, telles que Pr{ X > ε α }= α. Par exemple ε 0.05 =1.96. ε α est toujours postf. O vérfe mmédatemet que, pour α 0.5, z α =ε α. As s X est ormale de moyee μ et de varace σ, la probablté qu elle tombe das l tervalle [μ-1.96σ, μ+1.96σ] est Très souvet, o remplace 1.96 par la valeur approchée, et o a alors la règle des écarts-types : ue varable N(μ,σ ) a ue probablté de 95% de tomber das l tervalle μ ± σ. Pour ce qu est des logcels, l exste das EXCEL pluseurs foctos permettat d effectuer tous les calculs portat sur les los ormales. La covergece vers la lo ormale : le théorème lmte cetral C est sas doute le théorème le plus étoat et le plus utlsé du calcul des probabltés. Sot X 1, X,, X des varables aléatores dépedates de même lo, de moyee μ et de varace σ. Comme la moyee M des X M = X X 1 a pour moyee μ et pour varace σ M μ, la varable a ue moyee ulle et ue varace uté. Le théorème σ Lo ormale et los dérvées 1

3 Prcpes et Méthodes de la Bostatstque lmte cetral dt que quelle que sot la dstrbuto des X, la varable M μ approchée, pour suffsammet grad, par ue varable ormale. E d autres termes, s est grad la moyee (ou la somme) de varables aléatores dépedates de même lo quelcoque a ue dstrbuto ormale. σ peut être O compred dès lors l mportace aocée de cette dstrbuto. O travalle souvet sur des moyees (ou des quattés qu s y ramèet) et s est suffsammet grad o va pouvor utlser la dstrbuto ormale pour trater ces quattés. As, la moyee de varables aléatores dépedates, ayat la même dstrbuto, a ue probablté.95 de tomber das l tervalle μ ± 1.96 σ, quelle que sot la dstrbuto des X. Ue applcato Sot p la proporto de sujets d ue populato qu possèdet u certa caractère. U échatllo de talle est extrat de cette populato, sur lequel 0 possèdet le caractère, codusat à u pourcetage observé p 0. 0 est ue varable aléatore bomale, p 0 est la moyee de varables de Beroull. Le théorème cetral lmte dt que s est grad, la varable p 0 p est N(0,1) c est-à-dre que, par exemple, p 0 a ue probablté 95% de tomber pq das l tervalle p ± pq. Cette approxmato de la lo bomale par la lo ormale smplfe beaucoup les calculs umérques. O vot be que ce est qu ue approxmato : p 0 e peut predre qu ue sute dscotue de valeurs 0, 1,,..., 1, 1, alors qu ue varable ormale est cotue. Toutefos, le ombre de valeurs possbles de p 0 augmete avec et devet presque cotu. Codtos d utlsato La vtesse de covergece de la dstrbuto de M vers la dstrbuto ormale déped be évdemmet de la dstrbuto des X et de sa «dstace» à la ormalté. S les X sot ormaux, alors le théorème est vra pour =1. Il est pas possble de doer des règles uverselles d utlsato. S les X sot des Beroull, dstrbuto très élogée de la dstrbuto ormale, et s o se cotete d ue approxmato modérée (mas suffsate das la plupart des applcatos), o peut utlser l approxmato ormale s les produts p et q sot tous deux égaux ou supéreurs à 5. Pour des dstrbutos cotues, telles que celles recotrées e médece et e bologe, o admet qu u effectf de =30, sufft pour assurer la ormalté de la dstrbuto de la moyee. Lo ormale et los dérvées

4 Prcpes et Méthodes de la Bostatstque Les los «aturelles» Il est souvet dt que ombre de dstrbutos aturelles (talle des sujets d ue populato homogèe, varables bologques dverses) sot ormales ou proches de la ormalté. O explque ce fat par le théorème lmte cetral (et ses extesos) : s o admet qu u phéomèe est la résultate d u très grad ombre d effets aléatores dépedats agssat addtvemet, et dot aucu a u effet prépodérat, alors la résultate dot être à peu près ormale. De même, s l o admet que les effets e sot pas addtfs, mas multplcatfs, c est le logarthme de l effet mesuré X qu dot avor ue dstrbuto à peu près ormale. X a alors ue dstrbuto dte logormale, qu se caractérse par sa dssymétre. Cette dstrbuto se recotre égalemet fréquemmet e médece et bologe. Toutefos pour être tout à fat complet, o dot dre que la ormalté ou la logormalté e dovet pas être cosdérées comme la règle géérale ; o recotre de ombreuses exceptos. B- DISTRIBUTION DU χ Défto Sot X ue varable aléatore dstrbuée suvat ue lo ormale cetrée rédute (μ=0, σ =1). So carré Y=X est ue varable aléatore dot la lo s appelle dstrbuto du χ à 1 degré de lberté (e abrégé d.d.l.). Sot mateat varables ormales cetrées rédutes dépedates X 1, X,, X. La varable aléatore Z= X 1 + X X sut ue lo qu s appelle dstrbuto du χ à d.d.l. Cette lo est tabulée. O lt par exemple das la table que Pr{χ } = 0.0 ou que Pr{χ } = 0.05, et o pourrat trouver que Pr{4.878 χ } = = 0.8. Le lecteur pourra vérfer que les valeurs correspodat à d.d.l.=1 sot les carrés des valeurs lues das la table ormale (ε) pour les mêmes probabltés : as pour α=0.05, 3.84=1.96 ; cec correspod évdemmet à la défto du χ à 1 degré de lberté. De ombreux logcels, Excel e partculer, permettet le calcul de la focto de répartto et de la focto verse de la dstrbuto du χ. Proprétés 1) O a le théorème d addtvté suvat, évdet à partr de la défto : s Z 1 et Z suvet dépedammet des los du χ à 1 et d.d.l., leur somme Z=Z 1 +Z sut ue lo du χ à 1 + d.d.l. Lo ormale et los dérvées 3

