ENSEMBLES DE NOMBRES. I - Les entiers naturels. L'ensemble des entiers naturels non nuls est noté N *

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "ENSEMBLES DE NOMBRES. I - Les entiers naturels. L'ensemble des entiers naturels non nuls est noté N *"

Transcription

1 ENSEMBLES DE NOMBRES Ne pas confondre «nombre» et «chiffre» Les nombres servent à dénombrer, calculer.les chiffres servent à écrire les nombres. Numération de position : Principe selon lequel la signification d'un chiffre dépend de sa position dans le nombre. Par exemple, dans 3033, le 3 le plus à droite signifie 3, le second le plus à droite 30, et le plus à gauche Les nombres sont écrits à partir de 10 chiffres ou encore en base 10 ex = I - Les entiers naturels 1. Définition L ensemble des entiers naturels noté N est celui des nombres obtenus (générés) par addition à partir de 0 et 1. N= {0 ;1 ;. ;n ;n+1 ; } L'ensemble des entiers naturels non nuls est noté N * 3 N se lit 3 appartient à N, 0 N * se lit 0 n appartient pas à N étoile. Deux autres définitions pour réfléchir : Définition simple L'ensemble des entiers naturels est noté N * est celui des nombres «sans virgule» plus grands ou égale à 0. Il en existe une infinité N= {0,1, 2, 3,...} Les entiers naturels sont les premiers et les plus utilisés dans la vie courante. En fait tout nombre qui sert à dénombrer une collection d'objets est un entier naturel. A une collection vide c'est à dire sans objets (un sac vide par exemple) on fait correspondre le nombre 0. Définition d un mathématicien nommé Peano (Giuseppe Peano 27 août avril 1932) est un mathématicien italien. Il est l'auteur de plus de 200 publications, d'abord analyste, puis logicien, mais plus intéressé par la formalisation des mathématiques que par la logique elle-même, il finira par consacrer la fin de sa vie à la mise au point et à la promotion du Latino sine flexione, un latin à la grammaire très simplifiée, qu'il voyait comme une langue auxiliaire pour les échanges internationaux, en particulier scientifiques) La définition des entiers naturels de Peano est décrite par cinq axiomes : 1. l'élément appelé zéro et noté: 0, est un entier naturel. 2. Tout entier naturel n a un unique successeur, noté s(n) ou n Aucun entier naturel n'a 0 pour successeur. 4. Deux entiers naturels ayant même successeur sont égaux. 5. Si un ensemble d'entiers naturels contient 0 et contient le successeur de chacun de ses éléments, alors cet ensemble est égal à N 1

2 2. Représentation sur une droite : On remarque la régularité : les nombres se suivent de 1 en 1, il n'y a aucun entier naturel entre 1 et 2, 2 et 3 etc Opérations dans Théorème 1 : La somme de deux entiers naturels est un entier naturel. Théorème 2 : le produit de deux entiers naturels est un entier naturel. Ces théorèmes ne sont pas valables pour la soustraction et la division. II Entiers relatifs 1. Définition : L ensemble des entiers relatifs, ou entiers, noté Zest celui des entiers naturels et de leurs opposés. deux nombres opposés sont deux nombres dont la somme est Représentation sur une droite Le nombre 1 est situé une unité à droite du 0, et on place le nombre -1 une unité à gauche de 0, le nombre 2 est situé deux unités à droite de 0 et le nombre -2, deux unités à gauche de 0 etc... on remarque que les entiers relatifs sont régulièrement répartis de 1 en 1 et à gauche et à droite de Opérations dans Z : Dans Z toutes les additions et toutes les soustractions sont possibles, on parle de somme algébrique ou somme. (soustraire un nombre c est ajouter son opposé) Théorème 3 : la somme, ou le produit, de deux entiers relatifs est un entier relatif. Remarques : toutes les divisions ne sont pas encore possibles dans Z ex 2 3 Z Tout entier naturel est un entier relatif on dit que N, est inclus dans Z et on note N Z ce qui signifie que si a N, alors a la réciproque est fausse. III Nombres décimaux Définition : l ensemble des nombres décimaux, noté D, est celui des nombres qui a peuvent s écrire sous la forme avec a Z et n N, n 10 (ou sous la forme a 10 n avec a Z et n Z) 1232 ex : 1,232 = 3 ou 1,232 = Remarques : toutes les divisions ne sont pas encore possibles dans D (5 divisé par 3) N, Z D 2

3 IV Nombres rationnels 1. Définition : L ensemble des nombres rationnels, noté Q est celui des nombres qui peuvent s écrire sous la forme a b avec a Z et b N*. Réfléchir sur les ensembles pour a et b 2. Théorème 4 : Tout nombre rationnel admet une écriture unique sous forme d un fraction irréductible. Remarque : toutes les divisions (sauf par 0) sont possible dans Q mais on ne peut quantifier la mesure de la longueur de la diagonale d un carré de coté un par un rationnel. (problème des Pythagoriciens) N Z D Q Irrationalité de 2, raisonnement par l absurde : Supposons que 2 est un nombre rationnel donc qu il existe deux nombres entiers a et b, premiers entre eux (pas d autre diviseur commun que 1), tels que : 2 = a. (cf. th. 4) b donc si on met au carré on a 2 = a² b² donc a² = 2b² et donc a² est un nombre pair. Or si a 2 est pair, a est pair et réciproquement. (voir la démonstration faite dans l exercice corrigé en classe) Donc a est un nombre pair et on peut écrire a=2p et a² =4p² Si on rapproche les deux égalités encadrées on en déduit que : 2b²=4p² et b²=2p² donc b² est un nombre pair et donc b est un nombre pair. La supposition nombres entiers tels que 2 est un nombre rationnel signifie (équivaut à) qu il existe deux 2 = a b, avec cette hypothèse a pour conséquence : a et b, premiers entre eux a est un nombre pair et b est un nombre pair. Il y a donc contradiction entre les deux affirmations (c est absurde) et donc 2ne peut pas être un nombre rationnel. Il existe donc des nombres qui ne sont pas rationnels (autre exemple : π). 3