5 Prcpes et Méthodes de la Bostatstque ) Quelle que sot la varable aléatore X, o a par défto même de la varace E(X )=var(x)+{e(x)} ; s X est ormale cetrée rédute, E(X)=0, var(x)=1, doc E(X )=1. Comme par défto, X sut ue lo de χ à 1 d.d.l., o e dédut que l espérace d u χ à 1 d.d.l. est 1. Il e résulte que l espérace d u χ à d.d.l. est. O peut motrer que sa varace est. 3) U χ à d.d.l. état la somme de varables aléatores dépedates, s est grad, l est, e vertu du théorème cetral lmte de covergece vers la lo ormale, vos d ue varable ormale de moyee et de varace. O peut vérfer ce fat sur la table du χ ; as s =30, E(χ )=30 et var(χ )=60 ; la valeur a telle que Pr{χ >a}=0.05 s obtet, s o fat l approxmato par la lo ormale, par a= = 4.74, valeur vose de la valeur exacte doée par la table. L approxmato est doc très boe. Ue autre, melleure, est dquée au bas de la table : χ est dstrbuée ormalemet avec ue moyee 1. O pourra vérfer que la valeur foure par cette approxmato est très près de Cepedat ces approxmatos ot plus qu u térêt hstorque, les logcels permettat l obteto mmédate de résultats exacts. 4) S X 1, X,., X sot des N(μ ;σ ) dépedates, la varable aléatore X V = μ est u χ à d.d.l. ; c est évdet, pusque chacue des varables X μ est σ σ ormale cetrée rédute. 5) Cosdéros mateat deux varables X 1 et X dépedates, ormales de moyee μ et de varace σ et défssos la varable aléatore M, moyee arthmétque de X 1 et X, M= X 1 + X. Cherchos la lo de la varable aléatore V = X M 1 + X M. σ σ Comme X 1 M = X 1 X et X M = X X 1, o trouve que V = X 1 X. Mas X 1 -X σ est ue ormale de moyee ulle et de varace σ. Alors, X X 1 est ue ormale cetrée σ rédute et V sut u χ à 1 d.d.l. Ce résultat peut se gééralser : s X 1, X,., X sot des N(μ ;σ ) dépedates, et s M est la varable moyee arthmétque M= X 1 + X X, X la varable aléatore V = M a ue dstrbuto du χ à -1 d.d.l. La démostrato σ est pas mmédate, car s les varables X -M sot be ormales de moyee ulle, leur varace est pas 1 et elles e sot pas dépedates. Lo ormale et los dérvées 4

6 Prcpes et Méthodes de la Bostatstque C- LA DISTRIBUTION t DE STUDENT Défto Sot X ue varable ormale cetrée rédute et Y ue varable, dépedate de X, qu sut ue dstrbuto du χ à d.d.l. La dstrbuto de la varable aléatore T = X Y est appelée dstrbuto de t à d.d.l. La raso de l troducto de cette varable aléatore plutôt bzarre, apparaîtra plus lo. Cette dstrbuto est symétrque autour de 0. Elle est tabulée : o lt par exemple das la table que Pr{ t 6 > 1.943} = 0.10, Pr{ t4 >.776} = O remarquera que quad crot, la dstrbuto se rapproche de la dstrbuto ormale stadard (pour f, les valeurs sot celles de la table de la lo ormale). Be etedu, les logcels permettet les calculs sur la dstrbuto de t. Deux résultats 1) S X 1, X,, X sot varables ormales de moyee μ et de varace σ et dépedates, les varables aléatores M = et ( X M) sot dépedates. Nous ( X M) admettros ce résultat. M et S = = Vσ sot doc évdemmet dépedats. 1 1 ) M est ormale de moyee μ et de varace σ ; M μ σ est doc cetrée rédute ; d autre part V=( 1) S σ sut ue lo du χ à -1 d.d.l. et est dépedate de M. D après la M μ σ défto même de la dstrbuto du t de Studet, le rapport = M μ sut ue ( 1) S S ( 1) σ lo de t à -1 degrés de lberté. Le ses cocret de ce résultat apparaîtra u peu plus lo. X Lo ormale et los dérvées 5

7 Prcpes et Méthodes de la Bostatstque A SAVOIR Lo ormale : α z α α α Règle des écarts-types : S X est N(μ;σ ), X a ue probablté de 95 % d être comprs etre μ ± σ. Théorème cetral lmte : M = sot la dstrbuto des X. V = S S = ( X M) est u χ à -1 degrés de lberté. σ ( X M) 1, M μ S X ε α est N(μ; σ ) pour suffsammet grad, quelle que est u t de Studet à -1 degrés de lberté. Lo ormale et los dérvées 6

8 Prcpes et Méthodes de la Bostatstque Aexe - chaptre 5 Lo ormale et los dérvées 7

9 Prcpes et Méthodes de la Bostatstque Lo ormale et los dérvées 8

10 Prcpes et Méthodes de la Bostatstque Lo ormale et los dérvées 9

11 Prcpes et Méthodes de la Bostatstque Lo ormale et los dérvées 30

LEÇON N 6 : Loi de Poisson, loi normale.

LEÇON N 6 : Loi de Poisson, loi normale. LEÇON N 6 :. Pré-requs : Probabltés : défto, calculs et probabltés codtoelles ; Lo bomale cf. leço o 5) ; Noto de varables aléatores dscrètes et cotues cf. leços o 4 et 7), et proprétés assocées : espérace,

Plus en détail

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit

[ ] IV.- Espérance mathématique de l estimateur  : Nous avons ( ) ε. alors l espérance mathématique sera : soit Itroducto à l écoométre S6-EF sc. éco. & gesto Prof. Mohamed El Meroua IV.- Espérace mathématque de l estmateur  : A ˆ A + X X X Nous avos ( ε alors l espérace mathématque sera : E ( E( A + E[ ( X X X

Plus en détail

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2

Vecteurs de variables aléatoires réelles Généralisation des propriétés de l espérance de la variance Dans tout le cours n désigne un entier naturel 2 Vecteurs de varables aléatores réelles Gééralsato des proprétés de l espérace de la varace Das tout le cours désge u eter aturel a) Lo d u vecteur aléatore à valeurs das ) Défto La lo d u -uplet ou d u

Plus en détail

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez

Partie 1. Corrigé de CCIP 2000 par Pierre Veuillez Corrgé de CCIP 2000 par Perre Veullez Das tout le problème, désge u eter aturel o ul. O cosdère ue ure U coteat boules umérotées de à. O tre ue boule au hasard das U. O ote k le uméro de cette boule. S

Plus en détail

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction :

Statistique. 3 ème Maths Mai 2010 A. LAATAOUI. I. Introduction : Statstque 3 ème Maths Ma 00 A LAATAOUI I Itroducto : La statstque est ue scece ayat pour objet l étude des phéomèes socau surtout ceu doat leu à des varatos ou ceu e pouvat être suffsammet maîtrsés que

Plus en détail

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses

6- Tests statistiques - 1. Chapitre 6 : Tests d hypothèses 6- Tests statstques - Chaptre 6 : Tests d hypothèses 6. Costructo d u test et règle de décso... 6. ussace d u test...3 6.3 Quelques tests d hypothèses...4 6.3. Test sur la moyee d ue dstrbuto ormale de

Plus en détail

Chapitre III : Les caractéristiques de dispersion

Chapitre III : Les caractéristiques de dispersion Chaptre III : Les caractérstques de dsperso Les caractérstques de tedace cetrale e sot pas toujours suffsates pour caractérser ue sére statstque, car séres peuvet avor Mo= Me = x alors qu elles sot dstrbuées

Plus en détail

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position?

Comment représenter les variables aléatoires (données)? Paramètres descriptifs. Quels sont les paramètres descriptifs de la position? Paramètres descrptfs Cours VETE043- Aée académque 06-07 Commet représeter les varables aléatores (doées)? Représetato sythétque Tables de fréqueces Représetato graphque Dagrammes de fréqueces Paramètres

Plus en détail

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie

Lois de probabilités liées aux tirages de boules dans une urne Approche sondage : échantillonnage et estimation dans une population finie Los de probabltés lées aux trages de boules das ue ure Approche sodage : échatlloage et estmato das ue populato fe Das le ouveau programme de secode, retrée 2009, sot scrtes les otos d'tervalle de fluctuato

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles

L2 Mention Informatique. UE Probabilités. Chapitre 3 : Variables aléatoires réelles L Meto Iformatque UE Probabltés Chaptre 3 : Varables aléatores réelles Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer, Serge Solovev Sot (, A, P) Ω et X : Ω R ue varable aléatore. I. Varable

Plus en détail

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance

Partie I : Gestion de portefeuilles actions Chapitre 3 Gestion de Portefeuille Moyenne-Variance Parte I : Gesto de portefeulles actos Chaptre 3 Gesto de Portefeulle Moyee-arace Gesto de Portefeulle D. Msae edemet d ue acto Cette parte est cosacrée à u apport mportat de la théore facère modere qu

Plus en détail

I. Qu est-ce qu une variable aléatoire?

I. Qu est-ce qu une variable aléatoire? I. Qu est-ce qu ue varable aléatore?. Défto : Sot ue expérece aléatore dot l esemble des résultats possbles (l uvers est oté Ω. Ue varable aléatore est ue focto X allat de Ω sur R, c est-à-dre que c est

Plus en détail

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements :

Statistiques II Sc. Éco. & Gestion (S3) Pr. M. El Merouani 3-Notation ensembliste des événements : wwwelmerouajmdocom Statstques II Sc Éco & Gesto S r M El Meroua Chaptre : roaltés I Itroducto : -Epreuve ou expérece : O appelle épreuve ou expérece ue certae acto que l o peut répéter pluseurs fos ar

Plus en détail

NOTATIONS ET FORMULAIRE

NOTATIONS ET FORMULAIRE Uversté PARIS DESCARTES Lcece de Psychologe L1 ADP1- Resp : Mrelle LAGARRIGUE page 1/5 PROTOCOLE SUR U ECHA TILLO NOTATIONS ET FORMULAIRE Esemble des sujets de l échatllo S { s 1 ; s ;.; s } (1) Varable

Plus en détail

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression

L2 Mention Informatique. UE Probabilités. Chapitre 4 : Simulation - Régression L Meto Iformatque UE Probabltés Chaptre 4 : Smulato - Régresso Notes de cours rédgées par Rége Adré-Obrecht, Jule Pquer I- Smulato de varables aléatores. Itroducto Das certaes expéreces «réelles», où le

Plus en détail

PRINCIPES DES STATISTIQUES INFERENTIELLES

PRINCIPES DES STATISTIQUES INFERENTIELLES Chaptre 3 PRINCIPES DES STATISTIQUES INFERENTIELLES Bases de la statstque féretelle PLPSTA0 0 Chaptre 3 1. Problématque. Objectfs des statstques féretelles.1 Estmato poctuelle. Estmato par tervalles.3

Plus en détail

Séries de Fourier 12-1

Séries de Fourier 12-1 Séres de Fourer 1-1 Sommare 1. Applcato de classe C 1 par morceaux 1 1.1. Applcato de classe C 1 par morceaux 1 1.. Applcato -pérodque C 1 par mcx. 1 1.3. pérato sur les applcatos C 1 par mcx 1. Sére de

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * *

EPREUVE SPECIFIQUE FILIERE MP MATHEMATIQUES 1. Durée : 4 heures. Les calculatrices sont interdites. * * * SESSION 003 EPREUVE SPECIFIQUE FILIERE MP MAHEMAIQUES 1 Durée : 4 heures Les calculatrces sot terdtes * * * NB : Le caddat attachera la plus grade mportace à la clarté, à la précso et à la cocso de la

Plus en détail

I. Moyenne, variance et écart-type d une série statistique

I. Moyenne, variance et écart-type d une série statistique I Moyee, varace et écart-type d ue sére statstque Sére statstque dscrète : Eemple d ue sére statstque dscrète : Preos le cas d ue classe de élèves qu réalset u devor oté sur 5 La sére statstque dscrète

Plus en détail

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu :

PROBABILITES. A. Espaces probabilisables. 1) Définition d une tribu : . Espaces probablsables Défto d ue trbu : PROBBILITES chaque expérece aléatore o assoce u esemble oté, appelé uvers, dot les élémets représetet les dfféretes ssues possbles de l expérece aléatore : est

Plus en détail

5. Variables aléatoires simultanées

5. Variables aléatoires simultanées 5. Varables aléatores smultaées 5.1 Coule de varables aléatores Défto 1 Pour tout dce das 1, sot X ue varable aléatore. O dt que X X 1 X est ue varable aléatore de dmeso. Nous ous téresseros rcalemet aux

Plus en détail

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues.