4 V Nombres réels 1. Définition : Soit une droite munie d une origine O, d un sens, et d une unité OA = 1 (on peut dire munie du repère (O ;A)) : A tout point M de cette droite (OA) on associe un nombre x, appelé abscisse de M dans le repère (O.A), tel que : x = OM si x [OA) x = - OM si x [OA). L ensemble de ces nombres est appelé ensemble des réels et est noté R N Z D Q R Tout ce qui a une existence «réelle» peut être quantifié avec les réels, mais l équation x²=-1 par exemple n a pas de solution dans l ensemble des réels. 2. Intervalles de R: L ensemble des réels R est l ensemble de tous les nombres compris entre moins l infini, noté, et plus l infini, noté +. On note parfois R = ] ; + [ intervalle ouvert car et + ne sont pas des nombres réels, on ne peut jamais les atteindre a et b étant deux réels donnés tels que a < b (donc a b < 0), certaines parties de R sont appelés intervalles de R et sont notés de la façon suivante. Ensemble des réels x tels que Représentation compléter avec les crochets Intervalle x < a ] - ; a [ a x b [a ; b] a < x < b ] a ; b [ a x < b [a ; b [ x a [a ; + [ 4

5 Intersection d intervalles : L intersection de deux intervalles I et J est l ensemble des nombres qui appartiennent à l un et à l autre des deux intervalles. On le note I J. Si les intervalles sont disjoints (n ont aucun nombre commun) leur intersection est l ensemble vide, noté Ø Exemple : I = [-5 ; 7] et J = ]2 ;10[ I J = ]2;7] Réunion d intervalles : La réunion de deux intervalles est l ensemble des nombres qui appartiennent à l un ou à l autre des deux intervalles. Exemple : I = [-5 ;7] et J = ]2 ;10[ I J = [-5 ;10[ VI Récapitulatif Compléter le diagramme suivant correspondant aux ensembles de nombres : 5

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble.

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. ENSEMBLE DE NOMBRES I. Rappels sur les ensembles 1. Définitions Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. Il est décrit : - par la liste de ces éléments (il est

Plus en détail

Chapitre I : Nombres - Ensembles et opérations

Chapitre I : Nombres - Ensembles et opérations Algèbre Chapitre I : Nombres - Ensembles et opérations I. Rappels du collège - règles de calcul 1. Notions d'opposé et d'inverse Deux nombres sont opposés lorsque leur somme est égale à 0. Exercice : Donner

Plus en détail

I. Nature des nombres

I. Nature des nombres Seconde Lycée Desfontaines Melle Cours 01 - Les nombres I. Nature des nombres Définitions : L ensemble des entiers naturels est l ensemble des entiers positifs. Il se note IN. On écrit alors IN={0;1;2;

Plus en détail

RATIONNELS ET IRRATIONNELS IRRATIONALITE DE 2. Ensemble des nombres décimaux $ 12,57

RATIONNELS ET IRRATIONNELS IRRATIONALITE DE 2. Ensemble des nombres décimaux $ 12,57 THEME : RATIONNELS ET IRRATIONNELS IRRATIONALITE DE Rationnels - Irrationnels Ensemble des nombres réels π Ensemble des nombres rationnels Ensemble des nombres décimaux $ 5 π + 5,57-0,58 4 0 8 457 5 Ensemble

Plus en détail

CHAPITRE 1 Nombres, expressions algébriques, équations

CHAPITRE 1 Nombres, expressions algébriques, équations CHAPITRE 1 Nombres, expressions algébriques, équations A) Les nombres 1) Historique Au départ, les nombres ont été inventés pour compter les objets : 1, 2, 3, 4 etc... On les appelle maintenant les entiers

Plus en détail

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels

CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES. a.) Entiers naturels CALCUL NUMERIQUE I. ENSEMBLES DE NOMBRES a.) Entiers naturels Les entiers naturels sont les entiers positifs et 0. Par exemple, 0, 1, 2 et 5676 sont des entiers naturels. Par contre 45 n'en est pas un.

Plus en détail

les racines carrées :

les racines carrées : les racines carrées : 1) Introduction : il existe un et un seul nombre positif dont le carré est 4 c est 2. il existe un et un seul nombre positif dont le carré est 9, c est 3. Existe il un nombre positif

Plus en détail

CLASSE DE SECONDE ACTIVITES NUMERIQUES.

CLASSE DE SECONDE ACTIVITES NUMERIQUES. LES NOMBRES 1. Les entiers naturels. 1.1 Nature. Un entier naturel dénombre une collection d objets. Ainsi : 0 signifie aucun objet ; signifie objets 0 ; 1 ; ; constituent l ensemble des entiers naturels.