Une urne contient 5 boules rouges, 5 boules blanches et 6 boules bleues. Lycée Paul Gaugu CPGE-EC Aée 04/05 Exercces «basques» Fche N : Exercces sur les varables aléatores réelles dscrètes Exercce. : O cosdère deux dés dscerables be équlbrés. O ote X la varable aléatore égale

Plus en détail

Améliorer la productivité

Améliorer la productivité Maurce Pllet Amélorer la productvté Déploemet dustrel du toléracemet ertel, 00 SBN : 978---54754- Commet calculer ue tolérace ertelle 75 Nous avos doc u toléracemet par tervalle sur les exgeces foctoelles

Plus en détail

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an

BTS BLANC Mai ; on pose A. en fonction de an. puis écrire an BTS BLANC Ma 0 Epreuve : Mathématques Géérales et Applquées Flère : DA / ARLE Durée: heures NB : Chaque parte dot être tratée sur des copes dfféretes I- MATHEMATIQUES GENERALES Exercce a b Sot le Sot la

Plus en détail

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère

Correction Exercices du MODULE 1 : M1Exo4b Distribution statistique à un caractère Exo Math Stat Correcto exercces du Module Dstrbuto statstque à u caractère MExo4b Correcto Exercces du MODULE : MExo4b Dstrbuto statstque à u caractère Exercce Mexo4 b Objectf : Cet exercce trate du calcul

Plus en détail

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON

MATERIEL UTILISE : CALCULATRICE AUTORISEE OUI NON BAC BLANC MATIERE : MATHEMATIQUES OBLIGATOIRE CLASSE de : Termale S SALLE : Grade Permaece PROFESSEUR : Mle GUIHENEUF ATE : Vedred javer 6 HEURE ébut : 8 h HEURE f : h MATERIEL UTILISE : CALCULATRICE AUTORISEE

Plus en détail

Pondichéry Avril 2014 Série S Exercice.

Pondichéry Avril 2014 Série S Exercice. Podchéry Avrl 04 Sére S Exercce Le pla complexe est mu d u repère orthoormé ( O; uv, ) Pour tout eter aturel, o ote A le pot d affxe z déf par : O déft la sute ( ) z z 0 = et + = + z 4 4 r par r = z pour

Plus en détail

EPREUVE DE MATHEMATIQUES

EPREUVE DE MATHEMATIQUES Sesso févrer 009 BREVET DE TECHNICIEN SUPERIEUR «COMPTABILITE ET GESTION DES ORGANISATIONS» EPREUVE DE MATHEMATIQUES Durée : heures Coeffcet : Matérel et documets autorsés : L usage des strumets de calcul

Plus en détail

Cours (Terminale) Probabilités (révisions 1 ère )

Cours (Terminale) Probabilités (révisions 1 ère ) Cours (Termale) Probabltés (révsos ère ) Quelques rappels et complémets sur les esembles Uo de deux esembles O appelle «uo de deux esembles E et F» l esemble oté E F dot les élémets sot costtués des élémets

Plus en détail

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres

Ift Chapitre 7. Introduction. aux valeurs propres et aux vecteurs propres Ift 4 Chaptre 7 Itroducto au valeurs propres et au vecteurs propres Ift4 Chaptre 7 Défto : S A est ue matrce de, alors u vecteur o ul est dt vecteur propre de A s A est appelé valeur propre de A, et vecteur

Plus en détail

1. Test d indépendance du KHI-2

1. Test d indépendance du KHI-2 1. Test d dépedace du HI- Ecrre ue focto qu réalse le test d dépedace du kh-. Etrée : x et y, deux vecteurs, de type factor Sorte : statstque de test, degrés de lberté, p-value Idcatos : Vous devez vérfer

Plus en détail

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats.

2. On présente ensuite une proposition : l'équiprobabilité à chaque étape entraîne l'équiprobabilité sur l'ensemble des résultats. rbre de déombremet et arbre de probablté Pla du documet. O présete tout d'abord la règle du produt pour les arbres de déombremet avec, e cas partculer, le cardal d'u produt cartése d'esembles fs.. O présete

Plus en détail

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1 II - Notos de probablté 9/0/007 PHYS-F-30 G. Wlquet Ue varable aléatore est ue varable dot la valeur e peut être prédte avec certtude mas dot la probablté d occurrece d ue valeur (varable dscrète) ou d

Plus en détail

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins.

- x)(y i. - y) (x i. r = - x) 2 (y i. - y) 2. (x- a) (d - c) + c b- a. + a (0.1) (1,1) C.L. (0.0) (1,0) Masse salairiale des x % gagnant le moins. Résumé statstque.6 Le coeffcet de corrélato Corrélato etre deux composats: pod/talle d'u dvdu. r = å å =1 x - xy - y å x - x y - y =1 =1 La valeur se stuera etre -1 corrélato égatve/versée et 1corrélato

Plus en détail

arlesrcomplexesraurbacr2014r==corriges=z

arlesrcomplexesraurbacr2014r==corriges=z arlesrcomplexesraurbacr0r==corriges= Nouvelle-Calédoe ovembre 0 5 pots Proposto : Pour tout eter aturel : ( + ) = () VRAI! ( ) doc d où ( ) ( ) ( ) ( ) Sot (E) l équato ( )( + 8) = 0 où désge u ombre complexe