Plus en détail

Séquence 1 : Arithmétique (Nombres et calculs)

Séquence 1 : Arithmétique (Nombres et calculs) Séquence 1 : Arithmétique (Nombres et calculs) Plan de la séquence : I- Rappels de 4ème: 1) Calculs 2) Fractions 3) Nombres relatifs 4) Puissances a) Définition b) Propriétés c) Calculs d expressions d)

Plus en détail

1 R et la droite graduée

1 R et la droite graduée π 31415965358979338466433837950884197169399375105809749445930781640686089986803485341170679 1 R et la droite graduée R - Intervalles L ensemble qui contient tous les nombres est appelé l ensemble des Réels

Plus en détail

a, c'est aussi un nombre rationnel. Les nombres irrationnels ne peuvent pas s'écrire sous forme de fractions, c'est le cas de 2 ; 15 ; π ;...

a, c'est aussi un nombre rationnel. Les nombres irrationnels ne peuvent pas s'écrire sous forme de fractions, c'est le cas de 2 ; 15 ; π ;... CALCUL NUMÉRIQUE 1) Ensembles de nombres Les nombres naturels sont: 0 ; 1 ; 2 ; 3 ; 4 ;... L'ensemble des nombres naturels est noté N. Les nombres entiers relatifs (ou simplement : nombres entiers) sont

Plus en détail

A. Utiliser les nombres pour comparer, calculer et résoudre des problèmes. 1. Les règles de priorité des calculs Les nombres relatifs 12

A. Utiliser les nombres pour comparer, calculer et résoudre des problèmes. 1. Les règles de priorité des calculs Les nombres relatifs 12 Sommaire Nombres et calculs A. Utiliser les nombres pour comparer, calculer et résoudre des problèmes 1. Les règles de priorité des calculs 11 2. Les nombres relatifs 12 La droite graduée 12 Comparaison

Plus en détail

Ensembles de nombres Ordre dans R

Ensembles de nombres Ordre dans R Chapitre 1 Ensembles de nombres Ordre dans R 1. Différents ensembles de nombres 1.1) Des nombres de différentes natures Exemple : Les différentes écritures suivantes désignent un même nombre 2,8 : 7 10

Plus en détail

Quelques notions vues au collège et en seconde

Quelques notions vues au collège et en seconde IUT Orsay Mesures Physiques Cours du 1 er semestre Quelques notions vues au collège et en seconde (complément destiné au travail personnel : non traité en amphi) A. Résumé simplifié sur la zoologie des

Plus en détail

Les différents ensembles de nombres Corrigés des exercices et synthèse de cours

Les différents ensembles de nombres Corrigés des exercices et synthèse de cours Préparation accélérée CRPE Mathématiques Exercice 1 1. Les différents ensembles de nombres Corrigés des exercices et synthèse de cours 1 1 9 ; ;,14 ; 5 5 15 ; 0 sont des nombres rationnels décimaux. Un

Plus en détail

Thème 6 : Racines carrées-le point sur les nombres

Thème 6 : Racines carrées-le point sur les nombres Thème 6 : Racines carrées-le point sur les nombres I - DEFINITION DE LA RACINE CARREE d un nombre positif a est un nombre positif La racine carrée de a notée a est le nombre positif tel que a a = ( a )

Plus en détail

Ecritures fractionnaires :

Ecritures fractionnaires : Ecritures fractionnaires : I) Ecritures fractionnaires d un quotient (Révision de 6e) 1) Définitions: La notation a b (b 0) est une écriture fractionnaire. Le nombre a est le numérateur. Le nombre b est

Plus en détail

Chapitre 1 : Diviseurs et multiples.

Chapitre 1 : Diviseurs et multiples. Chapitre 1 : Diviseurs et multiples. 1. Chiffre et nombre : a. Chiffre : Ce sont les symboles utilisés pour écrire les nombres. Dans notre système (système décimal), il y a 10 chiffres distincts qui permettent

Plus en détail

1 ère S. ch1. Introduction à la logique. J. TAUZIEDE. INTRODUCTION AU VOCABULAIRE DE LA LOGIQUE.

1 ère S. ch1. Introduction à la logique. J. TAUZIEDE. INTRODUCTION AU VOCABULAIRE DE LA LOGIQUE. 1 ère S. ch1. Introduction à la logique. J. TAUZIEDE. INTRODUCTION AU VOCABULAIRE DE LA LOGIQUE. I- IMPLICATION- EQUIVALENCE. 1 ) Proposition. Définition 1. On appelle proposition mathématique, une phrase

Plus en détail

Opérations sur les nombres relatifs

Opérations sur les nombres relatifs Opérations sur les nombres relatifs I) Rappels : a) Définition : Un nombre relatif est un nombre écrit avec un signe + ou suivi d un nombre appelé partie numérique b) Définition : Un nombre relatif écrit

Plus en détail

TERMINALE S DIVISIBILITÉ ET NOMBRES PREMIERS. I Divisibilité dans Z. Mathématiques, enseignement de spécialité

TERMINALE S DIVISIBILITÉ ET NOMBRES PREMIERS. I Divisibilité dans Z. Mathématiques, enseignement de spécialité TERMINALE S Mathématiques, enseignement de spécialité DIVISIBILITÉ ET NOMBRES PREMIERS I Divisibilité dans Z 1 Division euclidienne dans Z. Soient a un nombre entier relatif et b un entier naturel non

Plus en détail

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions.

PROPRIÉTÉ Dans une expression sans parenthèses. les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. 1 Expressions sans parenthèses OBJECTIF 1 PROPRIÉTÉ Dans une expression sans parenthèses, les multiplications et les divisions doivent être effectuées avant les additions et les soustractions. s Calcul

Plus en détail

Chapitre 1 : CALCUL NUMERIQUE

Chapitre 1 : CALCUL NUMERIQUE Introduction. Ce chapitre a pour but de faire une révision complète et rapide sur l ensemble des connaissances calculatoire de l élève, supposées déjà acquises. Il est fondamental de maîtriser chaque règle

Plus en détail

Arithmétique. Ensembles de nombres, opérations sur les nombres et priorités des opérations

Arithmétique. Ensembles de nombres, opérations sur les nombres et priorités des opérations Ensembles de nombres, opérations sur les nombres et priorités des opérations 1. Ensembles de nombres Nombres entiers naturels 1; 2; 3; 4; 5;... sont les premiers nombres que l on apprend déjà avant d entrer

Plus en détail

Phrases quantifiées. «Tout parallélogramme dont les diagonales sont de même longueur est un rectangle.»

Phrases quantifiées. «Tout parallélogramme dont les diagonales sont de même longueur est un rectangle.» Phrases quantifiées Les étapes «comprendre la nécessité de quantifier», «être capable d expliciter les quantifications» et «être capable de rédiger avec des quantificateurs» sont des étapes différentes

Plus en détail

Les nombres réels. 1 L ensemble des nombres rationnels Q Écriture décimale n est pas un nombre rationnel Mini-exercices...

Les nombres réels. 1 L ensemble des nombres rationnels Q Écriture décimale n est pas un nombre rationnel Mini-exercices... Exo7 Les nombres réels L ensemble des nombres rationnels Q. Écriture décimale.......................................................... n est pas un nombre rationnel................................................

Plus en détail

Les ensembles de nombres

Les ensembles de nombres Les ensembles de nombres www.phymaths.ch - Thème TM3-1011 1 er septembre 2010 Ce résumé présente les différents ensembles de nombres qu il est indispensable de connaître et dont il faut comprendre la construction.

Plus en détail

( En seconde ) Dernière mise à jour : Samedi 16 Août Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année )

( En seconde ) Dernière mise à jour : Samedi 16 Août Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année ) Généralités sur les nombres ( En seconde ) Dernière mise à jour : Samedi 16 Août 2008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2008-2009) -1- J aimais et j aime encore les mathématiques

Plus en détail

Chapitre 0 : Mise au point sur les nombres

Chapitre 0 : Mise au point sur les nombres Classe de seconde Chapitre 0 : Mise au point sur les nombres Année scolaire 2012/20 Introduction historique : Dans l'histoire, des pratiques différentes ont conduit à l'utilisation d'ensembles de nombres

Plus en détail

Mathématique 306. Section 1.1 La racine cubique, la notation exponentielle et les lois des exposants. Section 1.2 La notation scientifique

Mathématique 306. Section 1.1 La racine cubique, la notation exponentielle et les lois des exposants. Section 1.2 La notation scientifique Mathématique 06 Chapitre 1 LES NOMBRES Section 1.1 La racine cubique, la notation exponentielle et les lois des exposants Section 1.2 La notation scientifique Section 1. Les ensembles de nombres Cahier

Plus en détail

Chapitre 2. Ensembles et sous-ensembles

Chapitre 2. Ensembles et sous-ensembles Chapitre 2 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Dans une théorie mathématique, il est rare qu un objet intervienne seul ; d où l idée de considèrer des collections,

Plus en détail

Nombres-calcul algébrique

Nombres-calcul algébrique Les ensembles de nombres Notions de troisième et exemples. notations-symboles d appartenance et d inclusion L ensemble N = {0; ; ;...} est appelé ensemble des entiers naturels et se note N. L ensemble

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

EXERCICES D ARITHMÉTIQUE

EXERCICES D ARITHMÉTIQUE 101. 1. n désigne un entier naturel. a. Vérifier que, pour n = 15, le reste de la division euclidienne de (n + 2) 3 par n 2 est égal à 12n + 8. b. Déterminer tous les entiers n pour lesquels cette propriété

Plus en détail

L ensemble des nombres réels

L ensemble des nombres réels Université Pierre et Marie Curie 1M001 L ensemble des nombres réels 1 Entiers, rationnels et réels N = {0, 1,...} est l ensemble des entiers naturels. Z = {...,, 1, 0, 1,,...} est l ensemble des entiers

Plus en détail

LES NOMBRES ENTIERS. Exemple : représente 1 groupement de groupements de groupements de groupements de 1.

LES NOMBRES ENTIERS. Exemple : représente 1 groupement de groupements de groupements de groupements de 1. LES NOMBRES ENTIERS 1. Les nombres entiers positifs ou entiers naturels a) On note l ensemble des entiers naturels. = {0, 1, 2, 3, 4, 5,...} Les nombres entiers positifs ou entiers naturels sont les premiers

Plus en détail

Partie B - Outils de calcul numérique 0

Partie B - Outils de calcul numérique 0 Partie B - Outils de calcul numérique 0 1 Le signe égal (=) Propriété B1 : un nombre, plusieurs formes. Il y a une infinité de manières d'écrire un nombre donné. Preuve : admise et intuitive. Méthode MB1.

Plus en détail

Cours de Troisième / Arithmétique. E. Dostal

Cours de Troisième / Arithmétique. E. Dostal Cours de Troisième / Arithmétique E. Dostal juillet 2014 Table des matières 1 Arithmétique 2 1.1 Ensembles de Nombres...................................... 2 1.2 Nombres Entiers Naturels....................................