Plus en détail

PRO 1 EXPRO010 EXPRO019

PRO 1 EXPRO010 EXPRO019 Exercces résolus de mathématques. PRO 1 EXPRO010 EXPRO019 http://www.matheux.be.tf Jacques ollot 1 avrl 03 www.matheux.be.tf - PRO 1-1 - EXPRO010W Ue ure cotet boules blaches ( 4) et 10 boules ores. O

Plus en détail

Divisibilité et congruences. Corrigés d exercices

Divisibilité et congruences. Corrigés d exercices Dvsblté et cogrueces Corrgés d exercces Les exercces du lvre corrgés das ce docuet sot les suvats : Page 445 : N 1, 5 Page 459 : N 45 Page 449 : N 10 Page 460 : N 51, 5, 55, 57 Page 451 : N 16 Page 461

Plus en détail

Serie statistique double

Serie statistique double Sere statstque double Dstrbutos margales Actvté U relevé statstque des talles (e cm) et des pods Y (e kg) d u échatllo de 00 élèves a perms de costrure le tableau suvat : Y [0, 5[ [5, 50[ [50, 55[ [55,

Plus en détail

Chapitre 1. Résumé d une distribution statistique

Chapitre 1. Résumé d une distribution statistique Chaptre. Résumé d ue dstrbuto statstque.. Cocepts de base de la statstque descrptve Populato = O appelle populato assocée à ue épreuve l esemble des résultats possbles d ue «épreuve». E statstques, le

Plus en détail

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe

Méthode du simplexe: préliminaires. 2. Programmation linéaire. Solution de base. Méthode du simplexe: préliminaires. b. Méthode du simplexe Méthode du smplee: prélmares Modèles de recherche opératoelle (RO). Programmato léare b. Méthode du smplee Das le cas où l y a ue fté de solutos, la méthode d élmato de Gauss-Jorda permet d detfer tros

Plus en détail

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2

On applique le théorème de Pythagore au triangle AIE est rectangle en I AI 2 IE 2 AE 2 IE IE 1 2 Exercce Lba 6 4 pots O cosdère u solde ADECBF costtué de deux pyramdes detques ayat pour base commue le carré ABCD de cetre I. Ue représetato e perspectve de ce solde est doée e aexe (à redre avec la cope).

Plus en détail

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18

Nombre de Clients [0 ; 50[ 72. x i. n i [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200 ; 250 [ 18 1 U commerçat a relevé le motat des dépeses e euros de chaque clet au cours d ue semae. Motat des dépeses Clets [0 ; 50[ 72 x x - x ) - x )² -x ) ² [ 50 ; 100 [ 90 [100 ; 150 [ 126 [150 ; 200 [ 54 [200

Plus en détail

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2

2.1 Variable aléatoire Fonction de répartition Fonction de masse et de densité...2 - Varables aléatores et dstrbutos - Chaptre : Varables aléatores et dstrbutos. Varable aléatore.... Focto de répartto....3 Focto de masse et de desté....4 Dstrbuto cojote de varables aléatores...5.4. Dstrbuto

Plus en détail

Alain MORINEAU

Alain MORINEAU www.deeov.com Ala MORINEAU Cet artcle est ue reprse et u extrat de l artcle «Note sur la Caractérsato Statstque d'ue Classe et les Valeurs-tests», publé das la revue Bullet Techque du Cetre de Statstque

Plus en détail

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, )

Polynésie Juin 2010 Série S Exercice. Le plan complexe est rapporté à un repère orthonormal direct ( O; uv, ) Polyése Ju 00 Sére S xercce Le pla complexe est rapporté à u repère orthoormal drect ( O; uv, ) Prérequs Parte A Resttuto orgasée de coassaces Sot u ombre complexe tel que = a+ b où a et b sot deux ombres

Plus en détail

IR homogène de degré α ( α IR ). (0.5 pt.)

IR homogène de degré α ( α IR ). (0.5 pt.) Javer 05 ( heures et 0 mutes) a) Sot IN 0 \ {} Défr : sous-esemble boré de IR sous-esemble covee de IR b) Soet les sous-esembles suvats de IR : A [-4,0] [0,] B {(,y) IR : + y 9} Représeter graphquemet,

Plus en détail

PROBABILITÉS - VARIABLES ALÉATOIRES

PROBABILITÉS - VARIABLES ALÉATOIRES PROBABILITÉS - VARIABLES ALÉATOIRES Itroducto Das le cours sur les probabltés ous avos trodut la oto d uvers U et lu avos attacé ue focto probablté P. Das beaucoup d applcatos pratques la oto d uvers,

Plus en détail

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n

Gilles Leborgne 31 mai Rappel de dérivation 1. i=1 x i e i et y = n 1 Notes de cours de l'isima, premère aée http://wwwsmafr/ leborge Méthode des modres carrés : melleure approxmato léare Glles Leborge 31 ma 2005 Table des matères 1 Rappel de dérvato 1 2 Cas 1-D 2 21 Les

Plus en détail

Fractions rationnelles

Fractions rationnelles Fractos ratoelles 1. Gééraltés 1.1. Rappels K R ou C U polyôme s écrt sous la forme : pour u ombre f de k et P(X) K [X] k k avec a k 0 sauf k 0 P( X ) a. X 1.. Défto d ue fracto ratoelle O appelle fracto

Plus en détail

Chapitre : Équilibre général de Walras

Chapitre : Équilibre général de Walras Écoome et maagemet Lcece Mcroécoome 3 Aée 04-05 Chaptre : Équbre gééra de Waras Robert Jorda Agets de 'écoome : aucue fuece dvdueemet Système de prx : permettat de réaser des échages Codusat à u état réasabe

Plus en détail

Programmation linéaire en nombres entiers

Programmation linéaire en nombres entiers Programmato léare e ombres eters Itroducto Problème de programmato léare e ombres eters (P) M Suet à = = c a = b =,, m 0, eter =,, Eemple M z = Suet à, + 0 5 0 0, eter F(P) = domae réalsable de P Itroducto

Plus en détail

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6)