Plus en détail

Notes Chapitre 2 Les Nombres Rationnels. 2.1 Les Nombres Rationnels p. 46

Notes Chapitre 2 Les Nombres Rationnels. 2.1 Les Nombres Rationnels p. 46 Notes Chapitre 2 Les Nombres Rationnels 2.1 Les Nombres Rationnels p. 46 Un nombre rationnel peut s écrire sous la forme a b nombres entiers, b 0. (C est possible de s exprimer en forme fractionnaire..

Plus en détail

Chapitre 1 MAJORER, MINORER

Chapitre 1 MAJORER, MINORER Chapitre 1 MAJORER, MINORER 1. Les règles de base des inégalités 1.1. Axiomes de construction L ensemble des réels est muni d une relation notée qui vérifie les axiomes suivants : i) pour tout x R, x x

Plus en détail

Chapitre 1 : Opérations sur les nombres relatifs

Chapitre 1 : Opérations sur les nombres relatifs Chapitre 1 : Opérations sur les nombres relatifs Rappel : Un nombre relatif peut être positif ou négatif. 1) Addition (rappel) : (+ 3) + (+2) = (+ 5) et (-3) + (-2) = (-5) Si les deux nombres sont de même

Plus en détail

CHAPITRE III : ÉQUATIONS, INÉQUATIONS ET PROBLÈMES

CHAPITRE III : ÉQUATIONS, INÉQUATIONS ET PROBLÈMES CHAPITRE III : ÉQUATIONS, INÉQUATIONS ET PROBLÈMES R et ses sous-ensembles, intervalles sur R «Le nombre entier vient de Dieu Tout le reste est l œuvre de l Homme» Kronecker (1823-1891) Les entiers naturels

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

Chapitre I : LES NOMBRES ENTIERS

Chapitre I : LES NOMBRES ENTIERS Chapitre I : LES NOMBRES ENTIERS I DIVISIBILITÉ Dans ce paragraphe, tous les nombres seront des entiers naturels (0,, 2, 3, 4,...). Définitions : ) On dit que m est un multiple de b quant il existe c tel

Plus en détail

La division euclidienne

La division euclidienne TS spé La division euclidienne I. Théorème 1 ) Énoncé a et b Il existe un unique couple q, r d entiers tels que a bq r et 0 r b. lan du chapitre : I. Théorème II. Démonstration du théorème de la division

Plus en détail

Chap 2.Fonctions : généralités (Notes de cours)

Chap 2.Fonctions : généralités (Notes de cours) Chapitre 2 : Chap 2.Fonctions : généralités (Notes de cours) 1 Fonctions : généralités. 1. Les ensembles de nombres 1.1. Différents types de nombre Fiche n 1 : Activité d introduction sur les ensembles

Plus en détail

Les ensembles de nombres

Les ensembles de nombres DERNIÈRE IMPRESSION LE 27 juin 2016 à 11:51 Les ensembles de nombres Table des matières 1 Les nombres entiers 2 1.1 Les entiers naturels : N.......................... 2 1.2 Les entiers relatifs : Z...........................

Plus en détail

Chapitre 3 : Les nombres décimaux

Chapitre 3 : Les nombres décimaux Chapitre 3 : Les nombres décimaux Ils sont utilisés pour les sommes d argent, les mesures, 1) Fraction décimale et nombres décimaux : Exemple : 2, 45 est un nombre décimal. On peut placer ce nombre dans

Plus en détail

Racines carrées Nombres réels

Racines carrées Nombres réels I. Quelques rappels : 1. Ensemble des entiers naturels : Racines carrées Nombres réels Les nombres naturels ou entiers naturels servent à dénombrer les objets. L ensemble des entiers naturels est noté

Plus en détail

Chapitre 12 : Opérations sur les fractions

Chapitre 12 : Opérations sur les fractions Chapitre : Opérations sur les fractions ) Egalité de deux fractions (rappel) : Exemple : Exemple : 4 = 8 Le numérateur et le dénominateur de la fraction 4 ont été multipliés par. 4 = x 4 x = 8 C est vrai

Plus en détail

Chapitre 02 : NOMBRES ENTIERS ET DÉCIMAUX

Chapitre 02 : NOMBRES ENTIERS ET DÉCIMAUX Chapitre 02 NOMBRES ENTIERS ET DÉCIMAUX I) Nombres entiers ) Définition Système décimale français Le système décimal français utilise dix chiffres Les nombres sont écrits avec les chiffres 0,, 2, 3, 4,

Plus en détail

FRACTIONS EQUIVALENTES

FRACTIONS EQUIVALENTES FRACTIONS EQUIVALENTES Je sais travailler avec des fractions équivalentes et des nombres relatifs Je sais simplifier une fraction Exercice 1 : Complète les pointillés par des nombres entiers positifs ou

Plus en détail

Douala Mathematical Society : : Workbook-2c 2015 NOMBRES REELS 1) 1 1 4) )

Douala Mathematical Society :  : Workbook-2c 2015 NOMBRES REELS 1) 1 1 4) ) Douala Mathematical Society : www.doualamaths.net : Workbook-c 0 NOMBRES REELS EXERCICE 0 Calculer ) 7 8 ) 8 8 9 6 ) ) 8 8 6 ) 6 6) 7) 0 7 7 0 6 7 80 8) 6 0 6 0 7 9) 8 6 0 0) 7 9 ) 7 ) ) 7 7 ) ) 7 9 EXERCICE

Plus en détail

Voici l ensemble des nombres tels qu ils se présentent à la sortie du collège :

Voici l ensemble des nombres tels qu ils se présentent à la sortie du collège : I- LES NOMBRES L humanité a mis des millénaires pour construire les nb : 30000 av JC : entailles numériques sur des os ; 8000 av JC : apparition des calculs au moyen orient ; 600 av JC : découverte des

Plus en détail

Les implications dans le raisonnement mathématique

Les implications dans le raisonnement mathématique I Les implications dans le raisonnement mathématique I.1 L implication - L équivalence 1 (De la logique en français) Une réunion de cosmonautes du monde entier a lieu à Paris. Les cosmonautes américains

Plus en détail

Chapitre 1. Arithmétique

Chapitre 1. Arithmétique Chapitre 1. Arithmétique 1. Raisonnement par récurrence 1.1 Principe Il s agit d un raisonnement inductif, c est-à-dire un raisonnement visant à produire des connaissances par des conclusions plus générales

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base

MATHEMATIQUES. TRAVAUX NUMÉRIQUES 1ère partie. Nombres entiers. Nombres décimaux. Fractions. Opérations de Base EXAMEN PROFESSIONNEL Adjoint technique territorial de ère classe MATHEMATIQUES TRAVAUX NUMÉRIQUES ère partie Nombres entiers Nombres décimaux Fractions Opérations de Base TRAVAUX NUMERIQUES - Nombres Entiers

Plus en détail

Problème. A 1. a) On effectue la division euclidienne de 41 par tous ,1 ; donc le plus grand premier à utiliser est 19.

Problème. A 1. a) On effectue la division euclidienne de 41 par tous ,1 ; donc le plus grand premier à utiliser est 19. CHAPITRE 3 Les nombres premiers SÉQUENCE 1 Les nombres premiers (page 76) RÉSOLUTION DE PROBLÈMES Problème 1 A 1. Conjecture possible : le produit des nombres associés aux extrémités est égal à l ordonnée

Plus en détail

Les fractions. Maths 8 chapitre 1

Les fractions. Maths 8 chapitre 1 Maths 8 chapitre 1 1. Définition Une fraction est une division non effectuée de deux entiers relatifs n est appelé le numérateur d est appelé le dénominateur d 0 n d 2 2. Fractions propres et impropres

Plus en détail

Les ensembles D. Daigle

Les ensembles D. Daigle Les ensembles D. Daigle 1. Notions de base La notation x A signifie que x est un élément de l ensemble A (elle se lit x est élément de A ou encore x appartient à A ). Remarquez que le symbole d appartenance

Plus en détail

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs Assertion Une assertion est une phrase (énoncé mathématique) qui peut être «vraie» ou «fausse», mais jamais les deux à la fois. Exemples: (3 > 0), (3 = 0) sont des assertions. L énoncé «L avenue des Champs

Plus en détail

Fiche 1 : Division ( Nombres entiers )

Fiche 1 : Division ( Nombres entiers ) Fiche 1 : Division ( Nombres entiers ) Une division exacte est une division dans laquelle le reste est égal à 0. Le résultat d une division est le quotient. Quand le reste est nul, on parle de quotient

Plus en détail

Nombres rationnels (Rappel)

Nombres rationnels (Rappel) Nombres rationnels (Rappel) I) Les nombres relatifs 1) Addition de deux nombre relatifs (rappel) Mêmes signes Signes différents Règles de calcul: On additionne les distances à zéro des deux nombres On

Plus en détail

CHAPITRE 1. Quelques rappels

CHAPITRE 1. Quelques rappels 2 CHAPITRE 1 Quelques rappels 1. Théorie des ensembles 1.1. Introduction. La théorie des ensembles joue un rôle important en calcul différentiel. On a qu à penser au domaine d une fonction qui est en réalité

Plus en détail

Nombres entiers, nombres décimaux

Nombres entiers, nombres décimaux Nombres entiers, nombres décimaux Pour parler on utilise des mots et pour écrire ces mots on utilise des lettres, dans certains pays on n utilise pas des lettres mais des idéogrammes. Pour compter on utilise

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS

ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS ELEMENTS D ARITHMETIQUE DANS L ENSEMBLE DES ENTIERS NATURELS I. Multiples et diviseurs 1. Multiples d un nombre entier naturel Définition Un nombre entier naturel a est multiple d un nombre entier naturel

Plus en détail

Logique - Calcul propositionnel

Logique - Calcul propositionnel Logique 1/ 6 Logique - Calcul propositionnel En mathématiques, les théorèmes sont des propriétés très importantes. Ils s écrivent le plus souvent à l aide de liens logiques liant entre elles des propositions.