Loi de Fisher. Test de Fisher. Exemple. Solution. ANOVA à un facteur. df = (29, 28) df = (19, 6) df = (6, 6) ! amlle de dtrbuto. Lo de her! Chaque membre de la famlle et détermé par deux paramètre: le ombre de degré de lberté du umérateur et le ombre de degré de lberté du déomateur.! et cotue et potve.! et potvemet

Plus en détail

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale

Annexe 2 Note méthodologique sur le calcul des évolutions de bases, taux et produits de la fiscalité directe locale Mstère de l téreur, de l outre-mer ublcato : «le gude statstque de et des collectvtés terrtorales la fscalté drecte locale 2007» Aexe 2 Note méthodologque sur le calcul des évolutos de bases, taux et produts

Plus en détail

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4

CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 page1/6 CORRIGE EXERCICES FACULTATIFS TD ADP1 SEANCE 4 Dosser "Défcece" 1) = 30 pour les groupes. Les classes sot d'ampltudes dfféretes doc...utlser la desté (rappel : desté = effectf/ampltude). Durée

Plus en détail

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS

3- LES TIRAGES PROBABILISTES D'ECHANTILLONS 3- LES TIRAGES PROBABILISTES D'EHATILLOS Das de ombreuses alcatos ratques du calcul des robabltés, o retrouve u ou luseurs des schémas de trages robablstes d'échatllos que ous allos exoser. Le cadre gééral

Plus en détail

RADIOPROTECTION CIRKUS. Sommaire

RADIOPROTECTION CIRKUS. Sommaire RADIOPROTECTION CIRKUS Documet techque Radoprotecto Crkus 89 D boulevard du Fer 74000 Aecy www.rpcrkus.org - cotact@rpcrkus.org Assocato lo 1901 créée le 9 mars 010 W91300355 - Eregstrée à la préfecture

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble E des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

MAT4081 Chapitre 3 Régression 3 Transformation de variables

MAT4081 Chapitre 3 Régression 3 Transformation de variables MAT408 Chaptre 3 Régresso 3 Trasformato de varables Les graphques ou les techques dagostques peuvet révéler des volatos des hypothèses de la régresso léare : hétéroscédastcté, par exemple, ou absece de

Plus en détail

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier).

Exercice 1 : Analogie entre équilibres acido-basiques et équilibres de complexation (Application du Principe de Le Châtelier). Bla UE 1C G. EXERCICES BILAN Exercce 1 : Aaloge etre équlbres acdo-basques et équlbres de complexato (Applcato du Prcpe de Le Châteler). Objectfs de l'exercce - Coassaces/Compéteces testées das cet exercce

Plus en détail

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires

Evaluation des méthodes d analyse appliquées aux sciences de la vie et de la santé. Statistique. Variables aléatoires UE 4 Evaluato des méthodes d aalyse applquées au sceces de la ve et de la saté Statstque Varables aléatores Frédérc Mauy - 27 septembre et 3 octobre 2013 1 Pla du cours 1. Varable aléatore 1. Défto 2.

Plus en détail

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES

ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES ANALYSE DES DONNÉES TEST DU KHI-DEUX ANALYSE FACTORIELLE DES CORRESPONDANCES SIMPLES Perre-Lous Gozalez Mesure de la laso etre deux varables qualtatves Kh deux Equête : Êtes-vous «pas du tout d accord»

Plus en détail

1/7 Notes de cours en calcul des probabilités (JJ Bellanger) I : Espaces Probabilisés

1/7 Notes de cours en calcul des probabilités (JJ Bellanger) I : Espaces Probabilisés /7 otes de cours e calcul des probabltés (JJ Bellager I : spaces Probablsés I : SPACS PROBABILISS I.-xpérece aléatore Itutvemet ue expérece aléatore est ue expérece dot o e peut pas prévor le résultat

Plus en détail

Module : STATISTIQUE (1 e année) Document de cours

Module : STATISTIQUE (1 e année) Document de cours ESCE-Lyo Méthodes Quattatves Module : STATISTIQUE ( e aée) par Robert Chapelo, chargé de cours et de TD Documet de cours Fare de la statstque, c'est : - collecter des doées, - trater ces doées pour e redre

Plus en détail

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!!

a. Le symbole se lit «sigma» ; l écriture Ex : 2 Fréquences en % ( f i x 100) 11,1 % 29,6 % 59,3 % 100 %!!!! Cours : Statstques I. Itroducto Classe de ère S O a vu que our caractérser ue sére statstque, o utlse des : - aramètres de tedace cetrale : - la moyee ; - la médae. Ils ermettet d dquer la «osto» de la

Plus en détail

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1

La valeur acquise par un capital au bout d'une année est donc obtenue en multipliant ce capital par (1 + i). Par suite, le capital C1 LGL Cours de Mathématques 26 Exemples de sutes das le domae des faces 1) Itérêts composés O place 1. à térêts composés au taux de 4,5 % par a. Détermer le captal dspoble à la f de chaque aée et ce pedat

Plus en détail

Estimation de paramètres

Estimation de paramètres CHAPITRE 8 Estimatio de paramètres 1. Distributio des moyees des échatillos Das ce chapitre, ous étudieros commet est distribué la moyee de tous les échatillos de taille possibles d ue certaie populatio.

Plus en détail

Convergences et approximations

Convergences et approximations Covergeces et approximatios Probabilités : Chapitre 5 Das tout ce chapitre, les démostratios serot faites das le cas des variables discrètes et des variables à desité. I Iégalité de Bieaymé-Tchebychev

Plus en détail

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation

Limites de fonctions (1) Approche intuitive ; limites des fonctions de référence. 1 ère S. II. La fonction carrée. 1 ) Tableau de variation ère S Lmtes de foctos () Approche tutve ; tes des foctos de référece II. La focto carrée ) Tableau de varato Das ce chaptre, o lasse provsoremet de côté les dérvées. I. Itroducto ) Rappel Déà vu : oto

Plus en détail

CORRIGÉ ESSEC 2008 Scientifique

CORRIGÉ ESSEC 2008 Scientifique CORRIGÉ ESSEC 28 Scetfque Premère parte 1. a) O vérfe asémet que est be ue applcato de das (pour tout polyôme P, (P) est be u polyôme) et qu elle est léare ( (P,Q) 2, λ, (λp+q)=λ (P)+ (Q)). Doc : est u

Plus en détail

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE

Chapitre 8 Corrélation et régression linéaire simple. José LABARERE UE4 : Bostatstques Chaptre 8 Corrélato et régresso léare smple José LABARERE Aée uverstare 20/202 Uversté Joseph Fourer de Greoble - Tous drots réservés. Pla I. Corrélato et régresso léare II. Coeffcet

Plus en détail

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique

Chapitre II : Application du second principe à l étude de la réaction chimique ; Potentiel chimique Chaptre II : Applcato du secod prcpe à l étude de la réacto chmque ; Potetel chmque Pla : ********************** I- Eocé du secod prcpe de la thermodyamque... 2 1- Eocé du secod Prcpe de la hermodyamque...

Plus en détail

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles,

Exercice n 1 1) Par associativité de l intersection des événements, et à l aide de la formule des probabilités conditionnelles, CONCOURS EMIA Sceces CONCOURS 0 EPREUVE DE MATHEMATIQUES Corrgé o offcel rédgé par Jea-Gullaume CUAZ, esegat au Lycée Mltare de Sat-Cyr, jgcuaz@hotmalcom Eercce ) Par assocatvté de l tersecto des évéemets,

Plus en détail

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen

Annexe 1. Estimation d un quantile non-paramétrique par la méthode de Hazen Aexe. Estmato d u quatle o-paramétrque par la méthode de Haze La probablté cumulée emprque d ue doée au se d u échatllo est pas u cocept parfatemet déf : pluseurs estmatos sot possbles ; l e est de même

Plus en détail

Master 1 de Santé Publique. UE de biostatistique : cours 3. Estimation. Intervalle de confiance

Master 1 de Santé Publique. UE de biostatistique : cours 3. Estimation. Intervalle de confiance Master 1 de Saté Publique UE de biostatistique : cours 3 Estimatio Itervalle de cofiace Estimatio - Itervalle de cofiace 1 Estimatio Valeur théorique (ou vraie) Populatio Prédictio Valeur attedue Itervalle

Plus en détail

Bac blanc de mathématiques

Bac blanc de mathématiques Termale st2s le mercred 09/03/2016 Durée : 2 heures Bac blac de mathématques Exercce 1 : 6 pots Le tableau c-dessous doe le ombre d aboemets au servce de téléphoe moble e Frace etre f 2001 et f 2009, exprmé

Plus en détail

III GRANDEURS MOLAIRES

III GRANDEURS MOLAIRES Chaptre III GRNDEURS MOLIRES Gradeurs molares - Gradeur molare d u corps pur ou d u age de corps purs Sot u système thermodyamque costtué de moles d u même composé, o assoce à ue gradeur extesve de ce

Plus en détail

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple.

Annexe I. Théorie des tests : Rappel très simplifié sur un exemple. Théorie des tests : Rappel très simplifié sur u exemple. Aexe I Test de l efficacité d u remède sur des malades atteit d u rhume. p 0 : probabilité de guérir das les huit jours avec u placebo p 1 : probabilité

Plus en détail

Résumé de statistique I

Résumé de statistique I Résumé de statstque I Etude de doées statstques : Ce qu ous téresse lorsqu o a des doées statstque ou ue dstrbuto de celles-c : Le cetre : o o Moyee : mesures o robustes Médae : mesures robustes La dsperso

Plus en détail

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x

Probabilités. est la i ième valeur possible. L ensemble des issues auxquelles on associe la même valeur x Probabltés A) Varable aléatore et lo de probablté Varable aléatore Défto : O cosdère l'esemble des ssues d'ue expérece aléatore Défr ue varable aléatore X sur cet esemble, c est assocer u ombre à chaque

Plus en détail

Terminales S Exercices sur les nombres complexes Page 1 sur 6

Terminales S Exercices sur les nombres complexes Page 1 sur 6 Termales S Exercces sur les ombres complexes Page sur 6 Exercce : ) Calculer, et 5 6 7 ) E dédure, et ) Détermer les eters pour lesquels est a) u réel, b) est u magare pur, c) égal à Exercce : Ecrre sous

Plus en détail

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée.

Devoir de contrôle n 1. 4 ème Maths 1 Radès. Répondre par Vrai au Faux aux questions propositions suivantes. Aucune justification n est demandée. Lycée Ib Khaldou Devor de cotrôle ème Maths Radès ( heure) Mr ABIDI Fard Mathématques Mercred 9 Novembre 0 Exercce : ( pots) Répodre par Vra au Faux aux questos propostos suvates Aucue justfcato est demadée

Plus en détail

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables.

COUPLE DE VARIABLES ALEATOIRES. On considère deux variables aléatoires X et Y. On aimerait connaitre s il y a influence entre ces deux variables. COUPLE DE VARIABLES ALEATOIRES O cosdère deux varables aléatores et. O amerat coatre s l y a fluece etre ces deux varables. I Coule de varables dscrètes : 1) Lo ote : Soet et deux varables dscrètes, à

Plus en détail

COURS N 6 : Estimations

COURS N 6 : Estimations COURS N 6 : Estimatios O peut rappeler que les biostatistiques ot pour objectif de predre e compte la variabilité iteridividuelle, de résumer et décrire des doées et de comparer des échatillos. Nous avos

Plus en détail

COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07. Section IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE

COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07. Section IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE COURS SUR LES MELANGES EN FILATURE DE COTON PARTIE 07 Secto IV ELEMENTS DE STATISTIQUES APPLIQUES EN FILATURE 7.7. Elémets de statstques 7.7.. Caractérstques de posto. Moyee arthmétque La moyee est la

Plus en détail

Z(y) dy. Z v (x) = 1 v. v v

Z(y) dy. Z v (x) = 1 v. v v 3. VARIANCES DE BLOCS, DE DISPERSION, D'ESTIMATION 3- Varaces de blocs, de dsperso et d estmato 3. Varaces de blocs: O a u précédemmet l'mportace de coaître la arace de la arable aléatore correspodat au

Plus en détail

STATISTIQUES A UNE VARIABLE

STATISTIQUES A UNE VARIABLE Cours et exercces de mathématques ) Itroducto et vocabulare STATISTIQUES A UNE VARIABLE La statstque est la scece qu cosste à réur des doées chffrées, à les aalyser, à les commeter et à les crtquer Ue

Plus en détail

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable

Saïd Chermak. Master 2012 MAGE. Statistique descriptive à une variable Statstque descrptve à ue varable LES SAVOIRS La statstque est ue méthode scetfque qu recuelle, ordoe, aalyse et terprète des doées umérques. Pour ue melleure lsblté, ces doées sot représetées graphquemet.