Plus en détail

VERS LA MULTIPLICATION DES NOMBRES RELATIFS. Deux méthodes de recherche sont proposées :

VERS LA MULTIPLICATION DES NOMBRES RELATIFS. Deux méthodes de recherche sont proposées : VERS LA MULTIPLICATION DES NOMBRES RELATIFS Construction d une table de multiplication : Deux méthodes de recherche sont proposées : Complète la table de multiplication ci-dessous en commençant par les

Plus en détail

Nombres complexes Forme algébrique

Nombres complexes Forme algébrique Nombres complexes Forme algébrique I) Forme algébrique d un nombre complexe 1) Définitions On admet l existence d un nombre, noté dont le carré est égal à On appelle alors nombre complexe tout nombre de

Plus en détail

Les nombres p-adiques

Les nombres p-adiques Les nombres p-adiques Yann Ollivier On veut voir ce qui se passe quand on change un peu les règles du calcul usuel. Lorsqu on passe des nombres entiers aux nombres réels, on s autorise à utiliser des nombres

Plus en détail

1 ère S Valeur absolue (2)

1 ère S Valeur absolue (2) 1 ère S Valeur absolue () Objectif : reprendre la notion de valeur absolue mais sous un aspect algébrique. I. Epression de la valeur absolue d un réel suivant son signe 1 ) Démonstration est un réel quelconque.

Plus en détail

Rappels sur les nombres et les calculs élémentaires

Rappels sur les nombres et les calculs élémentaires Rappels sur les nombres et les calculs élémentaires I- Les entiers et l addition des relatifs : La première famille de nombres que vous avez rencontrée dans votre vie est celle des entiers naturels : 0

Plus en détail

Correction de la séance : ensembles de nombres Exercice 1 :

Correction de la séance : ensembles de nombres Exercice 1 : Correction de la séance : ensembles de nombres Exercice 1 : 9 a.,14 0 sont des nombres rationnels décimaux. Un nombre décimal a plusieurs 125 écritures dont une écriture fractionnaire et une écriture à

Plus en détail

Chapitre 5. Lois de composition internes - Relations

Chapitre 5. Lois de composition internes - Relations Chapitre 5 Lois de composition internes - Relations 1. Lois de composition internes 1.1. Définition et exemples Définition 5.1 Soit E un ensemble. Une loi de composition interne sur E est une application

Plus en détail

CHAPITRE 1 : NOMBRES RÉELS. 2. NOMBRES RÉELS R ensemble de nombres réels, c est-à-dire des nombres qui sont soit rationnels, soit irrationnels

CHAPITRE 1 : NOMBRES RÉELS. 2. NOMBRES RÉELS R ensemble de nombres réels, c est-à-dire des nombres qui sont soit rationnels, soit irrationnels 1. NOMBRES IRRATIONNELS Nombres décimaux dont le nombre de chiffres après la virgule est infini et non périodique : Ils n ont pas une écriture rationnelle 2. NOMBRES RÉELS R ensemble de nombres réels,

Plus en détail

Comparaison des Connaissances et compétences associées Nombres et calculs

Comparaison des Connaissances et compétences associées Nombres et calculs Comparaison des Connaissances et compétences associées Nombres et calculs Dénombrer, constituer et comparer des collections. Utiliser diverses stratégies de dénombrement. Cycle 2 Cycle 3 Cycle 4 Procédures

Plus en détail

OPERATIONS. Tableau de la numération décimale.

OPERATIONS. Tableau de la numération décimale. A5 p6 Puissances A4 p5 Calculs avec des relatifs A6 p7 Equations A7 p8 Pourcentages A8a p9 Proportions (1) A8b p10 Proportions (2) A8c p11 Proportions (3) A9 p12 Calcul algébrique (1) A10 p13 Calcul algébrique

Plus en détail

Cours 2 nde D. CRESSON

Cours 2 nde D. CRESSON Cours 2 nde D. CRESSON 15 novembre 2008 Chapitre 1 LES NOMBRES I Ensembles de nombres 1 Dénomination On note N l ensemble des nombres entiers naturels N = {0; 1; 2; 3;...; 1643722;...} On note Z l ensemble

Plus en détail

COURS 6 : La droite réelle (suite)

COURS 6 : La droite réelle (suite) COURS 6 : La droite réelle (suite) Définition 0.1. Soit X une partie de R. On dit que X est dense dans R si tout intervalle ouvert non vide I de R rencontre X (c est-à-dire contient au moins un élément

Plus en détail

V Ca CALCUL. Fiche numéro Titre de la leçon

V Ca CALCUL. Fiche numéro Titre de la leçon V Ca CALCUL Fiche numéro Titre de la leçon Ca 1 Addition de nombres entiers Ca 2 Soustraction de nombre entiers Ca 3 Multiplication de nombres entiers Ca 4 La table de Pythagore Ca 5 Multiplier par 10,

Plus en détail

Chapitre II : L ensemble des nombres réels

Chapitre II : L ensemble des nombres réels 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre II : L ensemble des nombres réels 1 Quelques notions générales sur R

Plus en détail

DERNIÈRE IMPRESSION LE 4 septembre 2014 à 23:33. Les nombres. 1 Introduction 2

DERNIÈRE IMPRESSION LE 4 septembre 2014 à 23:33. Les nombres. 1 Introduction 2 DERNIÈRE IMPRESSION LE 4 septembre 014 à 3:33 Les nombres Table des matières 1 Introduction Les entiers naturels : N.1 Règles de divisibilité............................ Décomposition en nombres premiers..................