Plus en détail

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i )

Leçon 08 : Statistiques Terminale. Altitude (x i ) Températures ( y i ) Leço 08 : Statstques Termale E premer leu, l te faut relre les cours de premère sur les statstques à ue varable, l a tout u lagage à se remémorer : étude d u échatllo d ue populato, mode, moee et médae

Plus en détail

Chapitre II : Notion de mesure : Définition : 3 Remarques : 3 Définition : 3 Définition : 3 Définition : 3 Exemple : 4 Définition : 4 2.

Chapitre II : Notion de mesure : Définition : 3 Remarques : 3 Définition : 3 Définition : 3 Définition : 3 Exemple : 4 Définition : 4 2. Chaptre II : Noto de mesure 3 2. : Défto : 3 Remarques : 3 Défto : 3 Défto : 3 Défto : 3 Exemple : 4 Défto : 4 2.2 : Proprétés : 4 Proprété : 4 Proprété 2 : 4 Proprété 3 : 4 Proprété 4 : 4 Proprété 5 :

Plus en détail

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE

PROBABILITÉS ET STATISTIQUE POUR L ENSEIGNEMENT SECONDAIRE PROILITÉS ET STTISTIQUE POUR L ENSEIGNEMENT SECONDIRE Ce documet a été rédgé à l occaso d u stage de formato cotue de professeurs de mathématques de trosème et secode e décembre 009 à Toulouse, sute à

Plus en détail

Correction des exercices du TD2

Correction des exercices du TD2 orrecto des exercces du TD Rael : des ades vous sot foures sur le ste «www.utc.fr /~mt/» à la f des fchers acrés aux chatre de cours. N héste as à les ulter our refare les exercces avat de regarder la

Plus en détail

MPSI du lycée Rabelais semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n

MPSI du lycée Rabelais  semaine du 11 septembre 2015 CALCULS ALGÉBRIQUES. Montrez que u k = u m +u n MPSI du lycée Rabelas http://mps.satbreuc.free.fr semae du septembre 5 CALCULS ALGÉBRIQUES Sommes et produts fs Exercce : Parm les formules suvates, lesquelles sot vraes?.. 3. α+a α+ a +b αa α a + a a

Plus en détail

La méthode probabiliste

La méthode probabiliste La méthode probablste LA MÉTHODE PROBABILISTE 5 Mare Heyvaert, F. Thomas Bruss 2. Itroducto La méthode probablste désge l utlsato de rasoemets probablstes das la résoluto de problèmes puremet détermstes.

Plus en détail

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ

CHAPITRE 2. Les carrés dans (Z/nZ) 2.1 Carrés et non carrés dans le corps Z/pZ CHAPITRE Les carrés das (Z/Z Das ce chatre o s téresse à l esemble des carrés das le cors Z/Z, mas auss das certas aeaux Z/Z avec o remer O todut le symbole de Legedre qu caractérse les carrés O trodut

Plus en détail

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U

CHAPITRE VI. THÉORÈME DU CHANGEMENT DE VARIABLE. pour tout borélien B U. En particulier, on a λ (A) = µ ( φ 1 (A)) pour tout borélien A V, soit V U CHAPITE I. THÉOÈME D CHANGEMENT DE AIABLE.. Itégrato par chagemet de varable... Itroducto. Soet, deux ouverts de et φ : u homéomorphsme de sur. Notos x (resp. y ) la varable de (resp. de ) et λ = dy la

Plus en détail

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20.

BTS C.G. 1996. B) Retour au problème concret: Le nombre d'appartements commercialisé est nécessairement un entier entre 2 et 20. BTS CG 996 Eercce : (0 pots) Ue agece mmoblère evsage de commercalser u programme de costructo d'appartemets Deu projets lu sot soums: Projet P : Le coût de producto de appartemets ( eter et 0 )est doé

Plus en détail

EXERCICES DE. Serveur d'exercices 1/22

EXERCICES DE. Serveur d'exercices 1/22 Sceces.ch EXERCICES DE TOPOLOGIE Serveur d'exercces /22 Sceces.ch EXERCICE.. Auteur : Rube Rcchuto (09.08.04, rube@sceces.ch) Mots Clés :Théorème de Bare et cardal de Éocé : Doer ue preuve topologque du

Plus en détail

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet.

Contrôle du mardi 27 janvier 2015 (3 heures) 1 ère S1 D P C. Le barème est donné sur 40. On répondra directement sur la copie fournie avec le sujet. ère S Cotrôle du mard 7 javer 05 ( heures) D C N Le barème est doé sur 0 O répodra drectemet sur la cope foure avec le sujet U certa ombre de questos écesste ue recherche préalable au broullo O e rédgera

Plus en détail

Echantillon : Collection d'individus prélevés dans la population statistique.

Echantillon : Collection d'individus prélevés dans la population statistique. SONDAGE (ECHANTILLONNAGE) POPULATION STATISTIQUE N idividus possédat ue modalité yi de la (ou des) variable(s) y ( i N) PARAMETRES valeur cetrale dispersio corrélatio µ σ² ρ moyee variace coef. corr. ECHANTILLON

Plus en détail

Analyse de régression

Analyse de régression Itroducto à la régresso Aalyse de régresso La régresso est utlsée pour estmer ue focto f( ) décrvat ue relato etre ue varable explquée cotue,, et ue ou pluseurs varables explcatves,. = f(,, 3,, )+ε Remarque

Plus en détail