Plus en détail

Développements décimaux des nombres réels

Développements décimaux des nombres réels 1 Développements décimaux des nombres réels 1. Rappels sur les nombres décimaux. Rappelons qu un nombre décimal est un rationnel qui admet une écriture fractionnaire de la forme avec a Z et n N. Le lecteur

Plus en détail

Chapitre 1 Opérations sur les nombres relatifs

Chapitre 1 Opérations sur les nombres relatifs Chapitre 1 Opérations sur les nombres relatifs Compétences : Exemples d'activités, commentaires :. Remarques : La partie valeurs approchées d un quotient est traitée dans le chapitre écritures fractionnaires,

Plus en détail

Différents types de raisonnement en mathématiques

Différents types de raisonnement en mathématiques Différents types de raisonnement en mathématiques I) Symboles logiques 1) Les quantificateurs Les quantificateurs permettent de connaitre le domaine de validité d une propriété. a) Pour une propriété universelle

Plus en détail

FORMATION INTERMÉDIAIRE MAT 2021 CAHIER 3 ET CORRIGÉ

FORMATION INTERMÉDIAIRE MAT 2021 CAHIER 3 ET CORRIGÉ FORMATION INTERMÉDIAIRE MAT 2021 ET CORRIGÉ TABLE DES MATIÈRES I 1.0 NOMBRES RATIONNELS... 1 1.1 Reconnaître les nombres rationnels... 1 1.2 Comparer des nombres rationnels... 5 1. Représenter les nombres

Plus en détail

CALCUL NUMÉRIQUE FRACTIONS & PRIORITÉS OPÉRATOIRES. 1. Fractions. EXERCICE 1 : Hachurer la fraction du rectangle indiquée.

CALCUL NUMÉRIQUE FRACTIONS & PRIORITÉS OPÉRATOIRES. 1. Fractions. EXERCICE 1 : Hachurer la fraction du rectangle indiquée. CALCUL NUMÉRIQUE FRACTIONS & PRIORITÉS OPÉRATOIRES 1. Fractions EXERCICE 1 : Hachurer la fraction du rectangle indiquée. Exemples : 1 Le quotient de deux nombres relatifs ne change pas quand on multiplie

Plus en détail

ADDITION DES NOMBRES ENTIERS

ADDITION DES NOMBRES ENTIERS CALCUL CA.01 Addition des nombres entiers CA.02 Table d'addition CA.03 Soustraction des nombres entiers CA.04 Multiplication des nombres entiers CA.05 Tables de multiplication CA.06 Division euclidienne

Plus en détail

Les p-adiques au lycée

Les p-adiques au lycée Les p-adiques au lycée Bernard Le Stum Université de Rennes 1 Version du 5 novembre 2012 Qu est-ce qu un nombre? On sait que «trois écureuils», ce n est pas pareil que «quatre écureuils». Ce n est pas

Plus en détail

Exercice 2 ( 5 points ) Réservé aux candidats ayant suivi l enseignement de spécialité

Exercice 2 ( 5 points ) Réservé aux candidats ayant suivi l enseignement de spécialité Exercice 2 ( 5 points ) Réservé aux candidats ayant suivi l enseignement de spécialité Soit a et b deux entiers naturels non nuls; on appelle réseau associé aux entiers a et b l'ensemble des points du

Plus en détail

Chapitre 1 : Opération sur les nombres relatifs

Chapitre 1 : Opération sur les nombres relatifs Chapitre 1 : Opération sur les nombres relatifs I- Rappels Activité 1 : Activité 2 Activité 3 2 RETENONS : Comparaison de deux nombres relatifs Propriété : - Tout nombre positif est plus grand que tout

Plus en détail

Chapitre premier R, ordre, intervalles

Chapitre premier R, ordre, intervalles Chapitre premier R, ordre, intervalles 1.1 Définitions et rappels Définition 1.1.1. Un entier naturel est un nombre positif ou nul permettant de dénombrer des objets comptant chacun pour un. Un nombre

Plus en détail

CA.01 1 LE SENS DE L'ADDITION 2 LA TECHNIQUE DE CALCUL : POSER UNE ADDITION EN COLONNES 3 PROPRIÉTÉ DE L'ADDITION ADDITION DES NOMBRES ENTIERS

CA.01 1 LE SENS DE L'ADDITION 2 LA TECHNIQUE DE CALCUL : POSER UNE ADDITION EN COLONNES 3 PROPRIÉTÉ DE L'ADDITION ADDITION DES NOMBRES ENTIERS CALCUL CA.01 Addition des nombres entiers CA.02 Table d'addition CA.03 Soustraction des nombres entiers CA.04 Table de soustraction CA.05 Multiplication des nombres entiers CA.06 Tables de multiplication

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle.

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. L étude de ces trois célèbres problèmes de contructions géométriques à la règle et au compas nécessite

Plus en détail

Résolution de l équation x 3 y 3 2z 3 dans 3

Résolution de l équation x 3 y 3 2z 3 dans 3 Résolution de l équation x 3 y 3 z 3 dans 3 Lemme Si u et v sont deux entiers relatifs premiers entre eux, de parités différentes, et tels que u 3v soit le cube d un entier relatif, alors il existe deux

Plus en détail

Chapitre 1 : Calcul dans R

Chapitre 1 : Calcul dans R Chapitre 1 : Calcul dans R PTSI B Lycée Eiffel 6 septembre 13 Le calcul que vous trouvez si mauvais est pourtant celui de toutes les passions. Des années entières de poursuite, pour la jouissance d un

Plus en détail

n Objectif 1 Je connais les tables d addition. 2 Je connais les tables de multiplications.

n Objectif 1 Je connais les tables d addition. 2 Je connais les tables de multiplications. Calcul mental Je connais les tables d addition. Je connais les tables de multiplications. 3 4 opérations du type Je sais estimer l ordre de grandeur du résultat d une opération du type Compétence Nombres

Plus en détail